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Abstract

Scale invariance is a feature of complex biological systems, and abnormality of multi-scale behaviour may serve as an
indicator of pathology. The hypothalamic suprachiasmatic nucleus (SCN) is a major node in central neural networks
responsible for regulating multi-scale behaviour in measures of human locomotor activity. SCN also is implicated in the
pathophysiology of bipolar disorder (BD) or manic-depressive illness, a severe, episodic disorder of mood, cognition and
behaviour. Here, we investigated scaling behaviour in actigraphically recorded human motility data for potential indicators
of BD, particularly its manic phase. A proposed index of scaling behaviour (Vulnerability Index [VI]) derived from such data
distinguished between: [i] healthy subjects at high versus low risk of mood disorders; [ii] currently clinically stable BD
patients versus matched controls; and [iii] among clinical states in BD patients.
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Introduction

Scale invariance is a feature of biological complexity arising from

interactions of various physiological control nodes operating at

multiple time scales [1]. Loss of scale invariance can indicate

pathophysiological states as it represents a shift to fewer control

nodes [2]. In humans, the hypothalamic suprachiasmatic nucleus

(SCN) is a major node in neural networks responsible for multi-

scale regulation of biological rhythms. In particular, the SCN is

responsible for scale-invariant properties of temporal fluctuations

in locomotor activity [3]. Multi-scale properties of activity data can

be important clinically, and are readily detected non-invasively

and recorded by wrist-worn, microprocessor-controlled, piezoelec-

tric actigraphic devices. Multi-scale features of physiological data

have proved useful in understanding various clinical states as

diverse as heart disease [4,5], asthma [6], schizophrenia [7], and

clinical depression [7,8,9].

Bipolar (manic-depressive) disorder (BD) is a relapsing, major

psychiatric disorder with poorly understood neurobiology, typi-

cally incomplete treatment responses, and often unsatisfactory

clinical outcomes, with a high risk of premature mortality due to

suicide and other causes. BD may be particularly well suited to the

investigation of multi-scale properties of motility data. Its complex

manifestations include marked disturbances of locomotor activity

[10,11] as well as major changes in mood, thinking, and many

aspects of behavior. Furthermore, the SCN may be involved in the

regulation of behavior and mood in BD patients [12]. Develop-

ment of non-invasive, objective correlates or predictors of morbid

states in BD patients may support more timely and efficient clinical

interventions aimed at limiting risk of recurrence of major episodes

of illness.

Based on this background, we sought biologically plausible

correlates of BD in multi-scale characteristics of daily motility

rhythms in human subjects, including patients with reliably

diagnosed BD in a range of ill and remitted clinical states, healthy

controls, and subjects showing a range of potential vulnerabilities

for BD based on standardized and validated behavioural and

symptomatic ratings. We hypothesized that multi-scale behavior in

motility rhythms recorded over several days would: [1] distinguish

between high and low vulnerability to BD in apparently healthy

young adults, [2] distinguish BD patients from healthy, sex- and

age-matched controls, and [3] distinguish among different

psychopathological states of BD patients.

We tested these hypotheses using data collected with wrist-

worn actigraphs in three experimental protocols. Study 1
involved healthy young adults with no history of mental illness,

in Melbourne, Australia. Their potential risk of future BD was

assessed using the well-validated General Behavior Inventory

(GBI) [13,14]. We divided subjects by highest versus lowest

deciles of resulting GBI scores into those with apparently low risk

(n = 35; 77.1% women; mean6SD, age = 20.962.3) versus high

risk for BD (n = 35; 65.7% women; age 22.363.0 years). Subjects

wore an actigraph continuously on the nondominant wrist for

seven days. For Study 2, in Australia, we recruited currently
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clinically euthymic, medicated patients diagnosed with type-I BD

by DSM-IV criteria (n = 15; 46.7% women; age 46.8612.4) and

healthy controls with no history or current clinical evidence of

mental illness, low GBI scores, and matched approximately for

sex and age (n = 15; 46.7% women; age = 46.7614.1), who also

wore an actigraph for seven days. In Study 3, at the University

of Parma, Italy, patients with a DSM-IV diagnosis of type-I BD

(n = 51; 70.6% women; age 43.8610.5 years) were actigraphically

monitored prospectively for 3 days during acute manic (n = 21) or

mixed manic-depressive states (n = 13), episodes of major

depression (n = 13), and during full clinical recovery (n = 46)

sustained for at least 60 days (total of 90 observations).

