Utility of comprehensive genomic sequencing for detecting HER2-positive colorectal cancer

Yoshifumi Shimada
Niigata University Graduate School of Medical and Dental Sciences, Japan

Stephen Lyle
University of Massachusetts Medical School

Toshifumi Wakai
Niigata University Graduate School of Medical and Dental Sciences, Japan

Follow this and additional works at: http://escholarship.umassmed.edu/oapubs

Part of the Cancer Biology Commons, Computational Biology Commons, Genomics Commons, Neoplasms Commons, and the Pathology Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Repository Citation
Shimada, Yoshifumi; Lyle, Stephen; and Wakai, Toshifumi, "Utility of comprehensive genomic sequencing for detecting HER2-positive colorectal cancer" (2017). Open Access Articles. 3089.
http://escholarship.umassmed.edu/oapubs/3089

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Utility of comprehensive genomic sequencing for detecting HER2-positive colorectal cancer

Yoshifumi Shimada MD, PhD, Ryoma Yagi MD, Hitoshi Kameyama MD, PhD, Masayuki Nagahashi MD, PhD, Hiroshi Ichikawa MD, PhD, Yosuke Tajima MD, Takuma Okamura MD, PhD, Mae Nakano MD, PhD, Masato Nakano MD, PhD, Yo Sato MD, Takeaki Matsuzawa MD, PhD, Jun Sakata MD, PhD, Takashi Kobayashi MD, PhD, Hitoshi Nogami MD, PhD, Satoshi Maruyama MD, PhD, Yasumasa Takii MD, PhD, Takashi Kawasaki MD, PhD, Kei-ichi Homma MD, PhD, Hiroshi Izutsu, Keisuke Kodama, Jennifer E. Ring PhD, Alexei Protopopov PhD, Stephen Lyle MD, PhD, Shujiro Okuda PhD, Kohei Akazawa PhD, Toshifumi Wakai MD, PhD

PII: S0046-8177(17)30051-5
DOI: doi: 10.1016/j.humpath.2017.02.004
Reference: YHUPA 4133

To appear in: Human Pathology

Received date: 18 November 2016
Revised date: 18 January 2017
Accepted date: 9 February 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Utility of comprehensive genomic sequencing for detecting HER2-positive colorectal cancer

Yoshifumi Shimada MD, PhDa, Ryoma Yagi MDa, Hitoshi Kameyama MD, PhDa, Masayuki Nagahashi MD, PhDa, Hiroshi Ichikawa MD, PhDa, Yosuke Tajima MDa, Takuma Okamura MD, PhDa, Mae Nakano MD, PhDa, Masato Nakano MD, PhDa, Yo Sato MDb, Takeaki Matsuzawa MD, PhDb, Jun Sakata MD, PhDa, Takashi Kobayashi MD, PhDa, Hitoshi Nogami, MD, PhDc, Satoshi Maruyama, MD, PhDc, Yasumasa Takii, MD, PhDc, Takashi Kawasaki, MD, PhDd, Kei-ichi Homma, MD, PhDd, Hiroshi Izutsue, Keisuke Kodamae, Jennifer E. Ring, PhDf, Alexei Protopopov, PhDf, Stephen Lyle, MD, PhDf,g, Shujiro Okuda, PhDh, Kohei Akazawa, PhDi, Toshifumi Wakai MD, PhDa

a Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
b Department of Digestive and General Surgery, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, 4132 Urasa, Minami-Uonuma City, Niigata 949-7302, Japan
c Department of Surgery, Niigata Cancer Center Hospital, 15-3 Kawagishi-cho 2-Chome, Chuo-ku, Niigata City, Niigata 951-8566, Japan
d Department of Pathology, Niigata Cancer Center Hospital, 15-3 Kawagishi-cho 2-Chome, Chuo-ku, Niigata City, Niigata 951-8566, Japan
e Diagnostics Research Department, Life innovation Research Institute, Denka innovation center, Denka Co., Ltd., 3-5-1 Asahi-Machi, Machida-City, Tokyo 194-8560, Japan
f KEW, Inc. 840 Memorial Drive, 4th floor, Cambridge, MA 02139, USA
g University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA

h Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan

i Department of Medical Informatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan

Correspondence: Yoshifumi Shimada, Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan, Phone: +81-25-227-2228, Fax: +81-25-227-0779, E-mail address: shimaday@med.niigata-u.ac.jp

Running title

CGS and HER2-positive CRC

Conflicts of interest

All authors have no conflicts of interest regarding this manuscript.

