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Evolutionary Emergence of microRNAs in Human
Embryonic Stem Cells
Hong Cao, Chao-shun Yang, Tariq M. Rana*

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America

Abstract

Human embryonic stem (hES) cells have unique abilities to divide indefinitely without differentiating and potential to
differentiate into more than 200 cell types. These properties make hES cells an ideal model system for understanding early
human development and for regenerative medicine. Molecular mechanisms including cellular signaling and transcriptional
regulation play important roles in hES cell differentiation. However, very little information is available on posttranscriptional
regulation of hES cell pluripotency, self-renewal, and early decisions about cell fate. microRNAs (miRNAs), 22-nt long non-
coding small RNAs found in plants and animals, regulate gene expression by targeting mRNAs for cleavage or translation
repression. In hES cells we found that 276 miRNAs were expressed; of these, a set of 30 miRNAs had significantly changed
expression during differentiation. Using a representative example, miR-302b, we show that miRNAs in human ES cells
assemble into a bona fide RISC that contains Ago2 and can specifically cleave perfectly matched target RNA. Our results
demonstrate that human ES cell differentiation is accompanied by changes in the expression of a unique set of miRNAs,
providing a glimpse of a new molecular circuitry that may regulate early development in humans. Chromosomes 19 and X
contained 98 and 40 miRNA genes, respectively, indicating that majority of miRNA genes in hES cells were expressed from
these two chromosomes. Strikingly, distribution analysis of miRNA gene loci across six species including dog, rat, mouse,
rhesus, chimpanzee, and human showed that miRNA genes encoded in chromosome 19 were drastically increased in
chimpanzees and humans while miRNA gene loci on other chrosmomes were decreased as compared with dog, rat, and
mouse. Comparative genomic studies showed 99% conservation of chromosome 19 miRNA genes between chimpanzees
and humans. Together, these findings reveal the evolutionary emergence, ,5 million years ago, of miRNAs involved in
regulating early human development. One could imagine that this burst of miRNA gene clusters at specific chromosomes
was part of an evolutionary event during species divergence.
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Introduction

Embryonic stem (ES) cells are derived from the inner cell mass

of the developing blastocyst and have the capacity to divide for

indefinite periods without differentiation. Under specific develop-

mental cues and environments, ES cells start to differentiate and

can give rise to more than 200 specific cell types that make up an

organism [1]. To better understand the biology of embryonic

development and to develop the potential of using ES cells in

medicine, it is critical to discover the molecular mechanisms that

regulate their differentiation and the stages at which cell lineages

are induced and specified. Recent developments in isolating

human ES cells have facilitated investigations of molecular

mechanisms of early human development [2,3].

The maintenance of ES cells in the undifferentiated state has

been shown to depend on 2 transcription factors, OCT4/POU5F1

and NANOG [4–6]. OCT4 interacts with the HMG-box

transcription factor, SOX2, and regulates gene expression in

mouse ES cells [7–10]. These 3 transcription factors (OCT4/

POU5F1, SOX2, and NANOG) have also been shown to be

essential in the early development and propagation of undifferen-

tiated ES cells (reviewed in [1],[4–6],[7–10]). Recent genome-scale

location analysis of target genes for OCT4, SOX2, and NANOG

indicate that these 3 transcription factors collaborate to form

autoregulatory and feedforward loops [11]. The OCT4 and

NANOG transcription network has also been shown to regulate

pluripotency in mouse ES cells [12]. These studies provide molecular

understanding of the regulatory circuits involved in the pluripotency

and lineage specification of ES cells. However, very little information

is available on posttranscriptional mechanisms that regulate ES cell

pluripotency, self-renewal, and early decisions about cell fate. Here

we show that human ES cell differentiation is accompanied by

changes in the expression of a unique set of miRNAs, providing a

glimpse of a new posttranscriptional regulatory circuitry that may

control early development in humans. Interestingly, the number of

hES miRNA genes encoded in chromosome 19 drastically increased

in chimpanzees and humans. Comparative genomic studies revealed

a high degree of chromosome 19 miRNA conservation between

chimpanzees and humans. Our results reveal the evolutionary

emergence, ,5 million years ago, of miRNAs involved in regulating

early human development.

