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Abstract

Background

Piwi-interacting RNA (piRNA) is the largest class of small non-coding RNA molecules. The

transposon-derived piRNA prediction can enrich the research contents of small ncRNAs as

well as help to further understand generation mechanism of gamete.

Methods

In this paper, we attempt to differentiate transposon-derived piRNAs from non-piRNAs based

on their sequential and physicochemical features by using machine learning methods. We

explore six sequence-derived features, i.e. spectrum profile, mismatch profile, subsequence

profile, position-specific scoring matrix, pseudo dinucleotide composition and local structure-

sequence triplet elements, and systematically evaluate their performances for transposon-

derived piRNA prediction. Finally, we consider two approaches: direct combination and

ensemble learning to integrate useful features and achieve high-accuracy prediction models.

Results

We construct three datasets, covering three species: Human,Mouse and Drosophila, and
evaluate the performances of prediction models by 10-fold cross validation. In the computa-

tional experiments, direct combination models achieve AUC of 0.917, 0.922 and 0.992 on

Human,Mouse and Drosophila, respectively; ensemble learning models achieve AUC of

0.922, 0.926 and 0.994 on the three datasets.

Conclusions

Compared with other state-of-the-art methods, our methods can lead to better perfor-

mances. In conclusion, the proposed methods are promising for the transposon-derived

piRNA prediction. The source codes and datasets are available in S1 File.
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1. Introduction
Non-coding RNAs (ncRNAs) are important functional RNA molecules, which are not trans-
lated into proteins [1, 2]. Non-coding RNAs are classified as long ncRNAs and short ncRNAs,
roughly by their length. Long ncRNAs are usually longer than 200 nucleotides [3, 4]. Among
short ncRNAs, those having 20~32 nt in length are defined as small ncRNAs, such as micro-
RNAs (miRNAs) and piwi-interacting RNAs (piRNAs) [5]. piRNA is a distinct class of small
ncRNAs mainly expressed in germline cells, and its length is slightly longer than miRNA,
about 26~32 nt in general [6–8]. Compared with miRNA, piRNA lacks conservative secondary
structure motifs, and the presence of a 5’ uridine is common in both vertebrates and inverte-
brates [5, 9, 10].

piRNA plays an important role in the transposon silencing, and involves the germ cell for-
mation, germline stem cell maintenance, spermatogenesis and oogenesis [11–15]. About nearly
one-third of the fruit fly and one-half of human genomes are transposon elements. These
transposons move within the genome and induce insertions, deletions, and mutations, which
may cause the genome instability. piRNA pathway is an important genome defense mecha-
nisms to maintain genome integrity. Loaded into PIWI proteins, piRNAs serve as a guide to
target the transposon transcripts by sequence complementarity with mismatches, and then the
transposon transcripts will be cleaved and degraded, producing secondary piRNAs, which is
called ping-pong cycle in fruit fly [13–17]. Therefore, predicting transposon-derived piRNAs
provides biological significance and insights into the piRNA pathway.

The wet method combines immunoprecipitation and deep sequencing to recognize piRNAs
[18], but the diversity and non-conservation of piRNAs make the work complicated [5, 9, 10].
To the best of our knowledge, several computational methods have been proposed for piRNA
prediction. Betel et al. developed the position-specific usage method to identify piRNAs [19].
Zhang et al. utilized a k-mer feature, and adopted support vector machine (SVM) to build the
classifier (named piRNApredictor) for piRNA prediction [20]. Wang et al. proposed a method
named Piano to predict piRNAs. They utilized the piRNA-transposon interaction information
to extract feature vector and used SVM to build prediction models [21].

Following the pioneering works: Betel’s method [19], piRNApredictor [20] and Piano [21],
we attempt to differentiate transposon-derived piRNAs from non-piRNAs based on their
sequential and physicochemical features. Features are critical for the construction of prediction
models. Since piRNA sequences have varied lengths, we explore six useful features: spectrum
profile [22–25], mismatch profile [25, 26], subsequence profile [25, 27], position-specific scor-
ing matrix [28–30], pseudo dinucleotide composition [23, 24], local structure-sequence triplet
elements [21, 31], which can transform piRNA sequences into fixed-length feature vectors.
Then, we systematically evaluate these sequence features, and discuss how to integrate these
features for high-accuracy performances. In this paper, we consider two feature combination
approaches. The first one, named direct combination, is to merge different feature vectors.
Another one is ensemble learning, which uses the weighted average scores of individual fea-
ture-based predictors. According to the experiments, both direct combination and ensemble
learning achieve AUC of>90% and accuracy of>80% on three datasets (Human,Mouse and
Drosophila).