Funding disclosures

This project was supported by funding from Denka Co., Ltd. Y. Shimada is supported in part by a Grant-in-Aid for Scientific Research, no. 15K10130 (Y.S.), from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Keywords: HER2, colorectal cancer, next-generation sequencing, comprehensive genomic sequencing, immunohistochemistry, fluorescence in situ hybridization
Abstract

HER2-targeted therapy is considered effective for *KRAS* codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (CRC). In general, HER2 status is determined by the use of immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). Comprehensive genomic sequencing (CGS) enables the detection of gene mutations and copy number alterations including *KRAS* mutation and *HER2* amplification; however, little is known about the utility of CGS for detecting HER2-positive CRC. To assess its utility, we retrospectively investigated 201 patients with stage I–IV CRC. The HER2 status of the primary site was assessed using IHC and FISH, and *HER2* amplification of the primary site was also assessed using CGS, and the findings of these approaches were compared in each patient. CGS successfully detected alterations in 415 genes including *KRAS* codon 12/13 mutation and *HER2* amplification. Fifty-nine (29%) patients had a *KRAS* codon 12/13 mutation. Ten (5%) patients were diagnosed as HER2-positive because of HER2 IHC 3+, and the same 10 (5%) patients had *HER2* amplification evaluated using CGS. The results of HER2 status and *HER2* amplification were completely identical in all 201 patients (*P* < 0.001). Nine of the 10 HER2-positive patients were *KRAS* 12/13 wild-type and were considered possible candidates for HER2-targeted therapy. CGS has the same utility as IHC and FISH for detecting HER2-positive patients who are candidates for HER2-targeted therapy, and facilitates precision medicine and tailor-made treatment.

Word count of the abstract: 226 words
Highlights

- HER2-targeted therapy is possibly effective for HER2-positive colorectal cancer.
- Generally, HER2 status is determined by immunohistochemistry (IHC).
- HER2 amplification can be also detected by comprehensive genomic sequencing (CGS).
- This study showed that the results of IHC and CGS were completely identical.
- CGS has the same utility as IHC for detecting HER2-positive colorectal cancer.
Introduction

HER2, a member of the human epidermal growth factor receptor (HER) family, is a plasma membrane protein with intrinsic tyrosine kinase activity [1]. In contrast to other HER family members, HER2 is a receptor with no ligand; HER2 protein activation depends directly on its dimerization with another HER2 monomer or with a monomer of another HER family member, such as HER3 [2, 3]. After dimerization, the most important signaling pathways, such as the mitogen-activated protein kinase (MAPK) and PI3K pathways, are activated by HER2, resulting in cell duplication and regulation of apoptosis [4]. HER2 signal transduction can be dysregulated via different mechanisms: HER2 overexpression, generally resulting from HER2 gene amplification [5, 6], is one of the main causes of the constitutive activation of HER2 signal transduction in many cancers [7].

HER2 overexpression and/or amplification are associated with carcinogenesis, poor prognosis, and may also predict the response to chemotherapy [7]. Under the rationale for using anti-HER2 targeted approaches to block its oncogenic effects, anti-HER2 monoclonal antibodies have been designed for HER2-positive tumors. Trastuzumab is a monoclonal antibody that recognizes the extracellular portion of the HER2 receptor, and once bound, it completely inhibits HER2 activity [8]. Today, trastuzumab treatment is the standard care for HER2-positive breast [9] and gastric cancers [10]. In addition to breast and gastric cancers, preclinical models and clinical trials are underway to assess the efficacy of HER2-targeted therapy for patients with colorectal cancer (CRC) [11]. Several studies reported the incidence of HER2-positive cases and its clinical significance in CRC [12-19], and the use of trastuzumab for HER2-positive cases is recognized as a promising treatment strategy for
KRAS wild-type metastatic CRC [19-21]. Recently, the HERACLES trial demonstrated the efficacy of dual-targeted therapy with trastuzumab and lapatinib for *KRAS* codon 12/13 wild-type and HER2-positive CRC [22]. Hence, both *KRAS* mutation and HER2 status should be evaluated to select candidates for HER2-targeted therapy in CRC.