Results and Discussion

MicroRNAs (miRNAs), ,22-nt long non-coding RNAs, are an

abundant class of small regulatory RNAs found in plants and in
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animals. miRNAs are assembled with Ago2 and other proteins

into an effector complex, miRISC, which targets mRNAs for

cleavage or translation repression. Thus, miRNAs can play

important roles in development by modulating posttranscriptional

regulation of target genes [13–15]. The human genome encodes

hundreds of miRNAs that have the potential to regulate protein

expression by thousands of mRNAs [13,16]. For example,

miRNAs modulate differentiation of the hematopoietic lineage

[17] and several ES cell-specific miRNA have been identified

[18,19] miRNAs have also been shown to regulate brain

morphogenesis in zebrafish [20] and in animal development [21].

We hypothesized that during ES cell differentiation, miRNA

expression levels would change to modulate posttranscriptional

gene expression, thus providing new insights into the molecular

circuitry that controls human ES cell self-renewal and differenti-

ation. To test this hypothesis, small RNAs were isolated from hES

cells, and quantification of miRNA expression by miRNA

microarray analysis showed expression of 276 miRNAs (Supple-

mentary Table S1). The genomic distribution of these miRNAs

was determined by identifying the chromosomal loci of their genes

(Table S1), as summarized in Fig 1A. MicroRNA genes were

distributed in all chromosomes. However, chromosomes 19 and X

contained 98 and 40 miRNA genes, respectively, indicating that

majority of the miRNA genes in hES cells were expressed from

these two chromosomes.

To investigate the evolutionary emergence of miRNA expres-

sion in hES cells, we carried out comparative genomic studies by

aligning each gene sequence for the 276 miRNAs with the human

genome and the genomes of 16 vertebrates, including mammalian,

amphibian, bird, and fish species (Fig 1B and Supplementary

Table S2). Drawing from the evolution and time of divergence of

various species, we divided the results of our comparative miRNA

gene analysis into 3 sections (Fig 1B). First, conservation was

determined in 4 species. That is, we analyzed conservation of

Figure 1. Human embryonic stem cells express 276 miRNAs. (A) 138 hES cell-specific miRNA genes are located on chromosomes 19
and X. Genomic clusters of miRNA were determined by aligning miRNA gene sequences with the human genomic database at Ensemble genome
browser by BLAST search (http://www.ensembl.org/Multi/blastview version 41, 2006). Matched chromosome sequences with E values less than 0.01
have been clustered, except specifically marked regions (see Table S1). (B) Evolutionary conservation of hES cell-specific miRNAs. The human
genome and genomes of 16 vertebrates (chimpanzee, rhesus monkey, rat, mouse, rabbit, dog, cow, armadillo, elephant, tenrec, opossum, chicken,
frog, zebrafish, tetraodon, and fugu) were aligned using the University of California at Santa Cruz Genome Browser (http://genome.ucsc.edu) with the
BLAST-Like Alignment Tool (BLAT). C: conserved and NC: nonconserved. Conservation of miRNA genes in 4 species was defined as perfect alignment
of at least 3 species among mouse, rat, rabbit, dog and cow (rarely, armadillo, elephant, tenrec or opossum) with a human miRNA sequence. If a
miRNA had more than one matched region (repeats) in human chromosomes and only one region was perfectly aligned with other species, it was
defined as conserved. Sequence alignments with 2 mismatches or a single mismatch in the miRNA seed region (2–8 nucleotides) were designated as
nonconserved (Table S2). miRNA conservation is shown among 4 species, between human and rhesus monkey, and between human and
chimpanzee.
doi:10.1371/journal.pone.0002820.g001

Embryonic Stem Cell miRNAs

PLoS ONE | www.plosone.org 2 July 2008 | Volume 3 | Issue 7 | e2820



miRNA gene sequences between human and at least 3 species

among mouse, rat, rabbit, dog, or cow (rarely armadillo, elephant,

tenrec or opossum); this analysis showed that 66% of miRNA

genes were conserved. Second, rhesus monkey and human ES cell

miRNA gene-sequence analysis showed 81% conservation. Third,

chimpanzee and hES cell miRNA gene-sequence analysis revealed

90% conservation (Fig 1B).