Measures of output variables representing underlying dynamics

of a biological system can exhibit complex fluctuations across

different time scales. Based on nonlinear system theory, the multi-

scale features of these measures can be characterized [4,5,15].

The past decade has seen growing interest in nonlinear

dynamical analysis of physiological data [16,17], and a range of

computational approaches have been used to seek hidden signals

of pathology from the measures of the time series [18,19,20]. In

the present study, we focused on amplitude behavior since

amplitude of motility data is physiologically grounded as a

measure of strength of physiological oscillations regulated by the

SCN [21,22].

Results

Probability distribution of multi-scale amplitudes
To understand the multi-scale characteristics of amplitude

measures of motility data collected with actigraphy, we considered

data from Study 1. A wavelet transform[23] (see Methods) was used

to extract amplitude of motility rhythms at different time scales

ranging from 0.2 to 26 h. Motility data are highly non-stationary

due to various extrinsic and intrinsic factors [24], and wavelet

transform is a powerful method for obtaining amplitude at multiple

time scales from such non-stationary biological signals [15].

Rhythms were observed at circadian (,24 h) as well as other

temporal ranges (minutes or hours). Figure 1 represents an

example of motility data along with the multi-scale rhythms

obtained using wavelet analysis. The amplitude of rhythms at

shorter time scales appeared to be random; to check whether such

fluctuation was simply due to noise in the data, we plotted the

distribution of amplitudes at a range of time-scales. The

distribution of amplitudes obtained at very short time-scales

(#2.0 h) had an apparent long-tail and was nearly collapsed

(Figure 2 (a–d)). Such a long-tail distribution is characteristic of

nonlinear complex systems near critical points, and the collapse of

amplitude distribution represents the scale-invariant feature of

such systems [25].

Figure 1. Estimated multi-scale rhythms of motility data obtained by wavelet analysis. (a) Raw data in arbitrary units (a.u) along with the
rhythms detected at three different time scales. (b) The detected rhythm (grey line) along with its amplitude (blue line) for a scale of 0.2 h. (c) The
corresponding rhythm and amplitude for a scale of 1.04 h. (d) The same measure at a scale of 23.48 h. Wavelet amplitudes are in normalized arbitrary
units.
doi:10.1371/journal.pone.0020650.g001

Vulnerability Index of Bipolar Disorder
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To confirm that the observed long-tail distribution was an

intrinsic nonlinear property of the motility data rather than an

artifact of wavelet analysis, we performed surrogate data analysis,

a standard test to confirm nonlinearity of the data [26]. Surrogate

data were obtained by Fourier transform of the original motility

data, preserving the amplitude, randomizing the phases, and then

computing inverse Fourier transforms. Since both amplitude and

the power spectrum were preserved in the surrogate data, it might

be expected that the amplitude distribution for the surrogate and

original data would be identical.

However, wavelet analysis indicated that the amplitude

distribution for the surrogate data followed a Gaussian distribution

without a long tail. In addition, we generated artificial data with

values obtained from a Gaussian distribution, and repeated the

wavelet analysis. The amplitude distribution of such artificial data

at lower time scales had a similar distribution to that of the

surrogate data (Figure 2 (e–f)). These observations imply the

presence of nonlinear interactions in the original motility data and

that the long-tail distribution of amplitude was an intrinsic

property.