In current histopathology, the HER2 status of breast and gastric cancer is determined by immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) [23, 24]; likewise, the HER2 status of CRC is usually evaluated by IHC and FISH [22]. Conversely, by utilizing next-generation sequencing technology, projects such as The Cancer Genome Atlas (TCGA) have profiled genomic changes in several cancers including CRC [25]. Comprehensive genomic sequencing (CGS) can detect gene mutations and copy number alterations in a single assay, including *KRAS* mutation and *HER2* amplification. However, it is not clear whether CGS has the same diagnostic value as IHC and FISH for detecting HER2-positive CRC. Therefore, the aim of this study was to clarify the utility of CGS for detecting HER2-positive CRC.

Materials and methods

Patients

A total of 201 patients diagnosed with stage I - IV CRC according to AJCC 7th edition [26] who performed primary tumor resection between 2009 and 2015 at Niigata University Medical and Dental Hospital or Niigata Cancer Center Hospital were enrolled. Patients with familial adenomatous polyposis or inflammatory bowel disease were excluded. None of the patients had received neoadjuvant radiation or HER2-targeted therapy. This retrospective
study was performed in accordance with the Helsinki Declaration, and the Ethics Committee of the School of Medicine, Niigata University approved the study protocol.

Pathological evaluation of HER2 status

Resected specimens were fixed immediately in 10% buffered formalin for 24 h, and the entire tumor was cut into step-wise sections and embedded in paraffin. Each section was examined with hematoxylin and eosin (HE) staining, and the archives were reviewed for each case to select one cross-section with the most invasion. The corresponding paraffin blocks were re-cut, making 4-μm thick slices, and 3 serial sections were assigned for HE staining, anti-HER2 staining, and a negative control. HER2 status was determined according to the HERACLES diagnostic criteria: HER2-positive status was defined as tumors with a 3+ HER2 score in more than 50% of cells by IHC or with a 2+ HER2 score and a HER2:CEP17 ratio higher than 2.0 in more than 50% of cells by FISH [22].

IHC for evaluating HER2 status

Specimen slides were deparaffinized, followed by dehydration with ethanol. The sections were washed 3 times with phosphate-buffered saline for 5 min. The sections were digested with 0.03 U/g protease, diluted with 0.05 M Tris-HCl pH 7.6, at room temperature for 5 min (protease: type EX No. P3111; SIGMA Aldrich Corp., St. Louis, MO). After blocking nonspecific reactivity with 3% H₂O₂ for 5 min, an anti-HER2 monoclonal antibody (SV2-
Nichirei Biosciences, Inc., Tokyo, Japan) was applied at 5 mg/mL (diluted with 0.5% bovine serum albumin/phosphate-buffered saline) at room temperature for 30 min. Then, the sections were incubated with Histofine Simple Stain MAX PO (M) (Nichirei Biosciences, Inc.) at room temperature for 30 min, followed by incubation for 10 min with a DAB kit (Nichirei Biosciences, Inc.), and the sections were counterstained with hematoxylin. Positive tissue controls were included in each run; these tissues were breast tumors with known HER2 protein overexpression and HER2 gene amplification [27].