2. Materials and Methods

2.1. Datasets
In this paper, we construct three datasets:Human,Mouse and Drosophila, and the data compil-
ing procedures are described as follows.
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ForHuman dataset, we download 32,152Human piRNAs from the NONCODE version 3.0
[32], 5,520,017Human repeats and allHuman chromosomes from the UCSC Genome Browser
(hg38) [33]. Then, we extractHuman transposons from theHuman repeats. After aligning piR-
NAs toHuman transposons with SeqMap (three mismatches at most) [34], 7,405 non-redundant
Human piRNAs are obtained as positive samples. We also download 59,003Human non-piRNA
ncRNAs from the NONCODE version 3.0 [32], and remove non-piRNA ncRNAs whose lengths
are shorter than the minimum length of positive samples. Then, we randomly cut out short
sequences as the candidate pseudo piRNAs from each non-piRNA ncRNA. After aligning them
toHuman transposons, 68,654 non-redundant candidate pseudo piRNAs are obtained.

As far as we know, for the bioinformatics molecular identification problems, the negative
samples are always far more than positive ones. Lots of computational works have discussed
how to select negative samples to compile datasets [35, 36]. Since latest transposon-derived
piRNA prediction method (Piano) adopt this strategy which select almost the same number of
negative samples as positive samples [21], and we follow it in order to make fair comparison.
Therefore, we randomly select pseudo piRNAs from 68,654 non-redundant candidate pseudo
piRNAs to simulate the number and length distribution of positive samples. Finally, 7,405
non-redundant pseudo piRNAs are generated as the negative samples.

Further, in the same way, we download 75,814Mouse piRNAs from the NONCODE version
3.0 [32] and 12,903 Drosophila piRNAs (GSE9138) from the NCBI Gene Expression Omnibus
[18]. Then, we obtain 3,660,356Mouse (mm10) and 37,326Drosophila (dm6) transposons from
the UCSC Genome Browser [33]. After aligning these piRNAs to their relevant transposons,
13,998Mouse and 9,214 Drosophila piRNAs are obtained. The construction of pseudo piRNAs
ofMouse andDrosophila datasets is similar to the construction ofHuman negative samples.

Three datasets are summarized in Table 1.

2.2. Features
For prediction, we should explore informative features that can characterize piRNAs and con-
vert flexible-length piRNA sequences into fixed-length feature vectors. Here, we consider six
potential features: spectrum profile [22–25], mismatch profile [25, 26], subsequence profile
[25, 27], position-specific scoring matrix [28–30], pseudo dinucleotide composition [23, 24],
local structure-sequence triplet elements [21, 31]. Among six features, the spectrum profile and
the local structure-sequence triplet elements were ever adopted for piRNA prediction by
Zhang et al. [20] andWang et al. [21], respectively. The mismatch profile, subsequence profile,
position-specific scoring matrix and pseudo dinucleotide composition are widely used for bio-
logical sequence analysis [23–30], but are never used in the piRNA prediction. These sequence-
derived features are briefly introduced as follows.

2.2.1. Spectrum profile. Spectrum profile is to count the repeated patterns of sequences,
and its success has been proved by numerous bioinformatics applications [22–25]. piRNA
sequences consist of four types of nucleotides A, C, G and T. In the sequence analysis, the
repeated patterns are denoted as k-mers (k is a parameter, k� 1), namely k-length contiguous
strings. There are totally 4k k-mers for a given k. For example, we have 64 types of 3-mers:
AAA, AAC, . . ., TTT.

Table 1. Datasets for piRNA prediction.

