Start Date

8-5-2013 12:30 PM

End Date

8-5-2013 1:30 PM

Document Type

Event

Description

Mesenchymal stem cells (MSC) have been shown to possess immunomodulatory properties that highlight their potential as a cellular therapy for autoimmune disease. We propose to examine the in vitro potential of stem cells derived from umbilical cord tissue to suppress the effector functions of human auto-reactive T cells. While the mechanism(s) of suppression of T cell function are not fully understood, it has been hypothesized that MSC-derived immunosuppressive soluble factors and cell-to-cell contact are important. We developed an in vitro culture assay to assess the effects of umbilical cord derived MSC (TC-MSC) on T cell function. Various doses of low-passage TC-MSCs were adhered to collagen-coated 96 well plates or in the lower chamber wells of transwell plates. HLA-matched EBV transformed B cells were pulsed +/- with appropriate autoantigenic peptide and cultured with adherent MSC or in the upper transwell chambers with the appropriate T cell clone. After 48 hours, cells were stained for CD4 and stained intracellularly for IFN-γ and analyzed by flow cytometry. We observed decreased T cell effector function with MSC co-culture and this was partially restored by separation of MSC and T cell+B cell+peptide in the transwell. We examined if prostaglandin E2 derived from the MSC also contributed to decreased T cell effector function. The inclusion of a COX-2 inhibitor in the culture system led to partially restored T cell effector function. We conclude that TC-MSC-derived soluble factor(s) and TC-MSC:T cell contact both contribute to the TC-MSC’s immunosuppressive effects. Primary TC-MSC isolates (with no prior cell culture) will also be tested in this system to determine if they possess similar immunosuppressive effects as adherent, cultured TC-MSC. These studies will pinpoint the functional mechanisms of the TC-MSC immunomodulatory properties on T cell effector function and may suggest avenues of enhancing MSC function in the treatment of autoimmune disease.

Creative Commons License

Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Share

COinS
 
May 8th, 12:30 PM May 8th, 1:30 PM

Umbilical Cord Tissue-Derived Mesenchymal Stem Cells Inhibit T Cell Response to Peptide

Mesenchymal stem cells (MSC) have been shown to possess immunomodulatory properties that highlight their potential as a cellular therapy for autoimmune disease. We propose to examine the in vitro potential of stem cells derived from umbilical cord tissue to suppress the effector functions of human auto-reactive T cells. While the mechanism(s) of suppression of T cell function are not fully understood, it has been hypothesized that MSC-derived immunosuppressive soluble factors and cell-to-cell contact are important. We developed an in vitro culture assay to assess the effects of umbilical cord derived MSC (TC-MSC) on T cell function. Various doses of low-passage TC-MSCs were adhered to collagen-coated 96 well plates or in the lower chamber wells of transwell plates. HLA-matched EBV transformed B cells were pulsed +/- with appropriate autoantigenic peptide and cultured with adherent MSC or in the upper transwell chambers with the appropriate T cell clone. After 48 hours, cells were stained for CD4 and stained intracellularly for IFN-γ and analyzed by flow cytometry. We observed decreased T cell effector function with MSC co-culture and this was partially restored by separation of MSC and T cell+B cell+peptide in the transwell. We examined if prostaglandin E2 derived from the MSC also contributed to decreased T cell effector function. The inclusion of a COX-2 inhibitor in the culture system led to partially restored T cell effector function. We conclude that TC-MSC-derived soluble factor(s) and TC-MSC:T cell contact both contribute to the TC-MSC’s immunosuppressive effects. Primary TC-MSC isolates (with no prior cell culture) will also be tested in this system to determine if they possess similar immunosuppressive effects as adherent, cultured TC-MSC. These studies will pinpoint the functional mechanisms of the TC-MSC immunomodulatory properties on T cell effector function and may suggest avenues of enhancing MSC function in the treatment of autoimmune disease.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.