FISH for evaluating HER2 status

Specimen slides were deparaffinized, followed by dehydration with ethanol. Each slide was treated with a Vysis Paraffin Pretreatment Kit (Abbott Molecular, Des Plaines, IL). After pretreatment, the resulting specimen DNA was denatured and the slides were dehydrated in serial ethanol solutions and subsequently allowed to hybridize with the PathVysion (Abbott Molecular) probe mixture. Following hybridization, excess and unbound probe was removed by a series of washes, and the chromosomes and nuclei were counterstained with the DNA-specific stain 4′,6 diamidino-2-phenylindole, which fluoresces blue under UV illumination. Hybridization of the HER2/neu and CEP 17 DNA probes was viewed using a fluorescence microscope equipped with appropriate excitation and emission filters, allowing visualization of the orange and green fluorescent signals and the blue counterstained chromosomes and nuclei [28].

CGS of primary sites
Archival tissue in the form of formalin-fixed, paraffin-embedded tumor or unstained tissue sections obtained during primary tumor resection were used for CGS, and *HER2* amplification, *HER2* mutation, and *KRAS* exon 2 (codon 12 and 13) mutation were evaluated. An independent pathologist evaluated tumor content on HE-stained slides for each study sample to ensure >50% tumor content was present. Where applicable, unstained slides were macro-dissected to enrich for tumor content and DNA was extracted using a BioStic FFPE Tissue DNA Isolation Kit (Mo Bio Laboratories, Inc., CA). All sample preparation, CGS, and analytics were performed in a CLIA/CAP-accredited laboratory (KEW, Cambridge, MA). DNA (50–150 ng) fragment libraries were prepared and enriched for the 415 gene panel with CancerPlex (KEW, Cambridge, MA) [29]. CancerPlex is a clinically validated 415 gene panel enriched for coding regions and selected introns of genes with a known association to cancer. Sequencing was performed on the Illumina MiSeq and NextSeq platforms with an average 500× sequencing depth. Genomic data were then processed through a proprietary bioinformatics platform and knowledgebase to identify multiple classes of genomic abnormalities including single nucleotide substitutions (SNPs), small insertions/deletions (indels), copy number variation, and translocations. A threshold of 10% allelic fraction was used for SNPs and indels and thresholds of >2.5-fold (gain) and 0.5-fold (loss) were used.

HER2 status and other clinicopathological characteristics

To analyze the relationship between *HER2* status and other clinicopathological characteristics, 11 clinicopathological variables were examined in all 201 patients: age (<65 vs. ≥65 years), sex (male vs. female), tumor location (right vs. left), tumor size (<50 vs. ≥50 mm), T category (T1, 2 vs. T3, 4), histopathological grading (G1, 2 vs. G3), lymphatic invasion (absence vs. presence), venous invasion (absence vs. presence), N category (N0 vs.
N1, 2), M category (M1a vs. M1b), KRAS exon 2 (codons 12 and 13) mutation (wild-type vs. mutant), NRAS exon 2 (codons 12 and 13) mutation (wild-type vs. mutant), and BRAF V600E mutation (wild-type vs. mutant). Histopathological markers associated with deficiency of mismatch repair gene, such as medullary type, mucinous type, Crohn-like lymphoid reaction, and tumor infiltrating lymphocytes were analyzed by reported method [30]. A total of 110 of 201 patients were randomly selected and evaluated for MutL homologue 1 (MLH1)/MutS homologue 2 (MSH2) status using immunohistochemical stainings. The primary antibodies were MLH1 (1:50; BD Biosciences PharMingen, San Diego, CA) and MSH2 (1:50; Leica Microbiosystems, Tokyo, Japan).

Comparison of HER2 status between primary and paired metastatic sites

In the present study, 45 of the 201 patients underwent metastasectomy. The following metastatic sites were evaluated for HER2 status by the same methods as for the primary site [22]: liver (30 patients), lung (4 patients), ovary (3 patients), peritoneum (2 patients), brain (2 patients), omentum (2 patients), para-aortic lymph node (1 patient), and bone (1 patient).

