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SUMMARY

Although transcriptome analysis can uncover the
molecular changes that occur during induced reprog-
ramming, the functional requirements for a given
factor during stepwise cell-fate transitions are left
unclear. Here, we used a genome-wide RNAi screen
and performed integrated transcriptome analysis to
identify key genes and cellular events required at the
transition steps in reprogramming. Genes associated
with cell signaling pathways (e.g., Itpr1, Itpr2, and
Pdia3) constitute the major regulatory networks
before cells acquire pluripotency. Activation of a spe-
cific gene set (e.g., Utf1 or Tdgf1) is important for
mature inducedpluripotent stemcell formation. Strik-
ingly, a major proportion of RNAi targets (�53% to
70%) includes genes whose expression levels are
unchanged during reprogramming. Among these
non-differentially expressed genes, Dmbx1, Hnf4g,
Nobox, and Asb4 are important, whereas Nfe2,
Cdkn2aip, Msx3, Dbx1, Lzts1, Gtf2i, and Ankrd22 are
roadblocks to reprogramming. Together, our results
provide a wealth of information about gene functions
required at transition steps during reprogramming.

INTRODUCTION

Somatic reprogramming to pluripotent status can be achieved

by introducing a limited number of transcription factors, in-

cluding Oct4, Sox2, Klf4, and c-Myc (OSKM); Nanog; and

Lin28 (Takahashi et al., 2007; Takahashi and Yamanaka, 2006;

Yu et al., 2007). Induced pluripotent stem cells (iPSCs) strongly

resemble embryonic stem cells (ESCs) and hold promise for

customized regenerativemedicine (Grskovic et al., 2011; Jopling

et al., 2011; Robinton and Daley, 2012; Tiscornia et al., 2011; Wu

and Hochedlinger, 2011).

One of the primary obstacles to the successful application of

iPSCs for medical purposes is their low reprogramming effi-

ciency. Significant effort has been devoted to enhancing induced
reprogramming efficiency, including approaches focusing on the

use of mRNA (Warren et al., 2010), small molecules (Ichida et al.,

2009; Li and Rana, 2012; Maherali and Hochedlinger, 2009;

Nichols et al., 2009; Silva et al., 2008; Yang et al., 2011b; Ying

et al., 2008; Zhu et al., 2011), and microRNAs (Choi et al.,

2011; Judson et al., 2009; Kim et al., 2011; Li and He, 2012; Li

et al., 2011; Liao et al., 2011; Lipchina et al., 2011; Melton

et al., 2010; Pfaff et al., 2011; Subramanyam et al., 2011; Yang

and Rana, 2013; Yang et al., 2011a). However, detailed func-

tional insight into the molecular basis of reprogramming is still

lacking.

It has been shown that a few markers, including Thy1, alkaline

phosphatase, and SSEA1, can be used to identify transformed

cells through the process of induced reprogramming, whereas

ESC-specific genes (Nanog,Oct4, and Tert) are activated at later

stages (Brambrink et al., 2008; Stadtfeld et al., 2008). More

recent research further suggests that induced reprogramming

is a stepwise event, comprising initial, mature, and stabilization

stages (Samavarchi-Tehrani et al., 2010). Several key cellular

events have been observed during reprogramming, such as

mesenchymal-to-epithelial transition (Li et al., 2010; Sama-

varchi-Tehrani et al., 2010) and cell-cycle modulation (Banito

et al., 2009; Hong et al., 2009; Kawamura et al., 2009; Li et al.,

2009; Marión et al., 2009; Utikal et al., 2009). Furthermore, the

epigenome is reset upon induced reprogramming (Koche et al.,

2011; Maherali et al., 2007), and epigenetic regulators play

important roles in the reprogramming process (Onder et al.,

2012). The cooperation of OSKM has also been considered a

factor critical to efficient reprogramming (Carey et al., 2011;

Soufi et al., 2012; Sridharan et al., 2009). Many ESC-specific

genes (e.g., Esrrb, Sall4, and Nanog) are shown to be markers

for defining reprogramming stages (Brambrink et al., 2008;

Stadtfeld et al., 2008). However, functional molecular networks

required for cell-fate transitions are not clear during the reprog-

ramming process.

Here, by isolating pure populations of cells during various

stages of reprogramming and combining this with a genome-

wide RNAi screen and transcriptome analysis, we were able to

discover key genes and cellular events involved in the transitions

associated with the reprogramming process. Moreover, we

functionally identified the critical genes required to modulate
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Figure 1. RNAi Screen Identifies Key Modu-

lators of Induced Reprogramming.

(A) RNAi screening strategy. Thy1+/DsRed+ MEFs

were transduced with a library of �57,000 shRNAs

and OSKM and sorted into four populations based

on Thy1, SSEA-1, and DsRed marker combina-

tions. Integrated shRNAs were amplified from

genomic DNA isolated from those populations and

sequenced.

(B) Heat map showing mRNA expression profiles

during reprogramming. RNA extracted from cell

populations was analyzed by microarray. Data

were processed and visualized using Cluster and

Java TreeView, respectively. Gene expression

patterns are clustered into groups defined as I–V.

Duplicate samples are designated as nos. 1 and 2.

Fold changes in mRNA level relative to MEFs in five

expression groups are represented in log2 scale.