Derivation of Vulnerability Index (VI) of BD
To characterize the long-tail distribution, we sought the

distribution function that best fit the observed amplitude

distribution. Although Gamma functions are considered optimal

for characterizing such long-tail distributions [27], we compared

the goodness-of-fit of the amplitude distribution for both Gamma

and Rayleigh [28] distributions. Theoretically, based on the

central limit theorem, amplitude at different time-scales for data

derived from a Gaussian distribution should follow a Rayleigh

distribution, whereas a long-tail distribution characterized by a

Gamma distribution should reveal the presence of nonlinear

interactions [15]. We found that for scales up to 2.0 h, the fit of the

Gamma distribution was better than the Rayleigh distribution

based on Akaike Information Criteria (AIC) [29].

To look for any scale-invariant feature in the amplitude

distribution at multiple time scales, we plotted the estimated

shape parameter, c, of the Gamma distribution fit at different time

scales. We found that the shape parameter exhibited multi-scale

behavior (Figure 3). If the shape parameter of the individual

distribution showed a constant value for time scales up to 2.0 h,

this would indicate scale-invariance. However, the shape param-

eter decreased at short time scales and gradually increased at

longer time scales. Although the long-tail distribution was a

property of the data, the amplitude distribution lacked a scale-

invariant feature. Since such a non-collapsed nature of the

distribution may represent an abnormality of the system, we

investigated plausible correlates of this multi-scale behavior to the

illness of BD. To quantify the observed behavior, we integrated the

shape parameter up to 2.0 h time scales for each subject asÐ 2

0:2 c sð Þds. The derived integral, termed a vulnerability index (VI),

was used in hypothesis-testing analyses.

VI as a marker for detecting trait of BD
Hypothesis 1 was tested with data from Study 1, in which the

low risk group, based on lowest decile GBI ratings, had 12% lower

mean VI scores (2.1160.45) than the high risk group (2.3960.42).

Logistic regression modeling indicated that VI was significantly

associated with presumptive high risk for BD (F [df = 1; 66] = 8.69,

p = 0.004), but that sex and age were not. Similarly, testing of

Figure 2. Probability distribution P(A) of amplitude, A, obtained by wavelet analysis of motility data. (a) Rescaled distributions,
normalized to provide unit area by rescaling using Pmax, of amplitude at a range of time-scales up to 2 h from a subject considered to be at low risk
for BD by GBI criteria. (b) The same data, log-transformed and showing a long-tail, which share most of the values of log (APmax). (c) Amplitude
distribution at a specific scale (s = 0.54 h) for 35 subjects considered to be at low risk for BD by GBI criteria. (d) The same for 35 other subjects at high
risk for BD. (e) Amplitude distribution up to 2 h for a subject at high risk for BD (blue line) and the corresponding surrogate data (red line); the
amplitude distribution (black line) obtained from the wavelet analysis of data derived from a Gaussian distribution follows the amplitude distribution
of surrogate data. (f) Log-transformed amplitude from panel e; here, wavelet amplitudes of Gaussian as well as surrogate data have identical
distributions without a long-tail, and differ from the distribution of the original data.
doi:10.1371/journal.pone.0020650.g002

Vulnerability Index of Bipolar Disorder
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Hypothesis 2 with data from Study 2 found 17% higher VI scores

among patients diagnosed with BD (2.5360.49) than in healthy

control subjects (2.1760.40), and that VI score was associated with

the diagnosis of BD, based on logistic regression modelling

(F[df = 1;26] = 4.65, p = 0.04).

When all subjects from Studies 1 and 2 were included in a

multivariate linear regression modelling, with GBI score as the

dependent measure, and controlling for sex and age, the VI score

was significantly and independently associated with either high risk

for, or diagnosis of BD, and was the only factor associated (F

[df = 3; 96] = 4.94, p = 0.001). Likewise, we found a significant

linear trend in the mean magnitude of VI measures, ranking: low-

GBI score , healthy controls # non-BD patients with high GBI

scores , BD patients (Figure 4), with control for sex and age (F

[df = 3; 94] = 4.28, p = 0.007, b = 0.32, p = 0.01).

These findings indicate the presence of a consistent and

significant association between VI scores and GBI scores as an

indication of trait for BD in healthy subjects with high versus low

GBI scores, and in comparison of BD patients with sex- and age-

matched healthy controls.