The conservation of hES cell miRNA genes among various

species suggested a correlation with the evolutionary development

time and divergence of species. For example, the evolutionary time

for 4 vertebrate species to develop to humans, rhesus to humans,

and chimpanzee to humans represents approximately .100, 70,

and 5 million years, respectively. Our findings that most of the

hES miRNA genes are located on chromosomes X and 19 and

that these genes show 90% conservation with a single species,

chimpanzee, suggested that the evolution of these miRNAs and

their chromosome clustering are recent primate-specific phenom-

ena in the history of evolution. To address this hypothesis, we

analyzed the distribution of hES cell specific miRNA gene loci

across six species including dog, rat, mouse, rhesus, chimpanzee,

and human. This analysis provide an intriguing result indicating

that hES cell specific miRNA genes encoded in chromosome 19

was drastically increased in chimpanzees and humans while

miRNA gene loci on other chrosmomes were decreased as

compared with dog, rat, and mouse (Fig 2A). Similarly, the

number of miRNA genes encoded in chromosome X and 19 were

increased in rhesus, although to a lesser extent than in

chimpanzees and humans. We next determined the conservation

of these miRNA genes in various species (Fig 2B) that showed 99%

conservation of chromosome 19 miRNA genes between chimpan-

zees and humans. Taken together, these findings reveal evolu-

tionary emergence of miRNA genes located on chromosome 19.

These results also suggest that most of the hES-specific miRNAs

evolved ,5 million years ago.

If miRNAs are involved in regulating hES cell differentiation by

modulating protein expression, then levels of miRNA expression

would change when hES cells are induced to differentiate. To

address this question, we examined changes in expression of hES

cell-specific miRNAs during differentiation. At day 14 after

initiating differentiation in hES cells, small RNAs were isolated

from hES cells and from embryoid bodies (EBs), which represent

hES cell differentiation and form three dimensional colonies, and

levels of miRNA expression were quantified by miRNA micro-

array analysis. Of 276 miRNAs detected, 30 changed significantly,

i.e., the log2 ratio of miRNA expression in EBs/hES cells (EB/ES)

was .1 (Fig 3A and Supplementary Table S3). We found that

when hES cells differentiated, 8 miRNAs were downregulated and

22 miRNAs were upregulated. Expression of the most upregulated

miRNA, miR-654, changed ,30-fold during differentiation.

Changes in miRNA expression levels and trends were further

Figure 2. Distribution and conservation analysis of 138 miRNA genes clustered in Chromosome 19 and Chromosome X. (A) miRNA
gene distribution across human, chimpanzee, rhesus, mouse, rat and dog. Others: other chromosomes excluded chromosome 19 and chromosome X.
(B) Conservations of human chromosome 19 encoded miRNAs: across four species including human, mouse, rat and dog; human and Rhesus; and
human and chimpanzee. Conservation of miRNAs was analyzed as described in Fig 1.
doi:10.1371/journal.pone.0002820.g002
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confirmed by Northern blotting and qPCR analysis. A represen-

tative gel shows that hES and EB specific miRNAs were

specifically detected in hES and EB14, respectively, and these

miRNAs were absent in HeLa cells (Fig 3B). The most

downregulated miRNA during EB formation was miR-let-7a,

which is of interest because let-7 has been shown to regulate

developmental timing in Caenorhabditis elegans [22]. Evolutionary

conservation analysis of these 30 miRNAs (Fig 3, Supplementary

Table S3) revealed that almost all of the downregulated miRNAs

were conserved across species, except for miR-594, which was

nonconserved in the analysis of conserved miRNA genes between

humans and 4 species and between humans and rhesus monkey.

Downregulated miRNAs showed complete conservation between

humans and chimpanzees. On the other hand, upregulated

miRNAs showed a high degree of variation in conservation

among species (Fig 3). Most of the miRNAs upregulated during

hES differentiation were nonconserved among 4 species (64%) and

with rhesus monkey (32%), but were highly conserved with

chimpanzee (91%). These results again show a high degree of

miRNA conservation between humans and chimpanzees, high-

lighting the recent evolution of a unique set of miRNAs involved in

early human development.

To determine whether miRNAs in human ES cells assemble

into Ago2-containing effector RISCs, we employed the target

RNA-cleavage capabilities of RISC when the target and miRNA

have perfectly matched complementary sequences. For these

experiments, we chose miR-302b because it was abundant in hES

cells, thus providing a sensitive assay for RISC activity

programmed with miRNAs. Since let-7a is abundant in HeLa,

we selected let-7 as a control in our experiments. Fig 4A

demonstrates the specific expression of miR-302b and let-7 in

hES and HeLa cells, respectively. RISC-mediated target RNA

cleavage activity was determined by in vitro cleavage of a 32P-target

mRNA that perfectly matched the miR-302b or let-7 sequence.

Our results (Fig 4B) show that ES cell extracts (1 and 3 mg)

contained active miR-302b RISC and cleaved the perfectly

matched target mRNA, whereas no target cleavage activity was

seen in extracts of HeLa cells, which do not express miR-302b.