(C) Heat map showing enriched shRNA targets in

sorted populations along the reprogramming pro-

cess. Targets identified by shRNA reads were

clustered by using Cluster 3.0 and visualized with

Java TreeView. Letters A– D mark four distinct

clusters. GO analysis was performed using IPA.

Reads of shRNA-identified targets are shown in

log10 scale.

See also Figures S1 and S2.
the reprogramming process. We further validated a series of

genes that either block or enhance the reprogramming process.

We found that non-differentially expressed genes play important

roles in modulating cell-fate transitions during reprogramming.

RESULTS

Experimental Strategy for Genome-wide RNAi Screen in
Induced Reprogramming
To elucidate the molecular requirements of induced reprogram-

ming, we conducted loss-of-function assays during the reprog-

ramming process. We used a genome-wide RNAi screen and

transcriptome analysis upon induced reprogramming to func-

tionally validate the roles of key regulators in a stepwise manner

(Figure 1A). Thismethod allowed us to identify the cell-fate deter-

minants in reprogramming without making any assumptions

about function based on gene expression (Figures 1A and

S1A–S1F).

First, we established a set of markers to isolate desired cell

populations from a heterogeneous pool of reprogrammed cells
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by OSKM reprogramming factors. Thy1

is highly expressed in mouse embryonic

fibroblasts (MEFs) and subsequently di-

minishes during the progression of re-

programming (�day 3– 5 post induced

reprogramming), whereas SSEA1 is ab-

sent in MEFs but gradually increases at

�day 7 upon induced reprogramming

(Brambrink et al., 2008; Stadtfeld et al.,

2008). Therefore, Thy1 can serve as an

early stage marker and SSEA1 can serve
as a middle- to late-stage marker for assessing reprogramming

progress. In addition, it has been shown that retroviral se-

quences are repressed in ESCs (Macfarlan et al., 2011; Wolf

and Goff, 2007); thus, we used the DsRed gene driven by retro-

viral long terminal repeats (pMX-DsRed) as a marker to differen-

tiate incomplete reprogrammed cells from mature ones. We

used these three markers to define four different cell-fate stages

in reprogramming: Thy1+/SSEA1� for the initial stage, Thy1�/
SSEA1� for the transition stage, SSEA1+/DsRed+ for the prede-

termined (early reprogrammed) stage, and SSEA1+/DsRed� for

the mature reprogrammed stage (Figure 1A). As starting mate-

rial, we isolated high-purity (�98%) MEFs expressing Thy1 and

DsRed (Figures S1B and S1E) by using fluorescence-activated

cell sorting (FACS). Reprogramming was initiated by transducing

these cells with retroviruses expressing OSKM plus lentiviruses

containing a whole-genome small hairpin RNA (shRNA) library

(Figures 1A, S1C, and S1D).

We sorted cells 14 days later (Figure S1C), when reprogram-

ming is reportedly complete in MEFs and the transcriptome

relatively defined (Hanna et al., 2009; Yamanaka, 2009). Four



high-purity cell populations (95%–99%purity) were isolated (Fig-

ure S1F) representing stages defined above (Figure 1A). Surpris-

ingly, most cells (>80%) were at the transition (Thy1�/SSEA1�)
stage, whereas only 1%–2.5% reached SSEA1+ stages (Fig-

ure S1G and Table S1), suggesting that re-establishing pluripo-

tency networks is the rate-limiting step in reprogramming. Four

sorted cell populations were confirmed to properly represent

the normal reprogramming process by examining ESC-specific

regulators (e.g., Esrrb, Nanog, Lin28a, and Sall4) and mesen-

chymal-to-epithelial transition regulators (e.g., Cdh1, Ocln,

Krt8, Snai1, Zeb1/2, and Ncam1) (Figure S1H).

To define the transcriptome in sorted populations, we used

k-means clustering to profile gene expression patterns and

identified five groups (I–V) of mRNAs (Figure 1B and Table S1).

We defined groups I, II, and III as ‘‘differentially expressed’’

genes and groups IV and V as non-differentially expressed or

unchanged genes during the reprogramming process. Gene

ontology (GO) analysis showed that genes associated with em-

bryonic development, cell cycle, and cell death were significantly

overrepresented in groups I– III, and that genes associated with

cellular function and maintenance, molecular transport, and

metabolism were significantly enriched in groups IV and V (Fig-

ures S1I and S1J and Table S1). As expected, this finding dem-

onstrates that differentially expressed genes (groups I– III) are

highly related to ESC function and that non-differentially ex-

pressed genes (groups IV and V) are related to basal cellular

functions.

Identifying Key Transcriptome Hallmarks in Each Cell-
Fate Transition during Reprogramming
It remains poorly understood whichmolecular hurdles are critical

to overcome for cells to make a transition from initial to mature

stages of reprogramming. To address this, we examined tran-

scriptome differences in each cell-fate transition. A majority of

the transcriptome changes occurred at the MEF-to-Thy1+/

SSEA1� (1,373 genes) and Thy1+/SSEA1�-to-Thy1�/SSEA1�

(1,387 genes) transitions (Figures S2A and S2B), whereas fewer

occurred in later Thy1�/SSEA1�-to-SSEA1+/DsRed+ (312

genes) and SSEA1+/DsRed+-to-SSEA1+/DsRed� (283 genes)

transitions. These results showed that a massive transcriptome

reconstruction primarily occurs in the early stages before cells

obtain an SSEA1+ marker, which pushes committed cell popula-

tions toward pluripotency (Figure S2F). Our data suggest that the

first two transitions may be the cell-fate-reorganizing phases,

comprising the respond-to-reprogramming-stress step and

the deconstructing-of-somatic-networks step. Following these

steps, the next two transitions are cell-fate-committing phases,

wherein ESC-specific regulatory networks are acquired for

attaining pluripotent status in the context of dominant OSKM

expression (Figures S2D–S2F).