Statistical analysis

Statistical analyses were performed with IBM SPSS Statistics 22 (IBM Japan, Inc., Tokyo, Japan). Fisher’s exact test was used to evaluate the associations between HER2 status and HER2 amplification evaluated using CGS, and HER2 status and HER2 mutation evaluated using CGS. HER2 status and each clinicopathological variable, and HER2 status between the primary site and metastatic site was also evaluated by Fisher’s exact test. P-values less than 0.05 were considered statistically significant.
Results

IHC and FISH for HER2 status at the primary site

Ten patients were HER2 IHC 3+ in more than 50% of the cancer area (Fig. 1A, B), and 2 patients were HER2 IHC 3+ in less than 50% (Fig. 1C, D). Fifteen patients were HER2 IHC 2+; however, there was no patient with IHC 2+ and a HER2:CEP17 ratio higher than 2.0 in more than 50% of cells by FISH. Hence, 10 of the 201 (5%) patients with HER2 IHC 3+ in more than 50% of the cancer area were diagnosed as HER2-positive by the HERACLES diagnostic criteria.

Association between HER2 status and HER2 amplification evaluated using CGS

CGS successfully detected alterations in 415 genes including *KRAS* codon 12/13 mutation and *HER2* amplification. Forty-nine of the 201 (29%) patients had a *KRAS* codon 12/13 mutation. Ten of the 201 (5%) patients had a *HER2* amplification. The result of *HER2* amplification evaluated using CGS and that of HER2 status evaluated using IHC were completely identical in all 201 patients \((P < 0.001) \) (Table 1) (Table 2). Nine of the 10 HER2-positive patients were *KRAS* 12/13 wild-type, who were considered to be possible candidates for HER2-targeted therapy (Fig. 2).

Association between HER2 status and HER2 mutation evaluated using CGS

CGS also detected *HER2* mutations (V308M, S310Y, R647K, R678Q, and A879delinsAE) in
6 of 201 (3%) patients. Among the 6 patients, only 1 patient had both HER2 mutation (S310Y) and HER2 amplification, and the patient showed HER2 positive (IHC 3+) (Table 2). No significant association was observed between HER2 status and HER2 mutation ($P = 0.267$).

HER2 status and other clinicopathological characteristics

There was no significant association between HER2 status and other clinicopathological characteristics (Table 3).

Comparison of HER2 status between the primary and paired metastatic sites

At the metastatic sites, 3 of 45 (7%) patients were HER2-positive. Comparing between the primary and metastatic sites, 44 of the 45 (98%) patients showed a concordant HER2 status (Table 4). Focusing on the 4 patients with a positive HER2 status at the primary site, 3 of these patients were HER2-positive at the metastatic site (Fig. 3); however, the remaining patient was HER2-negative at the metastatic site: IHC score 3+ (100% area) at the primary site and IHC 0 at the metastatic site (para-aortic lymph node).

Discussion

In the present study, we showed two main results regarding the utility of CGS for detecting HER2-positive CRC patients. First, CGS successfully detected HER2 amplification in 10 of 201 (5%) patients. Second, the result for HER2 amplification evaluated using CGS and that for HER2 status evaluated using IHC and FISH were completely identical in all 201 patients.
These results imply that CGS can reliably detect HER2-positive CRC patients, who are candidates for HER2-targeted therapy.

HER2-targeted therapy is considered a promising strategy for KRAS wild-type metastatic CRC [19-21], and the evaluation of HER2 status and KRAS mutation is necessary to select candidates for HER2-targeted therapy. Recently, the HERACLES trial revealed the efficacy of dual targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic CRC [22]. In the trial, HER2 status was evaluated using IHC and FISH, and HER2-positivity was defined using the CRC-specific HERACLES diagnostic criteria [22]. In the present study, we also assessed HER2 status according to the HERACLES diagnostic criteria. Conversely, CGS can detect multiple gene alterations including KRAS codon 12/13 mutation and HER2 amplification in a single assay. However, to date, no study has investigated the concordance of HER2-positivity between HER2 status and HER2 amplification detected by CGS. In the current study, we tested the utility of CGS for detecting HER2-positive CRC using a 415-gene panel designed for solid tumors.