Dataset Positive Samples Negative Samples

Human 7,405 7,405
Mouse 13,998 13,998

Drosophila 9,214 9,214

doi:10.1371/journal.pone.0153268.t001
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Given a nucleotide sequence x, the spectrum profile of sequence x is defined as:

f spek ðxÞ ¼ ðc1; c2; . . . ; c4kÞ

where ci represents the occurrences of different k-mers in x, i = 1,2,. . .,4k.
2.2.2. Mismatch profile. Mismatch profile also calculates the occurrences of k-mers, but

allows maxm inexact matching (m< k) [25, 26]. For 3-mer “AAC” and max one mismatch, we
should consider the substrings: AAA, AAC, AAG, AAT, . . ., CAC, GAC, TAC in the sequences,
and take them as the occurrences of “AAC”. The mismatch profile of sequence x is defined as:

f mis
k;m ðxÞ ¼ ð

Xm
j¼0

c1;j;
Xm
j¼0

c2;j; . . . ;
Xm
j¼0

c4k ;jÞ

where ci,j represents the occurrences of i-th k-mer type in x, having just jmismatches,
i = 1,2,. . .,4k; j = 0,1,. . .,m.

2.2.3. Subsequence profile. Subsequence profile allows non-contiguous matching [25,
26]. For example, we want to search the 3-mer “AAC” in the sequence “AACTACG”. By exact
and non-contiguous matching, we can obtain AAC, AA—C, A—AC, A—AC (“-”means the gap
in non-contiguous matching). AAC is the exact form of “AAC”, and AA—C, A—AC, A—AC
are non-contiguous forms of “AAC”. The occurrences of non-contiguous forms are penalized
with their length l and the factor δ (0� δ� 1), defined as δl. Therefore, the occurrence of
“AAC” in above example is 1 + 2δ6 + δ5. The subsequence profile of sequence x is defined as:

f subk;d ðxÞ ¼ ðc1;d; c2;d; . . . ; c4k ;dÞ

where

ci;d ¼
X

k�mer ai in x

dlðaiÞ; i ¼ 1; 2; . . . ; 4k

and l(αi) is given as:

lðaiÞ
�
0; ai is exact matching ;

jaij; ai is non� contiguous matching:

where |αi| represents the length of αi, i = 1,2,. . .,4k.
2.2.4. Position-specific scoring matrix. Position-Specific Scoring Matrix (PSSM) is popu-

lar for representing patterns in biological sequences [28–30]. PSSM is usually generated from
the fixed-length sequences. Since piRNA sequences have varied lengths, we have to process
sequences to meet requirements. Here, we set the fixed length of sequences as d. We truncate
the first d nucleotides of long sequences which lengths are more than d; the empty symbols “E”
are added at end of short sequences. Therefore, all flexible sequences are transformed into
fixed-length sequences, and PSSM can be calculated on training dataset.

In the training and testing, sequences are first truncated or extended, and then are encoded by
PSSM as feature vectors. For a sequence x = R1R2. . .Rd. . ., the PSSM representation of x is defined as:

f PSSMd ðxÞ ¼ ðscoreðR1Þ; scoreðR2Þ; . . . ; scoreðRdÞÞ

where

scoreðRkÞ ¼
�
mkðRkÞ ; Rk 2 fA;C;G;Tg
0 ; Rk ¼ E

; k ¼ 1; 2; . . . ; d

andmk(Rk) represents the score of Rk in the k-th column of PSSM, Rk 2 {A,C,G,T}, k = 1,2,. . .,d.
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2.2.5. Pseudo dinucleotide composition. Pseudo dinucleotide composition (PseDNC) is
a feature which considers sequential information as well as physicochemical properties of dinu-
cleotides [23, 24]. PseDNC of sequence x is defined as:

f PseDncl;w ðxÞ ¼ ðd1ðl;w; xÞ; . . . ; d16ðl;w; xÞ; d16þ1ðl;w; xÞ; . . . ; d16þlðl;w; xÞÞ