Stage-specific genes are identified in each transition (e.g., Lyz,

Lyzs, Mrc1, Slc38a5, Laptm5, Ms4a6d, Nanog, Sall4, Esrrb,

Dppa4, Dppa5a, Dnmt3b, and Dnmt3l) (Figures S2B). Cellular

functions critical for transition steps of reprogramming were

identified by GO analysis (Figure S2C), showing that modulating

somatic cell functions are required in the initial stages and that

genes associated with ESC pluripotency are highly regulated in

the subsequent stages.
GO analysis of the differentially expressed genes at each tran-

sition suggests that a number of canonical pathways, including

hepatic fibrosis, stellate cell adhesion, matrix metalloproteases,

and adhesion and diapedesis, are important for modulating the

fibroblast property (Figure S2C) before cells reach the next two

SSEA1+ stages. Consistently, key molecules associated with

fibrotic properties, Lyz and Lyzs, are among the top 20 differen-

tiated genes at the first two transitions (Figure S2B). This is

consistent with previous findings that an early step in reprogram-

ming is the destruction of somatic regulatory networks (Bram-

brink et al., 2008; Stadtfeld et al., 2008). Genes involved in

ESC pluripotency are activated starting at the Thy1�/SSEA1�-
to-SSEA1+/DsRed+ transition (Figure S2C). Additional ESC-

specific networks are activated in the final transition from the

SSEA1+/DsRed+ to SSEA1+/DsRed� stages (Figure S2C). See

Table S1 for the detailed information about differentially ex-

pressed genes between transitions in reprogramming.

Our data indicate that to reach the ‘‘early reprogrammed’’

SSEA1+/DsRed+ stage, it is important to activate many of the

key players involved in the ESC core circuitry, including Nanog,

Sall4, Esrrb, Dppa4, Dppa5a, Dnmt3b, and Dnmt3l (Figure S2D)

(Buganim et al., 2012; Hansson et al., 2012; Polo et al., 2012).

Our cell sorting data (Figure S1G) also suggested that the transi-

tion of Thy1�-to-SSEA1+ is the rate-limiting step, because a

majority (�80%) of transformed cells were ‘‘trapped’’ in the

Thy1�/SSEA1� stage, and the initial induction of several ESC-

specific factors (e.g., Nanog, Sall4, and Esrrb) is required to

overcome this threshold. For predetermined cells (SSEA1+/

DsRed+), in order to progress to a mature reprogrammed status

(SSEA1+/DsRed�), those molecules are further induced to a

higher expression level (Figure 2E), possibly to acquire a com-

plete pluripotent state. Furthermore, when cells proceed from

the SSEA1+/DsRed+ to SSEA1+/DsRed� stages (Figure 2F),

more extensive interactions of ESC core regulators are estab-

lished, including Utf1, Tdgf1, Gsc, Fgf10, T, Chrd, Dppa3,

Fgf17, Eomes, and Foxa2, indicating that the final step of reprog-

ramming is to reinforce the regulatory pathways in ESC core

circuitry.

Discovering a Variety of Sources for Induced
Reprogramming and Cell-Fate Manipulation
The choice of somatic cells contributes significantly to reprog-

ramming efficiency (González et al., 2011). Therefore, we

reasoned that our sorted cells might resemble certain tissue

types, which could be better and alternative resources for

induced reprogramming. To test this idea, we compared tran-

scriptome profiles from the reprogramming process with those

from various tissue types in vivo (Kupershmidt et al., 2010).

This algorithm was designed to find correlations between genes

of interest (queries) and normalized gene expression across all

available tissues, cell types, cell lines, and stem cells in a library;

this is accomplished by calculating mRNA expression profiles

with a positive or negative correlation. We found that the

transcriptome of SSEA1+/DsRed� cells most resembled that of

cells derived from the visual (choriocapillaris endothelium)

(p value < 1 3 10�153), urogenital (p value < 1 3 10�130), and

immune (p value < 1 3 10�40) systems (Figure S2G). Interest-

ingly, Thy1�/SSEA1� cells have low significant correlations
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Figure 2. Key Regulatory Hubs Are Identi-

fied in Each Stage during Induced Reprog-

ramming

(A) Overrepresentative canonical pathways iden-

tified in reprogramming. Qualified hits (shRNA

reads > 1.5 in log10 scale) were analyzed using IPA.

Only the most significant pathways (p value < 0.01)

are shown here. The size of each circle is propor-

tional to the p value to represent the significance.

The cell stages are shown inside the box on the

left.

(B) Key molecular and cellular functions identi-

fied by shRNA screening. Qualified hits (shRNA

reads > 1.5 in log10 scale) were analyzed using IPA.

Cluster identifications are shown at left. p values

are based on Fisher’s exact test.