The ultimate goal of cancer genome profiling is to enable precision medicine, i.e., the tailoring of treatments based on the unique genomic changes of each patient’s individual tumor. In CRC, gene mutations in the MAPK pathway, such as KRAS, NRAS, and BRAF, are important benchmarks to decide treatment strategies for patients with metastatic CRC. The National Comprehensive Cancer Network guidelines state that all patients with metastatic CRC should have tumor tissue genotyped for KRAS, NRAS, and BRAF mutations [31]. Patients with any known KRAS or NRAS mutation should not be treated with EGFR-targeted therapy such as cetuximab and panitumumab [32]. In the present study, we successfully detected alterations in 415 genes including KRAS, NRAS, and BRAF mutations and HER2
amplification and mutation, which implies that CGS cannot only detect candidates for EGFR-targeted therapy but can also identify those for HER-2 targeted therapy in a single assay.

TCGA project found that 4% of CRC patients have HER2 mutations [25]. However, to date, HER2 mutations in CRC has not been fully studied, and it is an open question as to whether HER2 mutations are clinically important in CRC. Kavuri et al. reported that HER2 mutations S310F, L755S, V777L, V842I, and L866M are activating mutations in CRC, and the HER2 activating mutations may be drug targets for the treatment of CRC [33]. In the present study, we identified 6 of 201 (3%) patients with HER2 mutations (V308M, S310Y, R647K, R678Q, and A879delinsAE), that require further investigation to determine their oncogenicity. Among the 6 patients with HER2 mutations, only 1 patient had both HER2 mutation and HER2 amplification, who interestingly showed HER2 positive (IHC3+). We speculate that patients with both HER2 mutation and HER2 amplification may be candidates for HER2-targeted therapy when the patients show HER2 positive using IHC/FISH. In addition to HER2 amplification, future studies might have to focus on the significance of HER2 mutations in CRC, and clarify whether HER2 mutations are drug targets for CRC treatment.

In this study, we showed the utility of CGS for detecting HER2-positive patients, who are candidates for HER2-targeted therapy; however, HER2-positive patients do not always demonstrate a favorable response to this treatment approach. Discordant HER2 status between primary and metastatic sites is one possible reason underlying drug resistance to HER2-targeted therapy. In gastric cancer, previous reports revealed that discordant HER2
status between primary and metastatic sites was observed in 5–20% of patients [34]. However, in CRC, this issue has not been investigated fully to date. In this study, we demonstrated that 1 of the 4 (25%) patients with HER2-positive status at the primary site was HER2-negative at the metastatic site, suggesting that HER2 status is not necessarily maintained during the metastatic process. In general, tissue samples from the metastatic site may not always be available. Future studies, such as targeted sequencing analysis of liquid biopsy samples might have the potential to resolve this issue and facilitate precision medicine [35].

Regarding pros and cons of IHC/FISH and CGS for evaluating HER2 status, we consider that IHC/FISH are convenient, widely accepted, and established way to evaluate for breast and gastric cancer. However, diagnostic reproducibility may be sometimes problematic; especially, because of tumor heterogeneity. Conversely, CGS is expensive compared to IHC/FISH, and tested in only specialized laboratories. However, CGS has ability to test numerous gene alterations, which are directly associated with treatment strategy, in a single assay. We believe that CGS has possibility to facilitate precision medicine.

This study has two potential limitations. First, this was a retrospective study performed at two institutions and included a small number of patients. Second, we could not demonstrate an association between HER2 amplification detected by CGS and the efficacy of HER2-targeted therapy. Future studies should investigate patients with metastatic CRC to determine whether HER2-targeted therapy is effective for patients with HER2 amplification detected by CGS.

Conclusion
There is a small, distinct category of HER2-positive CRC patients who are candidates for HER2-targeted therapy. CGS has the same sensitivity as IHC and FISH for detecting HER2-positive patients and has the potential to facilitate precision medicine and tailor-made treatment.