Conversely, let-7 RISC in HeLa extracts cleaved let-7 target RNA

while hES RISC did not show detectable activity in this

experiment. Taken together, these results demonstrate that

miRNAs in human ES cells assemble into a bona fide RISC that

contains Ago2 and is capable of cleaving target mRNA.

In summary, we have identified hES cell-specific miRNAs and

have determined that the evolution of these miRNAs is a recent

primate-specific phenomenon, dating back to ,5 million years. In

addition, our results demonstrate that human ES cell differenti-

ation is accompanied by changes in the expression of a unique set

of miRNAs, providing a glimpse of a new posttranscriptional

regulatory circuitry that may control early development in

humans. An exciting direction for future studies would be to

determine how these miRNAs modulate expression of target genes

during stem cell self-renewal and differentiation.

Materials and Methods

Human embryonic stem (hES) cell culture
hES cell line H1 (obtained from WiCell) was used from passages

42 to 50. Details of the hES cell culture protocol and reagents are

available at http://www.wicell.org. Briefly, H1 cells were grown in

DMEM/F12 medium (Invitrogen; Cat# 11330-032) containing

20% knockout serum replacer (Invitrogen; Cat# 10828), 4 ng/ml

of human recombinant basic fibroblast growth factor (bFGF;

Invitrogen; Cat# 13256-029), 1 mM L-glutamine (Invitrogen;

Cat# 25030081), and 1% non-essential amino acids (Invitrogen;

Cat# 11140-050). hES cells were grown on a feeder layer of

mouse embryonic fibroblasts (MEF) at passages 1 to 4. MEF were

irradiated and seeded at 1.886105 cells per well in a 6-well plate.

After passage 4, hES cells were grown in feeder-free cultures, i.e.,

on matrigel-coated plates with MEF-conditioned medium plus

bFGF as described previously [23]. hES cell culture medium (as

described above) was conditioned for 24 h on MEF at

2.126105 cells/ml and bFGF was added.

Karyotyping of hES
The karyotypic stability of hES cells was assessed by cytogenetic

analysis at various passages. hES cells were treated overnight with

0.005 mg/ml of Karyo Max Colcemid solution in conditioned

medium with bFGF (Gibco; Cat# 15212-012, 10 mg/ml). The

medium containing colcemid was removed, and 0.3 ml of 0.05%

trypsin (Gibco) was added to each well and incubated for 5 min.

Conditioned medium (2.5 ml) was added to cells, which were

collected in 15-ml conical tubes. The cell suspension was

vigorously pipetted, medium was added to bring the final volume

to 5 ml, and karyotype analysis was performed. Results of these

analyses on hES at passage 49 are shown in Fig S1.

Immunostaining for pluripotent markers
hES cells were characterized for pluripotency by staining for

pluripotency markers as described [24]. Briefly, hES cells were rinsed

with 1 ml PBS, fixed with 4% paraformaldehyde in PBS for 30 min

at room temperature (RT), and washed with 1 ml PBS. Cells were

permeabilized for 5 min at RT by treating with 0.1% Triton X-100

in PBS. Permeabilized cells were treated with 5% goat serum in PBS

for 30 min at RT and incubated for 1 h at RT with antibodies to

OCT-4 (Santa Cruz) and SSEA-4 (Santa Cruz) in 1.5% goat serum

in PBS according to conditions provided with the antibodies. After

washing (36) with 1 ml of PBS, cells were treated with secondary

antibodies (Alexa Fluor 488 and 546) diluted 1:100 in 1.5% goat

serum in PBS for 1 h at RT. Cell nuclei were stained with

Vectashield mounting medium containing DAPI (49,6 diamidino-2-

phenylindole; Vector Laboratories; Cat# H-1200) in PBS. Images

were recorded by fluorescence microscopy at 106magnification. A

typical image from these studies is shown in Fig S2.

Formation of embryoid bodies
Embryoid body formation and characterization were performed

as previously described [25,26]. Briefly, the medium was removed

from hES cells, which were washed once with DPBS (2 ml, Gibco).