See also Figure S3.
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(p value < 1 3 10�9 to 1 3 10�17) with any tissue type (Fig-

ure S2G), suggesting a high degree of heterogeneity of cell con-

tents in this status (Thy1�/SSEA1�). Thy1�/SSEA1� statusmight

serve as the cell-fate-decisive stage prior to commitment of cell

types, because of highly heterogeneous cell types with low

mRNA expression correlations to well-defined tissue types.

Finally, we showed that cells from the visual system (choriocapil-

laris endothelium) and immune systemmight serve as alternative

resources for efficient reprogramming due to high transcrip-

tome-correlation parameters.

Cell Signaling Pathways Are Determinative Factors in
the ‘‘Prime’’ Stage before Cell-Fate Commitment
We reasoned that essential genes of cell-fate transitions should

be identified in specific sorted cells in reprogramming by a

genome-wide RNAi screen (Figure 1A). To obtain enriched

shRNAs integrated in specific cell stages, we isolated genomic

DNA from sorted cells and sequenced it with high-throughput

sequencing. Next, to find shRNA targets enriched specifically

in each cell population, we performed k-means clustering for

identified reads from sorted populations based on the relative

enrichment in different cell populations. We obtained four

stage-specific gene clusters (A, B, C, and D) enriched in each

population (Figure 1C). In cluster A, 829 genes are specifically

targeted (Thy1+/SSEA1�); 784 genes are in cluster B (Thy1�/
SSEA1�); 206 genes are in cluster C (SSEA1+/DsRed+); and

898 genes are in cluster D (SSEA1+/DsRed�). Grouped into

cluster E are 1,972 genes that are not categorized (Table S2).

Surprisingly, we got the highest number of target genes (898

out of 2,717 identified genes) from the population with the lowest

cell number (SSEA1+/DsRed�; �0.2%–0.4% of transduced

cells; see Table S1), suggesting that our RNAi screen indeed

identified genes with relevant functions to reprogramming

regardless of the cell number in each sorted population.

To understand the biological functions of shRNA-identified

genes, we conducted a meta-analysis of enriched-shRNA hits

using Ingenuity Pathway Analysis (IPA) software (http://www.

ingenuity.com/). We identified several canonical pathways,

which were significantly targeted to influence the transitions

between each stage of reprogramming (Figure 2A). Pla2g10,

Pla2g12b, Npr1,Gucy1a3, and Plch2 (spermmotility and synap-

tic long-term depression pathways) are required for the dediffer-

entiation of fibroblasts, because cells were ‘‘stuck’’ in the initial

stage in which these genes are depleted. Strikingly, various

signaling pathways are highly overrepresentative in the second

stage of reprogramming (Thy1�/SSEA1�). We found a number

of known reprogramming regulators including PI3K and Akt

(CREB signaling pathway) (Yu et al., 2014). Additionally, we

found that Itpr1, Itpr2, Pdia3, and Camk4 are common compo-

nents linking several signaling pathways (Figure 2A and Table

S2), such as nitric oxide, neuropathic pain, CREB, and EGF

signaling pathways. This significant enrichment of signaling

pathways in this cell population indicates that this stage

(Thy1�/SSEA1�) might be the ‘‘prime’’ stage, requiring a signifi-

cant amount of sensing and signaling to define the specific cell

fate in the next step of reprogramming.

In Figure 2A, Egf, Flt1, Il1rl1, and Ly96 (hepatic fibrosis

pathway) are identified in the precommitment stage (SSEA1+/
DsRed+), suggesting that it is critical to modulate cell-to-cell

signaling and interaction so that transformed cells are able to

overcome the rate-limiting step from the ‘‘prime’’ stage. To reach

the last stage of reprogramming (SSEA1+/DsRed�), depletion of

Cfl1, Mprip, and Ppp1r12 (regulation of actin-based motility by

Rho pathway) benefits the maturation process of reprogrammed

cells (Figure 2A and Table S2), indicating that transforming the

cytoskeleton is an important step for building ESC-like cellular

organization (Sakurai et al., 2014).

Notably, most genes associated with key networks were tar-

geted by shRNAs in the same stage (Figures S3A and S3B and

Table S2), including cell signaling, cellular assembly, gene

expression control, development, protein synthesis, cell cycle,

cell programmed death, and metabolism. These highly targeted

networks may serve as central hubs for determining the transi-

tion of cell identities.

As previously reported, genes associated with cell cycle or cell

death and survival (Banito et al., 2009; Hong et al., 2009; Kawa-

mura et al., 2009; Li et al., 2009; Marión et al., 2009; Utikal et al.,

2009) are also identified in our RNAi screen (Figure 2B and Table

S2) and act as checkpoints in the initial or final stage (Figure 2B).

Surprisingly, we found that a significant proportion of essential

networks and functions are also responsible for maintaining

basal cellular functions, such as cell signaling, metabolism, cell

morphology, cellular assembly, and organization (Figure 2B

and Table S2). This finding prompted us to further investigate

whethermany important regulators in reprogramming are always

tissue-specifically expressed in ESCs or iPSCs and whether

some of those regulators might be genes whose expression

does not change very significantly during the reprogramming

process.