where

diðl;w; xÞ ¼

(
cðai; xÞX16

k¼1

cðak; xÞ þ w
Xl

k¼1

yk

; ð1 � i � 16Þ

wyi�16X16
k¼1

cðak; xÞ þ w
Xl

k¼1

yk

; ð17 � i � 16þ lÞ

c(αi, x) denotes the occurrences of dinucleotide αi in the sequence x. The parameter w repre-
sents the weight factor (default value: 0.05). λ, 0� λ� L − 2, is the preset integer parameter,
denoting the highest counted rank of the correlation along a sequence. L represents the length
of shortest sequence. θk denotes the k-rank correlation factor:

yk ¼ 1
L�k�1

XL�k�1

i¼1

1

n

Xn

u¼1

ðvuðRiRiþ1Þ � vuðRiþkRiþkþ1ÞÞ2, (1� k� λ). RiRi+1 represents the i-th

dinucleotide of sequence x and vu(RiRi+1) denotes the value of u-th physicochemical indices of
RiRi+1. n is the number of physicochemical indices. Here, six physicochemical indices: Twist,
Tilt, Roll, Shift, Slide and Rise are used [24].

2.2.6. Local structure-sequence triplet elements. Local structure-sequence triplet ele-
ments (LSSTE) is an encoding scheme for flexible-length biological sequence [21, 31], which
utilizes the piRNA-transposon interaction information.

According to the complementary pairing of the bases: A pair with T, C pair with G, there are
two statuses: paired and unpaired for each nucleotide in sequences and the relevant transposons.
The interaction information is obtained by using RNAplex [12]. Thus, closed brackets: “)” and
“(” are used to represent the paired nucleotides of sequences and transposons, respectively, and
the dots “.” is used to represent the unpaired nucleotides of both sequences and transposons. For
any three adjacent nucleotides (triple) of a sequence, there are 8 possible structural types: “(((”,
“((.”, “(.(”, “.((”, “(.”, “.(.”, “.(”, “. . .”. Further, according to the center nucleotides (A, C, G, T) of
triples, we can define 32(4×8) different triplet elements: “(((A”, “((. A”, . . .,“ . . .A” . . . “(((T”,
“((.T”, . . .,“. . .T”. Therefore, the LSSTE feature is defined as the occurrences of these triplet ele-
ments in sequences.

2.3. Feature Combination-Based piRNA Prediction Models
In the view of information science, a variety of features can bring diverse information, and
the combination of various features can lead to better performance than individual features
[37–41]. However, the noise between features may adversely influence the feature combination.
In order to construct high-accuracy prediction models, we consider two popular feature combi-
nation approaches: direct combination and ensemble learning to integrate features. The classi-
fiers are important for building prediction models. Here, we considered several popular
classifiers, i.e. random forest (RF) [42], support vector machine (SVM) [43] and logistic regres-
sion (LR) [44] etc, and observed that RF can generally produce better performances than other
classifiers. Therefore, we finally adopt RF as the basic classifier.
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Direct combination is to merge different feature vectors [39]. Ensemble learning uses the
weighted average scores of individual feature-based predictors [38, 40]. Given N features, we
can obtain N feature vectors: v1,v2,. . .,vN for each instance. In the direct combination, we use
the merged feature vector v = [v1,v2,. . .,vN] to construct prediction models. In the ensemble
learning, individual feature-based models are constructed on the training datasets, and the
internal cross validation AUC scores of these models are calculated and denoted as score1,
score2,. . .,scoreN. The weights are calculated by

wi ¼
scoreiXN

i¼1

scorei

; i ¼ 1; 2; . . . ;N:

For a testing sequence x, fi(x) 2 [0,1] represents the probability of predicting x as real piR-
NAs, i = 1,2,. . .,N, and the final predicted results of the ensemble model is given as:

FðxÞ ¼
XN
i¼1

wifiðxÞ

In both direct combination and ensemble learning, using all features may not necessarily lead to
better performances than using a subset of features. Therefore, which features should be used for
feature combination is critical. Here, we develop an approach of determining optimal feature
subset and building the feature combination-based prediction models. GivenN features, there
are 2N − 1 feature subsets. For each subset, we use the features in the subset and build the predic-
tion model (direct combination or ensemble learning), and the internal cross validation perfor-
mances of the model on the training set is taken as the evaluation score of the subset. Therefore,
the optimal subset with the best AUC score is determined, and prediction model is constructed
on the selected features and then is applied to the testing dataset. The flowchart of the feature
combination model (direct combination or ensemble learning) is shown in Fig 1.

