
HOST-VIRUS INTERACTIONS

Closing the net on retroviruses
Structural studies reveal how an antiviral factor forms a molecular net to

restrict retroviruses including HIV-1.

JEREMY LUBAN

H
IV-1 like other retroviruses stores its

genetic material as RNA, and then

converts it to DNA once inside a sus-

ceptible host cell. The process of converting

RNA to DNA, which is called reverse transcrip-

tion, takes place inside a protein-based shell

called the capsid. The viral DNA is then inte-

grated into the DNA of the host, where it can

persist indefinitely.

Host species protect themselves against retrovi-

ruses in various ways. TRIM5, for example, is a pro-

tein that recognizes the capsid and as a result

inhibits reverse transcription (Sayah et al., 2004;

Stremlau et al., 2004). Recognition of the capsid

lattice by TRIM5 also activates an innate immune

response against the virus (Pertel et al., 2011).

TRIM5 belongs to a large family of proteins

that have a RING domain, a B-box domain and a

coiled-coil domain (Figure 1A). Each of these

domains helps the protein to restrict the life

cycle of retroviruses (Grütter and Luban, 2012).

Moreover, the C-terminal half of TRIM5 binds

directly to the capsid (Sebastian and Luban,

2005; Stremlau et al., 2006), and TRIM5 pro-

teins from different species can restrict a range

of retroviruses with very different capsids. Now,

in two papers in eLife, researchers from the Uni-

versity of Virginia, the University of Utah, Cal-

tech and Ben-Gurion University report new

structural insights into how TRIM5 recognizes

retroviruses with such diverse capsids (Li et al.,

2016; Wagner et al., 2016).

TRIM proteins are known to pair together to

form dimers via their coiled-coil domains, and

these dimers can make a hexagonal lattice that

matches the hexagonal lattices found in retrovi-

ral capsids (Ganser-Pornillos et al., 2011;

Figure 1B). However, these previous studies

used artificial TRIM proteins, instead of the natu-

rally occurring TRIM5 protein, because the

native protein behaves poorly in vitro. For the

same reason, fragments of TRIM proteins were

used instead of the full-length version in other

experiments to demonstrate that TRIM proteins

form anti-parallel dimers rather than parallel

ones (Goldstone et al., 2014; Sanchez et al.,

2014; Weinert et al., 2015).

In the first paper, Barbie Ganser-Pornillos,

Grant Jensen, Wesley Sundquist and col-

leagues – including Yen-Li Li and Viswanathan

Chandrasekaran as joint first authors – report

methods that can overcome the problems of

working with native TRIM5 protein (Li et al.,

2016). Briefly, a flat sheet of capsid lattice

(which mimics the capsid of HIV-1) was used to

trigger TRIM5 to form its hexagonal lattice
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under conditions that would otherwise prevent

the TRIM5 from doing this spontaneously. Li

et al. also showed that this method only

worked if the TRIM5 protein could recognize

and restrict the viral capsid used in the experi-

ment. The fact that the TRIM5 lattices only

form under very specific conditions in vitro

suggests that the structures observed are rele-

vant to what happens in vivo.

Li et al. went on to generate stable capsid

cores, rather than flat capsid sheets. When they

incubated these cores with TRIM5 protein, they

saw (via electron cryotomography) that the cap-

sid cores were decorated with hexagonal nets of

TRIM5. This demonstrates that native TRIM5

protein forms a hexagonal lattice that matches

the lattice of bona fide capsid cores.

In the second paper, Owen Pornillos and col-

leagues – including Jonathan Wagner as first

author – report how the B-box domain of TRIM5

promotes the formation of the hexagonal lattice

(Wagner et al., 2016). Crystal structures of the

full-length TRIM5 protein have eluded investiga-

tors for at least 12 years. However, Wagner

et al. generated a B-box domain with a short-

ened coiled-coil domain and a short linker

shaped like a hairpin. They then used this “mini-

TRIM” to grow protein crystals, but only after

they had confirmed that mini-TRIM behaved like

the full-length protein in a number of assays.

The crystal structures showed that the mini-

TRIM proteins form both dimers and trimers via

their B-box domains (Wagner et al., 2016). This

mirrors the observations of another group

Figure 1. TRIM5 proteins form dimers and a hexagonal lattice. (A) Most TRIM5 proteins in solution will pair off to

form an anti-parallel dimer via their coiled-coil domains (blue). The RING domain (yellow) and B-box domain (red)

are at the ends of the dimer, and the C-terminal SPRY domains (orange) are in the center of the dimer. (B) When

the SPRY domains bind to the capsid of a retrovirus, the B-box domains of three TRIM5 proteins associate as a

trimer (circled). This, in turn, forms a hexagonal lattice of TRIM5 dimers, with the SPRY domains facing into the

capsid and the RING domains pointing outwards. Flexibility in the junction between the B-box and coiled-coil

domains permits TRIM5 to associate with a wide range of retroviral capsids. Adapted from Figure 1 of Li et al.
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(Keown et al., 2016). The trimers appear to link

TRIM5 into a hexagonal net, which is like the net

observed by electron cryotomography

(Figure 1B). Wagner et al. showed that the

coiled-coil domain can move in relation to the

B-box domain; this flexibility could partly explain

how a TRIM5 protein from a given species can

recognize a diversity of capsid lattice structures.

Many questions remain regarding how the

structure of TRIM5 relates to its function. For

example, most of the mini-TRIM crystals formed

dimers via their B-box domains; do these dimers

play a functional role in vivo? Moreover, the anti-

viral activity of TRIM5 depends on its RING

domain and its activity as an E3 ubiquitin ligase

(Pertel et al., 2011), but how does recognizing

the capsid activate this? Is this activity regulated

by the B-box domain and, if so, how? Whatever

the case, all the data suggest that the antiviral

response of TRIM5 is activated by, and is com-

patible with, TRIM5 forming trimers and a hex-

agonal, net-like lattice.
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