Non-Differentially Expressed Genes Play Important
Roles in Modulating Cell-Fate Transitions during
Reprogramming
To examine whether the non-differentially expressed genes play

any roles in cell-fate decision during reprogramming, we per-

formed an in-depth analysis by integrating data sets generated

from RNAi screen and transcriptome analysis (Figure S3C). First,

we asked whether we could identify specific mRNA expression

patterns from genes targeted by shRNAs. To do so we used

target lists developed via RNAi screen (Figure 1C) as seeds

(queries) for identifying expression profiles from transcriptome

analysis (Figure 1B). We defined mRNA profiles corresponding

to four clusters of shRNA-identified targets. However, we did

not observe enrichment of specific gene expression patterns

among these groups (Figures 3A and 3B), indicating that genes

with stage-specific functions in reprogramming may not show

corresponding changes in mRNA expression levels. Strikingly,

a major proportion of identified shRNA targets (�53%– 70%)

are genes whose expression did not change during reprogram-

ming (as indicated by the yellow rectangles in Figure 3A),

showing that these non-differentially expressed genes are

indeed important for reprogramming transitions.

Second, we asked whether mRNA expression profiles could

predict cell-fate-specific functions in reprogramming. To do so,

we took the approach described above but instead used gene

lists from the transcriptome analysis (Figure 1B) as queries to
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Figure 3. Revealing Non-Differentially ExpressedGenesRegulating Cell-Fate Transitions in Reprogramming by Integrated shRNAScreening

and Transcriptome Profiling

In-depth analysis performed by integrating data sets generated from RNAi screen and transcriptome analysis. A scheme showing the strategy for performing

integrative analysis of shRNA screening and transcriptome data is shown in Figure S3C.

(A) Heat map illustrating mRNA expression profile of genes identified from shRNA (groups A–D) library screening in Figure 1C. Only shRNA target genes having a

read cutoff >1.5 (log10 scale) are analyzed. shRNA target genes were used as seeds for identifying mRNA expression profiles from transcriptome analysis

presented in Figure 1B. mRNA profiles corresponding to four clusters of shRNA-identified targets were defined. From left to right, mRNA expression trends are

shown from initiation maturation stages of reprogramming (upper right rectangle), and the number of qualified targets is listed in the lower right rectangle. Non-

differentially expressed genes are highlighted within the yellow rectangle in each group. Fold changes in expression relative to MEFs are shown in log2 scale.

(B) Proportion of three different expression patterns corresponding to shRNA-identified genes shown in Figure 3A. Genes identified in Figure 1B were shown as a

percentage corresponding to each group of shRNAs (groups A–D) in Figure 1C. Blue indicates downregulated genes, red indicates upregulated genes, and green

indicates minor expression changes. The relative proportion of each expression pattern is indicated in three different colors.

(C) Heat map illustrating shRNA reads of unique expression pattern groups shown in Figure 1B. Reads from the shRNA screen were analyzed using gene lists for

each group from Figure 1B (group I–V). Only qualified targets (shRNA reads > 1.5 in log10 scale) are analyzed. Genes from each cluster (I–V) were used as seed to

identify shRNA enrichment. From left to right, shRNA reads were presented from initiation stage to maturation stages as indicated above. The number of qualified

genes frommRNAmicroarray analysis and shRNA library screening is listed on right. Genes identified as non-enriched-shRNA targets are highlightedwith orange

rectangles (described as group E in Figure 3D and in Table S2). Non-differentially expressed genes with cell-fate modulation functions are highlighted within the

blue rectangle in groups IV and V. Reads of the shRNA library are shown in log10 scale.

(D) Proportion of enriched shRNA-identified targets corresponding to clusters in transcriptome analysis shown in Figure 3C. shRNA-identified genes in Figure 1C

were shown as a percentage corresponding to expression groups clustered in Figure 1B. Enriched shRNA targets are indicated in the different colors

listed above.

See also Figure S3.
find specific patterns of enriched shRNA targets. Surprisingly,

the majority of the genes in group I show no specific enrichments

in corresponding shRNA targets during reprogramming (as indi-

cated by the orange rectangles in Figure 3C), suggesting that

50% (238 out of 476 genes) of ESC-enriched genes have little

function in the reprogramming process (Figure 3D). Importantly,

group I, II, and III genes with functional influence in reprogram-

ming are present across various sorted cell populations, rather
332 Cell Reports 8, 327–337, July 24, 2014 ª2014 The Authors
than only a certain stage (Figures 3C and 3D), indicating that spe-

cific roles of tissue-enriched genes couldn’t be comprehensively

revealed by expression profiling in reprogramming.

We found that 362 out of 566 genes (�64%) and 668 out of

1,365 genes (�49%) in groups IV and V, respectively (blue rect-

angles in Figure 3C), are specifically identified by RNAi screen

during various stages of reprogramming (Figures 3C and 3D),

showing that non-differentially expressed genes in groups IV



and V significantly contribute to cell-fate transitions. As ex-

pected, a large proportion of matched genes (�36% and 51%,

respectively) in mRNA groups IV and V are clustered in non-

enriched-shRNA group E (as indicated by the orange rectangle

in Figures 3C and 3D). For complete information about RNAi-

identified targets, see Table S2. In summary, we found that

non-differentially expressed genes in groups IV and V indeed

play important roles in modulating the reprogramming progress.