3. Results and Discussion

3.1. Performance Evaluation Metrics
The proposed methods are evaluated by the 10-fold cross validation (10-CV). In the 10-CV, a
dataset is randomly split into 10 subsets with equal size. For each round of 10-CV, one subset
is used as the testing dataset and the rest is considered as the training dataset. The prediction
model is constructed on the training dataset, and then it is adopted to predict the testing data-
set. This processing is repeated until all subsets are ever used for testing.

Here, we adopt several metrics to assess the performances of prediction models, including
the accuracy (ACC), sensitivity (SN), specificity (SP) and the AUC score (the area under the
ROC curve). These metrics are defined as:

SN ¼ TP
TP þ FN

SP ¼ TN
TN þ FP

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

where TP, FP, TN and FN are the numbers of true positives, false positives, true negatives and
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false negatives, respectively. The ROC curve is plotted by using the false positive rate (1-speci-
ficity) against the true positive rate (sensitivity) for different cutoff thresholds. Here, we con-
sider the AUC as the primary metric, for it assesses the performance regardless of any
threshold.

3.2. Evaluation of Various Features
As shown in Table 2, we have six features to develop prediction models. In order to extract
diverse information from sequences, we consider different k-mers, k = 1,2,3,4,5, in spectrum
profile, mismatch profile and subsequence profile, and merge feature vectors for each of three
profiles. Since mismatch profile, subsequence profile, PSSM and PseDNC have parameters, we
discuss how to determine the parameters. Here, random forest (RF) is adopted as the classifier
engine, and all prediction models are evaluated on Human dataset by using 10-CV.

In the mismatch profile, the parameterm represents the max mismatches. Here, we assume
thatm does not exceed one third of length of k-mers, and obtain f mis

1;0 ðxÞ, f mis
2;0 ðxÞ, f mis

3;1 ðxÞ, f mis
4;1 ðxÞ

and f mis
5;1 ðxÞ, and then merge these vectors to generate the mismatch profile.

Fig 1. The flowchart of the feature combination model.

doi:10.1371/journal.pone.0153268.g001

Table 2. Six sequence-derived features.

Feature Description Parameter Dimension

Spectrum Profile fspe1 ðxÞ þ fspe2 ðxÞ þ fspe3 ðxÞ þ fspe4 ðxÞ þ fspe5 ðxÞ No parameters 1364

Mismatch Profile fmis

1;mðxÞ þ fmis

2;mðxÞ þ fmis

3;mðxÞ þ fmis

4;mðxÞ þ fmis

5;mðxÞ m: the max mismatches 1364

Subsequence
Profile

fsub1;δðxÞ þ fsub2;δðxÞ þ fsub3;δðxÞ þ fsub4;δðxÞ þ fsub5;δðxÞ δ: penalty for the non-contiguous matching 1364

PSSM fPSSMd ðxÞ d: the fixed length of sequences d

PseDNC fPseDnc
λ;w ðxÞ λ: the highest counted rank of the correlation along a sequence; w:

the weight (default value: 0.05)
16 + λ

LSSTE 32 triplet elements No parameters 32

doi:10.1371/journal.pone.0153268.t002
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In the subsequence profile, the parameter δ represents the gap penalty of non-contiguous k-
mers. Since 1-mer has no gaps and 2-mer includes two nucleotides, we set δ as 0 for f sub1;d ðxÞ and
f sub2;d ðxÞ. As shown in Fig 2, δ = 1 produces the best AUC scores for f sub3;d ðxÞ, f sub4;d ðxÞ and f sub5;d ðxÞ.
Therefore, we merge f sub1;0 ðxÞ, f sub2;0 ðxÞ, f sub3;1 ðxÞ, f sub4;1 ðxÞ and f sub5;1 ðxÞ, and use them as the subse-

quence profile.
In the PSSM feature, the parameter d represents the fixed length of sequences. Since differ-

ent species have different length distribution of piRNA sequences. Here, we count the length
distribution of piRNAs in three species: Human,Mouse and Drosophila. As show in Fig 3, the

Fig 2. AUC scores of the f sub
k;δðxÞmodels with the variation of δ onHuman dataset.

doi:10.1371/journal.pone.0153268.g002

Fig 3. The length distribution of piRNAs in three species.

doi:10.1371/journal.pone.0153268.g003
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length distribution of Human andMouse piRNAs reach the peak at 30, whereas that the peak
in Drosophila is 25. Therefore, we set the parameter d as 30. PSSM is calculated on training
sequences, and then is used to represent sequences in both training and testing.