Circadian amplitude and detrended fluctuation measure
of motility data

To check whether vulnerability to BD would typically be

inferred from more common analyses of ,24-hour (circadian)

features of actigraphic data, we estimated the predominant

component using wavelet transform along with a ridge extraction

algorithm [30]. Figure 5 represents an example of the estimated

predominant amplitude and the period from a representative

human subject. The predominant component of motility data was

in the circadian range. However the predominant amplitude in

arbitrary units (mean 6 SD ranked for low risk: 4466150, versus

high risk: 4116145 subjects, BD patients: 3326132, versus healthy

controls: 4356146) and the predominant period in hours (mean 6

SD ranked for low risk subjects: 24.060.20, high risk subjects:

23.960.3, BD patients: 24.060.05, healthy controls: 24.060.1) of

the circadian component did not show significant differences

among the subject-groups.

Detrended fluctuation analysis has indicated that motility data

have long range correlations with a scale-invariant feature in

temporal fluctuations ranging up to 24 h, and that these

Figure 3. Characterization of the probability distribution of amplitudes using Gamma and Rayleigh functions. (a) Probability
distribution P(A) for a subject considered to be a low risk for BD at a scale s,0.59 h, along with Gamma (black line) and Rayleigh (grey line) best-fit
functions: based on AIC, the Gamma distribution yields a better fit. (b) Probability distribution P(A) at a scale of s,3.0 h for the same subject: the fit of
the Rayleigh distribution function (gray line) is superior to the Gamma function at this scale, by AIC criteria. (c) Average value of the shape parameter,
c, at different scales (hours) for 35 subjects considered to be low risk for BD by GBI criteria (open circles) and another 35 at high risk (filled circles).
doi:10.1371/journal.pone.0020650.g003

Figure 4. Estimated means (±SEM) computed vulnerability index (VI) values in four groups of human subjects of increasing risk or
presence of BD. Low risk by GBI criteria (n = 35), healthy controls (n = 15), high-risk by GBI criteria (n = 35), and patients diagnosed with DSM-IV type-
I BD who are currently clinically stable or euthymic (n = 15). Curve-fitting found that mean VI increased linearly across these groups (F [df = 3;
94] = 4.28, p = 0.007, controlling for sex and age).
doi:10.1371/journal.pone.0020650.g004

Vulnerability Index of Bipolar Disorder
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correlations can distinguish elderly persons diagnosed with

Alzheimer’s disease from healthy elderly controls[31]. By applica-

tion of detrended fluctuation analysis [31] of the present motility

data, we considered whether such fluctuations were different

among the various groups of test subjects. Although we found a

scale-invariant feature in temporal fluctuations, its characterizing

parameter, scaling exponent, (mean 6 SD) did not differ

significantly among subject-groups. This measure ranked: low risk

subjects, 0.9860.07 = high risk subjects, 0.9860.06. healthy

controls, 0.9660.05. BD patients, 0.9460.09.

VI as a marker for detecting different morbid phases of
BD

We used data from Study 3 to test whether differences in VI

values were associated with varying clinical states of BD

(Hypothesis 3). Statistical findings are shown based on linear

correlations (Table 1), which were supported by nonparametric

Spearman rank-correlations (not shown). Regression modelling,

with control for sex and age indicated that VI was significantly and

uniquely associated with both self- (b = 0.31, t = 2.76) and

clinician-rated mania (b = 0.33, t = 3.07, both p = 0.01), whereas

age was a lesser covariate (b = 0.239, p = 0.05). The pattern of

findings was replicated with multi-level modelling to account for

nesting of assessments within subjects: and a significant relation-

ship was found between VI and both self- (t [df = 78] = 2.97,

p = 0.004) and clinician-rated mania (t [df = 81] = 2.54, p = 0.013).

Importantly, regression analyses found no correlation of VI with

depressive symptom ratings (Hamilton Depression Rating Scale

[HDRS] score or self-rated depression F [df = 3;79] = 2.32, and F

[df = 3;76] = 1.21 both p.0.05). However, there was a significant

increase in mean VI values across mood-states, ranking: major

depression , minor depression , euthymia , minor mixed-states

, hypomania , major mixed-states , mania (Figure 6).