HighDiscovery Rate in Identifying Positive Regulators or
Barrier Genes for Reprogramming
Next, we performed validation experiments on target genes

identified in the RNAi screen and bioinformatics analyses pre-

sented above. To assess shRNA-identified targets, we selected

stage-specifically enriched targets (reads with log10 value > 1.5;

Table S2) from the initial and mature-reprogrammed stages (Fig-

ures 1C, S3A, and S3B). To examine targets from the transcrip-

tome analysis, we selected genes highly induced in group I

(Figure 1B and Table S1). Most selected genes from both ana-

lyses encoded proteins involved in transcriptional regulation.

To determine whether shRNA-identified genes in specific

populations can promote or comprise reprogramming, we per-

formed siRNA-mediated knockdown of specific genes upon

induced reprogramming. We first picked genes selectively

targeted by shRNAs in the Thy1+/SSEA1� cell population

(group A) (Figure S3A and Table S2), reasoning that these genes

might be positive regulators for reprogramming. To assess re-

programming efficiency of cells with small interfering RNA

(siRNA)-mediated depletion, we quantified Oct4-GFP-positive

colonies 2 weeks after virus transduction. Of six selected

genes, depletion of five (�83%; Dmbx1, Gsc, Med21, Hnf4g,

and Nobox) significantly reduced reprogramming efficiency

(p value < 0.05) (Figure 4A). The knockdown level of target genes

was verified by quantitative RT-PCR (qRT-PCR) (Figure S5A). To

further independently validate the observed phenotype of these

genes through an alternative approach, we employed shRNA-

mediated knockdown of these genes. Stronger reduction of

iPSC generation was observed with shRNA-mediated depletion

of Dmbx1, Gsc, Med21, Hnf4g, Nobox, and Asb4 (Figure S4A).

Additional genes from shRNA group A (Psmd9 and Mef2c)

were also tested to show the same phenotype of iPSC reduction

(Figure S4A). The knockdown level of target genes was verified

by qRT-PCR (Figure S5B). Most importantly, 4 out of 8 tested

positive regulators (Dmbx1, Hnf4g, Nobox, and Asb4; Fig-

ure S4A) show no expression changes during reprogramming

(Figure 4D), supporting our hypothesis that non-differentially

expressed genes indeed contribute to cell-fate decision. Over-

expression of a non-differentially expressed gene (Nobox) is suf-

ficient to boost reprogramming efficiency by �2-fold, compared

with DsRed control (Figures S4G and S4H).

Using a similar approach, we examined the effect of genes

(group D) selectively targeted by shRNAs in mature reprog-

rammed cells (SSEA1+/DsRed�), assuming that they might

represent reprogramming barriers (Figure S3B and Table S2).

Following knockdown of 16 candidates at early stages of reprog-

ramming (including Tfdp1, Gtf2e1, Nfe2, Foxn3, Erf, Cdkn2aip,

Msx3, Ssbp3, Dbx1, Hoxd4, Lzts1, Arx, Hoxd12, Gtf2i, Ankrd22,

and Hoxc10), depletion of 12 (75%) improved reprogramming
efficiency by at least 2-fold (dotted line, Figure 4B) compared

with controls. The barrier roles of several gene targets (Tfdp1,

Cdkn2aip, Msx3, Ssbp3, Dbx1, and Ankrd22) in reprogramming

were further confirmed by shRNA knockdown (Figure S4B).

The mRNA levels of genes targeted by siRNAs or shRNAs was

verified by qRT-PCR (Figures S5C and S5D). Strikingly, 8 out

of 16 tested barrier genes (Nfe2, Cdkn2aip, Msx3, Dbx1, Lzts1,

Arx, Gtf2i, and Ankrd22) showed no expression changes during

reprogramming (Figure 4E), again supporting our findings that

many non-differentially expressed genes act as important mod-

ulators for cell-fate transition. To further examine the roles of

these non-differentially expressed genes, we picked several

genes with no expression changes (mRNA groups IV and V)

from each shRNA-enriched group (A to D) for testing reprogram-

ming efficiency (Table S2). We found that genes (Gja3, Olfr1271,

Fkbp11, Mdm1, Myo15, and Gucy2g) identified in early or pre-

committed cell populations (shRNA groups A– C) are required

for efficient reprogramming, whereas genes identified in shRNA

group D (Lasp1 and Hspa8) are obstacles for reprogramming.

The knockdown efficiency of select genes targeted by shRNAs

was verified by qRT-PCR (Figure S5E). For detailed information

about non-differentially expressed genes with cell-fate modula-

tion functions, see Table S2.

Next, we tested the function of barrier genes by overexpress-

ing them during reprogramming with OSKM. Expression of these

factors was confirmed by western blotting or immunofluores-

cence (Figures S3D and S3E). Overexpression of barrier genes

compromised reprogramming efficiency by �40%– 80% com-

pared with DsRed controls (Figure 4C), demonstrating that tar-

gets identified by our RNAi screen and bioinformatics analyses

indeed function as barriers to reprogramming. We further exam-

ined the roles of target genes identified in shRNA groups A and B

in reprogramming. During reprogramming, we expressed Mef2c

(shRNA-identified group A) and Pdia3 (key component in the

signaling pathway in shRNA-identified group B; Figure 2A) and

observed that iPSC generation is greatly enhanced by �4- to

6-fold compared with DsRed control (Figures S4G and S4H).