The parameter λ in PseDNC denotes the additional length of the feature (1� λ� L − 2). L is
the length of shortest piRNA sequences, and is 16 according to Fig 3. To test the impact of
parameter λ, we construct the prediction models by using different values. As show in Fig 4, the
highest AUC score is 0.839 when λ = 1. The best parameter is adopted for the following study.

After determining feature parameters, we can compare the capabilities of various features for
the piRNA prediction. Here, six features are evaluated onHuman dataset and the performances
of individual feature-based models are obtained by using 10-CV. As shown in Table 3, AUC
scores range from 0.695 to 0.881, and the PSSM feature performs best among these features.
According to the descending order of AUC scores, features are listed as PSSM, subsequence pro-
file, mismatch profile, spectrum profile, PseDNC and LSSTE. Since performances of LSSTE is
much poorer than that of other features, we remove LSSTE and consider five features: spectrum
profile, mismatch profile, subsequence profile, PseDNC, PSSM for the final prediction models.

3.3. Evaluation of Feature Combination-Based Models
Two approaches: direct combination and ensemble learning are adopted to integrate five fea-
tures and construct high-accuracy prediction models. To avoid the bias of split data, we adopt
10-CV to evaluate the performances of two models.

Fig 4. AUC scores of the PseDNCmodels with the variation of λ onHuman dataset.

doi:10.1371/journal.pone.0153268.g004

Table 3. The performances of six individual feature-based models onHuman dataset.

Feature AUC ACC SN SP

Spectrum Profile 0.861 0.768 0.778 0.758
Mismatch Profile 0.866 0.774 0.805 0.742

Subsequence Profile 0.876 0.793 0.829 0.756
PSSM 0.881 0.808 0.817 0.799

PseDNC 0.839 0.761 0.778 0.744
LSSTE 0.691 0.632 0.665 0.599

doi:10.1371/journal.pone.0153268.t003
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In each fold of 10-CV, there are 31 (25−1) feature subsets for both direct combination and
ensemble learning. The optimal subsets are determined, and are used to build prediction mod-
els. As show in Table 4, the direct combination model achieves AUC of 0.917, accuracy of
0.834, sensitivity of 0.857 and specificity of 0.811 onHuman dataset, and the ensemble learning
model achieves AUC of 0.922, accuracy of 0.808, sensitivity of 0.817 and specificity of 0.799.
Compared with the individual features-based models, two feature combination models
improve AUC of>4%. Clearly, the two models produce much better results, indicating the fea-
ture combination approach can effectively combine various features to enhance performances.

In the same way, the direct combination model and ensemble learning model achieve AUC
of 0.922 and 0.926 onMouse dataset, respectively. Compared with the piRNA prediction on
mammalian: Human andMouse, the prediction on Drosophila is much better, achieving AUC
of 0.992 and 0.994 for the two models. The results on three datasets demonstrate our methods
have not only high accuracy but also strong robustness.

Further, we investigate the optimal feature subsets in each fold of 10-CV on three datasets.
Statistics is shown in Table 5. We take the results onMouse dataset for analysis. For the direct
combination model, the optimal feature subset always consists of spectrum profile and PSSM.
For the ensemble learning model, there are two unique optimal feature subsets in ten folds, the
subset of spectrum profile and PSSM is determined in nine folds, and the subset of spectrum
profile, mismatch profile and PSSM is used once. Several conclusions can be drawn from the
statistical results on three datasets. Firstly, the optimal feature subset does not necessarily con-
sist of the highly ranked features, such as the subset of PSSM and subsequence profile. Sec-
ondly, the optimal feature subset for the direct combination model or ensemble learning model
depends on the training dataset, and determining the optimal subset is necessary for building
high-accuracy models.