Acknowledgements

This project was supported by funding from Denka Co., Ltd. Y. Shimada is supported in part by a Grant-in-Aid for Scientific Research, no. 15K10130 (Y.S.), from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Conflicts of interest

All authors have no conflicts of interest regarding this manuscript.
References

Figure legends

Figure 1. HER2-positive and HER2-negative cases in colorectal cancer
This case was HER2 IHC 3+ in 100% of cancer cells (A, B, C), and was diagnosed as “HER2-positive.” This case was HER2 IHC 3+ in 10% of cancer cells (D, E, F), and was diagnosed as “HER2-negative.”
Hematoxylin and eosin staining, ×1 objective lens (A, D); anti-HER2 staining, ×1 objective lens (B, E), ×20 objective lens (C, F).

Figure 2. KRAS codon 12/13 mutation and HER2 amplification in 201 patients
There were 9 patients with KRAS codon 12/13 wild-type and HER2 amplification, who were candidates for HER2-targeted therapy.

Figure 3. A case of concordant HER2 status between primary and metastatic sites
This concordant case was diagnosed as IHC 3+ in 100% of cancer cells at both the primary site (A, B) and bone metastasis (C, D).
Hematoxylin and eosin staining, ×20 objective lens (A, C); anti-HER2 staining, ×20 objective lens (B, D).
Fig 1
Fig 2

Stage I - IV colorectal cancer
n = 201

KRAS codon
12/13 wild
n = 142

HER2 amplification

Yes

HER2 positive
n = 9

No

HER2 negative
n = 133

KRAS codon
12/13 mutation
n = 59

HER2 amplification

Yes

HER2 positive
n = 1

No

HER2 negative
n = 58
Fig 3
Table 1. Comparison between HER2 status and *HER2* amplification at the primary site

<table>
<thead>
<tr>
<th>HER2 amplification (CGS)</th>
<th>HER2 status (IHC and FISH)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>0</td>
<td>191</td>
</tr>
</tbody>
</table>