To test the function of genes identified by the transcriptome

analysis, we asked whether genes highly induced during reprog-

ramming (group I) contribute to maintaining ESC identity. Among

group I genes, we analyzed the effect of a panel of transcription

factors with little-known function on ESC self-renewal (Fig-

ure S3F). In addition, we determined the role of positive regula-

tors (Figures 4A and S4A) in ESC identity. To do so, we treated

Oct4-EGFP ESCs with specific siRNAs and assessed ESC

self-renewal 4 days later using flow cytometry to detect an

enhanced GFP (EGFP) signal. In 16 of 64 tested genes (25%),

the Oct4-EGFP signal was significantly reduced (Z score > 2)

(Figure S3F). In addition to the known regulatory factors of

ESCs or iPSCs (Nanog and Oct4), we discovered several key

players that maintain ESC identity, such as Asb4, Dmbx1,

Gbx2, Gsc, Hnf4g, Klf5, L3mbtl2, Med21, Mef2c, Nobox,

Pcgf6, Phox2a, Tcf15, and Trim28. In summary, our genome-

wide RNAi screen with sorted cell populations efficiently identi-

fied key regulators, serving either positive roles (e.g., Dmbx1,

Gsc, Med21, Hnf4g, Mef2c, and Psmd9) or barrier roles (e.g.,

Nfe2, Cdkn2aip, Msx3, Dbx1, Lzts1, Arx, Gtf2i, and Ankrd22)

during reprogramming. We also identified several additional
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Figure 4. Functional Validation Shows a High Discovery Rate in Identifying Positive Regulators or Barrier Genes for Reprogramming

(A) Bar graph showing reprogramming efficiency following siRNA knockdown of positive regulators. Indicated siRNAs plus OSKM were introduced into 43 104

cells of Oct4-EGFP MEFs, and colonies were scored for EGFP positivity. Oct4 knockdown served as positive control. Nontargeting siRNA served as negative

control (Control). Error bars represent SEM, nS 3. The solid line marks the control value, and the dashed line shows the cutoff value based onOct4 knockdown.

Student’s t test, *p < 0.05; **p < 0.005.

(B) Bar graph showingMEF reprogramming efficiency following barrier gene depletion. Reprogramming efficiency was assayed as in (A). Trp53 (p53) knockdown

served as positive control. Nontargeting siRNA served as negative control (Control). Error bars represent SEM, nS 3. The solid line marks the control value, and

the dashed line marks the cutoff value of 2-fold changes. Student’s t test, *p < 0.05; **p < 0.005; ***p < 0.0005; ****p < 0.00005.

(C) Fold changes in MEF reprogramming efficiency following barrier gene overexpression. Transgenes plus OSKM were introduced into 4 3 104 cells of Oct4-

EGFP MEFs and assayed as described above. Reprogramming efficiency was calculated following normalization to DsRed control. Error bars represent SEM,

n S 3. Student’s t test, *p < 0.05 and ****p < 0.00005.

(D) Expression profiling of genes potentially essential to reprogramming. Expression of specific genes was examined during reprogramming. MEFs and ESCs

serve as controls for two determined cell types. Replicates are designated nos. 1 and 2. Non-differentially expressed genes are highlighted in red boldface text.

Fold-change values are presented on a log2 scale.

(E) Expression profiling for putative barrier genes. Expression of specific genes was analyzed as in (D). Non-differentially expressed genes are highlighted in red

boldface text.

See also Figures S3, S4, and S5.
regulators (e.g., Asb4, Gbx2, Gsc, Hnf4g, and Mef2c) that play

important functions in maintaining ESC identities. Collectively,

our genome-wide RNAi screen has identified numerous regula-

tors of reprogramming (Figure S6), which lays the comprehen-

sive foundation of molecular requirements and regulatory

networks during reprogramming.
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DISCUSSION

In this study, we sought to define the molecular signatures of

stepwise induced reprogramming by functional genomics.

We dissected the regulatory networks, employing a pooled

genome-wide shRNA library in a stepwise manner by applying



FACS to isolate groups of distinct cell populations representing

four critical steps from initiation to maturation of induced reprog-

ramming. Results of our RNAi screen provided unbiased func-

tional insight into essential factors during each step of the

reprogramming progress. The high validation rate of identified

genes in this study suggests that our strategy is highly valuable

for the discovery of key regulatory molecules and networks in

the reprogramming process.

We found that the majority of transformed cells are ‘‘trapped’’

in the transition stage (Thy1�/SSEA1�), with divergent transcrip-

tomes showing correlations to various tissue types. This finding

implies that cells are reset at this ‘‘prime’’ phase where cells

might have the potential to adopt distinct cell fates until the

‘‘right’’ molecular networks are rebuilt. This notion is supported

by recent studies (Hansson et al., 2012; Polo et al., 2012;

Shu et al., 2013) showing that readministration of OSKM or

lineage specifiers into those transitioning cells drove more cells

into pluripotent or other desired states. The potential diversity

of cell fates at the Thy1�/SSEA1� stage is usually ignored,

probably because the only desired cell type here is pluripotent

stem cells. However, these ‘‘transitioning’’ cells with high plas-

ticity may provide a good starting point for various cell-fate

interconversions.