Discussion

We identified a novel scaling behaviour of the amplitude

measures of locomotor activity in human subjects. Importantly, an

index of this multi-scale behaviour, the ‘‘vulnerability index’’ (VI),

is found to be clinically meaningful. That is, higher VI scores were

found in subjects with apparently high versus low vulnerability to

BD (high versus low GBI scores), and in BD patients versus

healthy, matched controls. We propose that an elevated value of

VI can serve as a novel and effective indicator of trait for BD as

well as being characteristic of subjects with clinically diagnosed

BD. In these subject-groups vulnerability for BD manifested in the

amplitude characteristics of activity data at lower time scales,

which appeared as noise to the naked eye, and were unrelated to

the temporal long-range correlations or typically-analysed circa-

dian features of motility rhythms.

The VI is specifically sensitive to mania and manic symptoms,

which distinguish BD from other mood disorders. However, VI is

insensitive to depression, consistent with the view that mania and

depression in BD have dissimilar pathophysiologies [32]. Further-

more, the increasing variations of VI across different mood states,

as shown in Figure 6, suggest that the VI might be a specific and

sensitive indicator of a gradually emerging component of

psychomotor activation from predominantly inhibited or psycho-

motorically retarded depressive states towards mixed or manic

states.

Figure 5. Estimated predominant component of motility data. (a) The raw data in arbitrary units (a.u). (b) The estimated circadian rhythm
(black line) with its amplitude (blue line). (c) The estimated circadian period (red line) in hours. Due to the non-stationary nature of the data, the
estimated amplitude and the period show cycle-to-cycle variability. (d) Normalized scalogram at a specific time of 32 hr. The peak power occurred at
a period of 23 h
doi:10.1371/journal.pone.0020650.g005

Table 1. Correlations of individual values of vulnerability
index (VI) with self- and clinician-ratings of manic and
depressive symptom-severity.

Correlate r-value p-value

Manic Symptoms

Clinician-rated with YMRS +0.304 0.005

Self-rated +0.305 0.006

Depressive Symptoms

Clinician-rated with HDRS) 20.017 0.877

Self-rated) 20.114 0.313

doi:10.1371/journal.pone.0020650.t001

Vulnerability Index of Bipolar Disorder
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The VI may reflect SCN function, which has been implicated in

the pathophysiology of BD [33]. Of various SCN-related rhythms,

human motility can easily be monitored noninvasively and

inexpensively, either intermittently for short times, or continuously

for long periods under naturalistic conditions, making it

particularly well-suited to longitudinal tracking of illness-course

and treatment responses in BD patients. Further research is

warranted to investigate the biological substrate of VI and to

confirm its potential utility as an objective marker of risk for, or

presence of BD, and of its selectivity for manic versus depressive

features. It might also bear testing as early indicator of impending

clinical relapse into manic or mixed states of BD arising from

depression or euthymia.

Methods

Ethics Statement
All subjects provided written informed consent for aggregate

and anonymous reporting of data arising from their clinical and

actigraphic assessments. Study 1 was approved by Swinburne

University Human Research Ethics Committee; Study 2 was

approved by Bendigo Health Care Group Ethics Committee and

Study 3 was approved by the Ethics Committee of the University

of Parma Medical Center, in full accordance with international

standards for the ethical use of human subjects in research.

Psychiatric measures
The 73-item GBI is a reliable and validated self-report measure

with stable between-subject differences that are reported to reflect

vulnerability to BD. [34,35]. In Study 3, clinician ratings of

symptom-status were made with the Young Mania Rating Scale

(YMRS) [36] and the Hamilton Rating Scale for Depression

(HDRS) [37]. Subjects in Study 3 also self-rated symptoms on a

series of 10-cm visual analog scales (29 items) based on items of the

YMRS and HDRS as well as the Bonn Scale for the Assessment of

Basic Symptoms (BSABS) [38].