3.4. Comparison with Other Methods
Here, we adopt two methods: piRNApredictor [13] and Piano [14] as the benchmark methods,
and compare our methods with them on three datasets (Human,Mouse and Drosophila). piR-
NApredictor used the k-mer feature (named “spectrum profile” in this paper), and Piano used
LSSTE feature. Both methods adopted support vector machine (SVM) to construct prediction
models. We implement piRNApredictor to obtain the results. Since the source codes of Piano

Table 4. The performances of two feature combination models on three datasets.

Dataset Method AUC ACC SN SP

Human Direct Combination 0.917 0.834 0.857 0.811
Ensemble Learning 0.922 0.808 0.817 0.799

Mouse Direct Combination 0.922 0.844 0.849 0.838
Ensemble Learning 0.926 0.811 0.865 0.758

Drosophila Direct Combination 0.992 0.957 0.945 0.969
Ensemble Learning 0.994 0.958 0.952 0.965

doi:10.1371/journal.pone.0153268.t004

Table 5. The statistical results of the optimal feature subsets in 10-CV on three datasets.

Dataset Direct Combination Ensemble Learning

Human Spectrum+PSSM:10 Spectrum+PSSM:10
Mouse Spectrum+PSSM:10 Spectrum+PSSM: 9; Spectrum+Mismatch+PSSM: 1

Drosophila Spectrum+PSSM+PseDNC:10 Spectrum+PSSM: 1; Spectrum+PSSM+PseDNC: 9

doi:10.1371/journal.pone.0153268.t005

Predicting Transposon-Derived piRNAs by Integrating Various Features

PLOS ONE | DOI:10.1371/journal.pone.0153268 April 13, 2016 10 / 13



are available at http://ento.njau.edu.cn/Piano.html, we can run the program on the benchmark
datasets. All methods are evaluated on three benchmark datasets by using 10-CV.

As show in Table 6, piRNApredictor and Piano achieve AUC of 0.898 and 0.596 onHuman
dataset, respectively. Our direct combination and ensemble learning produce AUC of 0.917 and
0.922 on the dataset. The proposed methods also yield much better performances than piRNApre-
dictor and Piano onMouse andDrosophila datasets. There are several reasons for the superior per-
formances of our methods. Firstly, various useful features can guarantee the diversity for direct
combination model and ensemble learning model. Secondly, the direct combination model and
ensemble learning model automatically determine the optimal feature subsets on training dataset,
for the purpose of incorporating the useful information and avoiding the feature redundancy.

4. Conclusions
The piRNA prediction is an important topic. In this paper, we extract six sequence-derived fea-
tures to represent piRNA sequences, and integrate these features to develop piRNA prediction
models. Compared with other state-of-the-art methods on three datasets, the proposed models
have high performances as well as good robustness, which demonstrate that they are promising
for transposon-derived piRNA prediction. Here, weights of ensemble learning are determined
by the AUC scores of the base predictors, and this strategy is reasonable but arbitrary. We will
consider the better way of determining weights for the ensemble learning in the future work.
The source codes and datasets are available in supporting information file (S1 File).

Supporting Information
S1 File. The source codes and datasets for piRNA prediction.
(ZIP)
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Table 6. Comparison between our methods and the state-of-the-art methods.

Dataset Method AUC ACC SN SP

Human Piano 0.596 0.564 0.845 0.282

piRNApredictor 0.898 0.817 0.861 0.773
Our Direct Combination 0.917 0.834 0.857 0.811

Our Ensemble Learning 0.922 0.808 0.817 0.799
Mouse Piano 0.442 0.543 0.842 0.243

piRNApredictor 0.893 0.819 0.864 0.774
Our Direct Combination 0.922 0.844 0.849 0.838

Our Ensemble Learning 0.926 0.811 0.865 0.758
Drosophila Piano 0.745 0.694 0.835 0.554

piRNApredictor 0.983 0.952 0.927 0.976
Our Direct Combination 0.992 0.957 0.945 0.969

Our Ensemble Learning 0.994 0.958 0.952 0.965

doi:10.1371/journal.pone.0153268.t006
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