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Fig. 4. Effect of anakinra on renal expression of chemokines CCL5 (A) and CCL2 (B); adhesion molecules ICAM-1 (C) and VCAM-1 (D) and the pro-inflammatory cytokine
IL-6 (E). Messenger RNA expression was measured with real-time PCR and quantified using the comparative CT method with GAPDH used as the housekeeping gene. Data
expressed as mean & SEM (n=7-9 per group) *P<0.05, ****P <0.0001 for two-way ANOVA followed by Newman-Keuls multiple comparisons test.

1K/DOCA/salt- and anakinra- treatments on endothelial function
in second order mesenteric resistance-like arteries (Supplementary
Fig. S3). Surprisingly, we neither saw any evidence of endothelial
dysfunction in the (saline-treated) 1K/DOCA/salt-treated mice, nor
did anakinra appear to augment endothelium-dependent vasore-
laxation responses in these animals. Hence, these findings suggest
that impaired vasodilator function has only a minor (if any) contri-
bution to chronic pressor effects to 1K/DOCA/salt and, by extension
that the BP-lowering actions of anakinra observed here were
unlikely to be due restoration/improvement of endothelial func-
tion.

Of course, it is also possible that anakinra did reduce renal
inflammation in the early stages of treatment. However, by the time
of assessment these anti-inflammatory effects had already waned.
In such a scenario, it is conceivable that there might be a time lag
between reversal of the anti-inflammatory action of anakinra com-
pared to that of downstream processes such as collagen deposition
and elevated BP, such that these latter parameters remained atten-
uated at the end of the 10-day anakinra treatment period. As to
potential reasons why the IL-1R-inhibiting effects of anakinra may

have been transient, it is worth noting that as a recombinant human
protein, anakinra has the potential to induce an immune response
when chronically administered to other species. Indeed, we have
evidence that hypertensive mice administered with anakinra have
higher plasma IgG levels than those animals administered with
vehicle (Supplementary Fig. S2), and it is possible that such anti-
bodies could be acting to neutralise the effects of the protein.
Regardless, the previous discussion highlights an important lim-
itation of the current study (i.e. inflammation was only assessed
at one time-point) and indicates that further analysis of the time-
course and long-term actions of anakinra on renal inflammation,
fibrosis and BP are warranted. Interestingly, the human monoclonal
anti-IL-18 antibody, Canikumab, is currently under investigation
for the prevention of recurring cardiovascular events. As this does
not involve cross-species protein administration, the problems
associated with generation of auto-antibodies to the treatment
encountered in the current study will not be applicable. Therefore,
it will be interesting to observe any reduction in blood pressure
with Canikumab treatment.
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Fig.5. Effect of anakinra on leukocyte infiltration; Total leukocytes (A), T helper cells (B), cytotoxic T cells (C), “M1” macrophages (D), “M2” macrophages (E) and neutrophils (F)
in the kidneys of 1K/DOCA/salt and 1K/placebo-treated mice. Leukocyte infiltration was quantified by flow cytometric analysis. Data are expressed as mean + SEM (n=11-17
per group). *P<0.05, ***P<0.001, ****P<0.0001 for two-way ANOVA followed by Newman-Keuls multiple comparisons test.

Finally, we observed that anakinra exacerbated renal hypertro-
phy in 1K/DOCA/salt-treated mice, a finding that is consistent with
an earlier study where it was reported that chronic treatment of rats
with a high dose of anakinra (200 mg/kg/d) for 6 months similarly
induced an increase in kidney weight [15]. While renal hyper-
trophy is often suggestive of renal injury [28], previous studies
demonstrating that anakinra limits renal damage and dysfunction

in several disease and injury settings including heatstroke in rab-
bits [29] and endotoxin- or antibody-mediated nephritis in rodents
[30,31], tends to argue against such an effect. Furthermore, our
observation that anakinra reduced picrosirius red staining in kid-
neys of hypertensive mice is also indicative of a protective rather
than detrimental action of the drug. Picrosirius red is established
to be a valid tool for the detection of collagen networks in tis-
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Fig. 6. Effect of anakinra on right kidney weight and glomerular surface area in
1K/placebo and 1K/DOCA/salt treated mice. Kidney weight was normalised to ani-
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ANOVA followed by Newman-Keuls multiple comparisons test.

sues [32], and thus the reduction in picrosirius red staining in
kidneys from hypertensive mice treated with anakinra is consistent
with a protective effect against 1K/DOCA/salt-induced renal fibro-
sis. Picrosirius red is not suitable, however, for discerning between
different subtypes of collagen [32]. Thus, to gain some insight into
which collagen subtypes were altered by anakinra treatment, and
the mechanisms involved, we measured expression levels of the
genes encoding four of the most common types of fibrillar col-
lagens - I, III, IV and V - by real-time PCR. Although expression
levels of all of these genes were higher in the 1K/DOCA/salt- versus
1K/placebo-treated mice, none of them appeared to be affected by
further treatment with anakinra. There are at least two potential
explanations for the apparent discrepancies between these obser-
vations and our finding of reduced picrosirius red staining. First,
it is plausible that the reduced amounts of interstitial collagen in
anakinra-treated animals was the result of enhanced breakdown,
rather than decreased production of the protein. Such a pro-
cess could result from upregulation of matrix metalloproteinases
(MMPs) [33], and hence in future studies it may be worthwhile
measuring the impact of anakinra treatment on levels of MMPs
in the kidneys of 1K/DOCA/salt-treated mice. Alternatively, other
classes of collagen(s) may have contributed to the renal interstitial
fibrosis observed in this model e.g. Type VI; [34], and it was these
classes that were most affected by anakinra treatment. Hence, fur-

ther characterisation of the extracellular matrix composition of the
kidneys via real-time PCR and/or immunostaining is warranted.

In conclusion, we have demonstrated that anakinra - a drug
that is already used clinically in the treatment of autoimmune and
inflammatory diseases such as rheumatoid arthritis and gout -
is effective at reducing BP and renal collagen deposition in mice
with established hypertension. While questions remain around the
precise mechanisms involved in the anti-hypertensive actions of
anakinra, our results are further evidence of the immune basis of
hypertension and provide proof-of-concept that interventions tar-
geting immune dysregulation, hold promise as future therapies for
the condition.
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Appendix B. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.phrs.2016.12.
015.
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