Subjects
Study 1. Exclusion criteria included past history of mania/

hypomania, working shift work, or having a physical condition

that would confound activity measurement. The highest versus

lowest deciles of the distribution of GBI scores, identified 35

subjects considered to be at high-risk, and 35 at low-risk for BD

from an initial sample of 358. Mean GBI score differed by more

than ten-fold between subjects with low versus high apparent risk

for BD (10.566.20 vs. 109626.3, F [df = 1; 68]) = 465, p,0.001).

Study 2: Clinical subjects were recruited from an outpatient

public mental health service in Victoria, Australia, who met DSM-

IV criteria for a diagnosis of type-I BD as determined by an

experienced research psychiatrist. Sex- and age-matched healthy

controls were recruited through network of researchers. Study 3:

Patients were recruited as inpatients at the Section of Psychiatry of

the University of Parma, Italy, whose DSM-IV diagnosis of type I

BD was supported by semi-structured interviews by a research

psychiatrist over prolonged (7.4362.24 years) follow-up as

outpatients.

Activity measurement
Actigraphy is commonly used to document rest/activity cycles

under naturalistic conditions and to characterize abnormal sleep/

wake behaviour and altered circadian rhythms amongst ill or

euthymic BD patients. In the present studies, subjects wore an

actigraph continuously on the non-dominant wrist under natural-

istic conditions for 3–7 days. The Mini-Mitter ActiwatchH 64

(Respironics, Inc. Bend, OR, USA) was used in Studies 1 and 2,

and AMA-128K Mini-MotionloggerH Actigraph (Ambulatory

Monitoring, Inc. [AMI], Ardsley, NY, USA) in Study 3. Activity

data were obtained at 32 Hz and integrated at every 0.1 h.

Figure 6. Mean (±SEM) computed vulnerability index (VI) values associated with various mood states of patients meeting DSM-IV
diagnostic criteria for type-I BD. VI rises consistently and significantly with increasing manic features, from major depression, through mild
depression or dysthymia, subclinical or mild mixed manic-depression, hypomania, mixed major manic-depressive states, to current mania-all in BD
patients.
doi:10.1371/journal.pone.0020650.g006

Vulnerability Index of Bipolar Disorder
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Data Analysis
The continuous wavelet transform of digitally acquired motility

data, xn with n~1,2, . . . . . . ,N is obtained by the convolution of

the data with a scaled and translated version of a mother wavelet

[23], as:

Wn(s)~
XN{1

n’
xn’Y

� n’{nð Þdt

s

� �
ð1Þ

where dt = 0.1 hr, N is the total number of data points, s is the

scale defined in a dyadic representation as sj~so20:5j with so~2dt

and 4 sub-octave per octave of the dyadic scale to obtain a total

number of 57 scales with j~0,1, . . . . . . 56. Y� represents the

complex conjugate of the normalized wavelet function, where:

Y
n’{nð Þdt

s

� �
~

dt

s

� �1=2

Yo
n’{nð Þdt

s

� �
ð2Þ

We performed this convolution with a Morlet wavelet, a plane

wave modulated by a Gaussian function defined as

Yo ndt=sð Þ~p{0:25ei6ndt=se{0:5 ndt=sð Þ2 ð3Þ

Since the Morlet wavelet is a complex function, the obtained

wavelet transformation of the data, Wn sð Þ, is also complex with a

real part and an imaginary part. Therefore, corresponding to each

scale the amplitude is defined as A sð Þ~ Wn sð Þj j. The obtained

amplitudes are in normalized units.

To determine the predominant component of the motility data

we employed the wavelet transform with an increased resolution of

scale with 256 sub-octaves per octave in the dyadic representation.

At each time point, using a ridge extraction algorithm[30], the

scale at which the normalized scalogram has a peak value is

detected. The corresponding amplitude multiplied by the

appropriate de-noising factor [23] at this scale is the predominant

amplitude and the corresponding period is the predominant

period. Our approach for determining the predominant compo-

nent is similar to the method employed for estimating circadian

oscillations from bioluminescence data [39,40].
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