Abbreviations: HER2, human epidermal growth factor receptor 2; CGS, comprehensive genomic sequencing; IHC, immunohistochemistry; FISH, fluorescence *in situ* hybridization. n = 201, *P* < 0.001.
<table>
<thead>
<tr>
<th>Case No.</th>
<th>HER2 status</th>
<th>IHC (% of total area)</th>
<th>FISH</th>
<th>CGS</th>
<th>HER2 status</th>
<th>IHC (% of total area)</th>
<th>FISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Positive</td>
<td>3+ (100%)</td>
<td>Amplified</td>
<td></td>
<td>Negative</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Positive</td>
<td>3+ (100%)</td>
<td>Amplified</td>
<td></td>
<td>Positive</td>
<td>3+ (100%)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Positive</td>
<td>3+ (100%)</td>
<td>Amplified</td>
<td></td>
<td>Positive</td>
<td>3+ (100%)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Positive</td>
<td>3+ (100%)</td>
<td>Amplified</td>
<td></td>
<td>Positive</td>
<td>3+ (100%)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Positive</td>
<td>3+ (100%)</td>
<td>Amplified</td>
<td></td>
<td>Positive</td>
<td>3+ (100%)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Positive</td>
<td>3+ (100%)</td>
<td>Amplified</td>
<td>S310Y</td>
<td>Positive</td>
<td>3+ (100%)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Positive</td>
<td>3+ (60%)</td>
<td>Amplified</td>
<td></td>
<td>Positive</td>
<td>3+ (100%)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Positive</td>
<td>3+ (100%)</td>
<td>Amplified</td>
<td></td>
<td>Positive</td>
<td>3+ (100%)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Positive</td>
<td>3+ (60%)</td>
<td>Amplified</td>
<td></td>
<td>Positive</td>
<td>3+ (100%)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Positive</td>
<td>3+ (80%)</td>
<td>Amplified</td>
<td></td>
<td>Positive</td>
<td>3+ (100%)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Negative</td>
<td>2+ (70%)</td>
<td>Negative</td>
<td>R678Q</td>
<td>Negative</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Negative</td>
<td>0</td>
<td>-</td>
<td>V308M</td>
<td>Negative</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Negative</td>
<td>0</td>
<td>-</td>
<td>A879delinsAE</td>
<td>Negative</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Negative</td>
<td>2+ (80%)</td>
<td>Negative</td>
<td>R647K</td>
<td>Negative</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Negative</td>
<td>0</td>
<td>-</td>
<td>R678Q</td>
<td>Negative</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: HER2, human epidermal growth factor receptor 2; CGS, comprehensive genomic sequencing; IHC, immunohistochemistry; FISH, fluorescence in situ hybridization.
Table 3. HER2 status and other clinicopathological characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>HER2 status</th>
<th></th>
<th></th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Positive (n = 10)</td>
<td>Negative (n = 191)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65</td>
<td>4</td>
<td>96</td>
<td>0.748</td>
<td></td>
</tr>
<tr>
<td>≥65</td>
<td>6</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>7</td>
<td>110</td>
<td>0.526</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>3</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right side</td>
<td>1</td>
<td>55</td>
<td>0.289</td>
<td></td>
</tr>
<tr>
<td>Left side</td>
<td>9</td>
<td>136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor size (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>5</td>
<td>83</td>
<td>0.751</td>
<td></td>
</tr>
<tr>
<td>≥50</td>
<td>5</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1, 2</td>
<td>3</td>
<td>21</td>
<td>0.102</td>
<td></td>
</tr>
<tr>
<td>T3, 4</td>
<td>7</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histopathological grading</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1, 2</td>
<td>7</td>
<td>140</td>
<td>0.730</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>3</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphatic invasion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence</td>
<td>6</td>
<td>73</td>
<td>0.195</td>
<td></td>
</tr>
<tr>
<td>Presence</td>
<td>4</td>
<td>118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venous invasion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence</td>
<td>3</td>
<td>45</td>
<td>0.705</td>
<td></td>
</tr>
<tr>
<td>Presence</td>
<td>7</td>
<td>146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>3</td>
<td>56</td>
<td>0.999</td>
<td></td>
</tr>
<tr>
<td>N1, 2</td>
<td>7</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>3</td>
<td>87</td>
<td>0.517</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>7</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLH1/MSH2 status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>5</td>
<td>86</td>
<td>0.942</td>
<td></td>
</tr>
<tr>
<td>Abnormal</td>
<td>1</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medullary type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presence</td>
<td>0</td>
<td>5</td>
<td>0.999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presence</td>
<td>Absence</td>
<td>P-value</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Absence Mucinous type</td>
<td>0</td>
<td>10</td>
<td>0.999</td>
<td></td>
</tr>
<tr>
<td>Presence</td>
<td>15</td>
<td>186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence Mucinous type</td>
<td>10</td>
<td>176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence Crohn-like lymphoid reaction</td>
<td>0</td>
<td>10</td>
<td>0.366</td>
<td></td>
</tr>
<tr>
<td>Presence</td>
<td>31</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence Tumor infiltrating lymphocytes(^a)</td>
<td>10</td>
<td>155</td>
<td>0.214</td>
<td></td>
</tr>
<tr>
<td>Presence</td>
<td>36</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence KRAS codon 12/13</td>
<td>9</td>
<td>133</td>
<td>0.286</td>
<td></td>
</tr>
<tr>
<td>Wild-type</td>
<td>133</td>
<td>190</td>
<td>0.999</td>
<td></td>
</tr>
<tr>
<td>Mutant</td>
<td>58</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRAS codon 12/13</td>
<td>10</td>
<td>179</td>
<td>0.999</td>
<td></td>
</tr>
<tr>
<td>Wild-type</td>
<td>179</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutant</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: HER2, human epidermal growth factor receptor 2.
\(^a\) Cut-off value = 10 lymphocytes/5 high power fields.
Table 4. Comparison of HER2 status between 45 primary sites and corresponding metastatic sites

<table>
<thead>
<tr>
<th>HER2 status at primary site</th>
<th>HER2 status at metastatic site</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>0</td>
<td>41</td>
</tr>
</tbody>
</table>

Abbreviations: HER2, human epidermal growth factor receptor 2.
\(n = 45, P < 0.001 \).