A recent study using a similar approach (Polo et al., 2012) has

shown that a majority of cells that even had a prolonged culture

after sorting did not greatly change their identities. Our transcrip-

tome analysis is consistent with previous studies (Brambrink

et al., 2008; Buganim et al., 2012; Polo et al., 2012) delineating

the stepwise marker genes during the reprogramming. Despite

our efforts to obtain a relatively ‘‘terminated’’ cell fate of trans-

formed cells in each population at the end of a 2-week reprog-

ramming course, it is possible that there are cells present at

different levels and stages of latencies in reprogramming, mak-

ing it difficult to completely rule out the heterogeneity issues in

our analysis.

In this study, we used DsRed expression as an indicator of

‘‘mature reprogrammed’’ cells. Although Nanog, Sall4, and

Essrrb genes have been slightly activated in SSEA1+/DsRed+

cells, these genes are further induced to a higher expression

level (Table S1), and ESC-like epigenetic regulation is resotred

to silence the retroviral gene (pMX-DsRed) only in SSEA1+/

DsRed� cells. Therefore, we reason that pMX-DsRed silencing

may provide a better definition of ‘‘mature reprogrammed’’ cells

than activation of the Oct4 gene, which has surprisingly been

shown to represent heterogeneously reprogrammed cells (Polo

et al., 2012).

Our RNAi screen may not have captured all possible modula-

tors of reprogramming, probably owing to several factors

including heterogeneity of virus transduction of shRNAs and

OSKM, insufficient knockdown of target genes, and other poten-

tial technical issues in this multiple-step screening process.

These limitations could be overcome by using newer algorithms

to design efficient shRNA libraries, CRISPR-Cas9 technologies,

and a homogeneous reprogramming system (polycistronic ex-

pression or somatic cells harboring inducible reprogramming

factors). Despite these caveats, we provide a proof of principle

that an unbiased pooled RNAi screen can be used to dissect

functional requirement inmultistepcomplexbiological pathways.
Recently, it has been suggested that the non-differentially ex-

pressed genes or conserved pathways might play complex roles

contributing to tissue-specific functions or oncogenesis (Loca-

sale, 2013). Here, we vigorously tested the hypothesis that the

non-differentially expressed genes play important roles in direct-

ing cell-fate decisions. Our functional genomics approach shows

that in addition to tissue-specific genes, many non-differentially

expressed genes actually play important roles in cell-fate transi-

tion during reprogramming (Figure S6B). Thus, we suggest that

studies such as ours that use genome-wide RNAi screening to

define reprogramming mechanisms will have numerous applica-

tions in this field, such as providing novel approaches to small-

molecule targeting, cell-fate manipulation, and progenitor

derivation. More importantly, our work not only uncovers the

landscape of reprogramming, but also defines the cell-fate deter-

minants at each transition step of induced reprogramming. In

summary, our results provide a wealth of information about the

functional genetic requirements at various transition steps during

reprogramming and may lead to a paradigm shift in viewing the

functional significance of genomic infrastructure in biology.

EXPERIMENTAL PROCEDURES

Oct4-EGFP MEF Derivation

Oct4-EGFP MEFs were derived from the mouse strain B6;129S4-

Pou5f1tm2(EGFP)Jae/J (The Jackson Laboratory, stock no. 008214) with the

use of the protocol provided on the WiCell Research Institute website (http://

www.wicell.org/). In brief, embryonic day 13.5 embryos were collected from

time-mated pregnant female mice. Cells isolated from embryos were then

tested for microbial contamination. All animal work was approved by the

Sanford-Burnham institutional review board and was performed following

Institutional Animal Care and Use Committee guidelines. Oct4-EGFP MEFs

were maintained in MEF complete medium (Dulbecco’s modified Eagle’s

medium with 10% fetal bovine serum, nonessential amino acids, and L-gluta-

mine, without sodium pyruvate). Robustly growing cells (usually more than four

passages) were used for induced reprogramming.

FACS and Whole-Genome RNAi Screening

Cells were transduced with retroviruses containing pMXs-DsRed plasmids,

harvested 3 days later, and then stained with phycoerythrin-Cy7 (PE-Cy7)-

conjugated antibodies targeting Thy1 (25-0902, eBioscience). Thy1/DsRed

double-positive cells (Thy1+/DsRed+) were isolated by FACS and allowed to

recover 3 days before introduction of the shRNA library and OSKM. Pseudovi-

ruses expressing a pGIPz-shRNA library and pMXs-OSKM were generated in

293FT and Plate-E cells, respectively. Pseudoviruses were administered at

days 0 and 1 during reprogramming to maximize transduction efficiency.

ESC medium was used for culturing transformed cells at day 3 post induction.

Two weeks later, cells were harvested and dissociated with trypsin/EDTA. PE-

Cy7-conjugated antibodies targeting Thy1 (25-0902, eBioscience) and Alexa

Fluor 647-conjugated SSEA1 antibodies (51-8813, eBioscience) were used

to detect Thy1 and SSEA1 surface markers. Before isolating cells with FACS,

SSEA1+ cells were enriched using Anti-SSEA-1 (CD15) MicroBeads (130-

094-530, Miltenyi Biotec GmbH). SSEA1-enriched cells were used for sorting

SSEA1+/DsRed+ and SSEA1+/DsRed� cell populations. SSEA1-depleted cells

were used for sorting Thy1+/SSEA1� and Thy1�/SSEA1� cell populations.

shRNA-library screening in reprogramming was conducted independently

three times. Total RNAs and genomic DNAs were extracted from sorted

populations for mRNA microarray analysis and SOLiD sequencing analysis.
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