Cell layers were prepared for passage by adding 1 ml of 1 mg/ml

Dispase (Gibco) to each well of the 6-well plate, incubating for

5 min at 37uC or 5 min, removing the Dispase, and washing the

cells with 2 ml of DPBS. To the washed cells was added 1 ml of

complete medium (80% DMEM/F12, 20% knockout serum

replacer, 1% non-essential amino acids, 25 mM L-glutamine with

B-ME, without bFGF). Cells (including all clumps) were removed

with a glass pipette, collected in 15-ml tubes, and centrifuged for

5 min at 1000 rpm at RT. The medium was removed and the

pellet was gently resuspended into small clumps. Cells were split

and medium was changed every 2 days. The formation and

morphology of EBs were analyzed over 14 days by microscopy and

immunostaining. The morphology of hES cells and EBs is shown

at various times in Fig S3.

miRNA analysis
Total RNA (20 mg) was isolated from hES cells and EBs and the

expression profile for all known miRNAs was analyzed using

Embryonic Stem Cell miRNAs
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Figure 3. (A) Expression of a unique set of miRNAs changes during differentiation of human ES cells (hES) into embryoid bodies
(EBs). miRNA expression was analyzed in hES cells and EBs after 14 days of differentiation. miRNA expression is arranged by log2 ratio in hES cells/EBs
(EB/ES) for 30 of ,276 miRNAs whose log2 ratio .1. Red indicates upregulated miRNAs in EB14 relative to their expression in ES cells and green
indicates downregulated miRNAs. Conservation of miRNAs was analyzed as described in Fig 1 (Table S3, supplementary material). (B) Northen
analysis of miRNA expression in hES cells and EBs. Total RNA was prepared from hES and 14-days embroid bodies (EB14). RNAs (10 ug) were
loaded onto gels and miRNA bands were resolved by 14% denaturing gels. miRNAs were hybridized with various 32P labeled specific DNA probes as
indicated. Specific bands were visualized by phosphoImager. tRNA band shows the loading control.
doi:10.1371/journal.pone.0002820.g003
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custom on-chip parallel synthesis microarrays (LC Sciences, TX

USA). Each chip contained 7 redundant regions of each miRNA.

Each region further contained a miRNA probe region detecting

miRNA transcripts listed in the Sanger miRNA database (http://

www.sanger.ac.uk/software/Rfam/mirna/). Multiple and TM-nor-

malized control probes were included on each chip. Among the

control probes, PUC2PM-20B and PUC2MM-20B were the

perfectly matched and single-base matched detection probes,

respectively. A 20-mer RNA positive control sequence was spiked

into the RNA samples before labeling. Hybridization used 100 mL

6xSSPE buffer (0.90 M NaCl, 60 mM Na2HPO4, 6 mM EDTA,

pH 6.8) containing 25% formamide at 34 uC. Hybridization was

detected by fluorescence labeling with tag-specific Cy3 and Cy5

dyes. Hybridization images were collected using a laser scanner

(GenePix 4000B, Molecular Device) and digitized using Array-Pro

image analysis software (Media Cybernetics). Data were analyzed by

first subtracting the background and then normalizing the signals

using a LOWESS filter (locally-weighted regression). Detectable

signals with average intensity 3 times higher than background

standard deviation and CV (standard deviation/average intensity)

less than 0.5 were included in further analysis. Cy3 and Cy5 images

were quantified to obtain differential expressions between the hES

and EB miRNAs. The images were displayed in pseudo colors to

expand the dynamic visual range. For the Cy3 and Cy5 images, as

the signal intensity increased from 1 to 65,535, the corresponding

color changed from blue to green to yellow to red. The two signals

were compared by calculating their ratio (log2 transformed,

balanced) and by t-test to determine if they were significantly

different. Signals were considered differentially detected if p,0.01.

The data represent an average of 3 experiments.

Supporting Information

Figure S1 hES cells show normal karyotype. A representative

image from karyotypic analysis of hES cells shows a normal male

karyotype. Examination of 20 metaphase cells showed all normal

male 46, XY, with no evidence of structural or numerical

abnormalities.

Found at: doi:10.1371/journal.pone.0002820.s001 (5.55 MB TIF)

Figure S2 hES cells are pluripotent. hES cells were immuno-

stained for pluripotent markers, OCT4 and SSEA4 [24].

Found at: doi:10.1371/journal.pone.0002820.s002 (8.81 MB TIF)

Figure S3 hES cells and EBs show normal morphology over 14

days. The morphology of hES cells and EBs was recorded at days

2, 4, 6, 8, 10, 12, and 14.

Found at: doi:10.1371/journal.pone.0002820.s003 (9.51 MB TIF)

Table S1 Name, sequence, and chromosome loci of 276

miRNAs expressed in hES cells. Each miRNA gene sequence

was aligned with the human genomic database at Ensemble

genome browser (http://www.ensembl.org/Multi/blastview\ ver-

sion 41, 2006). Matched chromosomal regions with E values less

than 0.01 (except marked sequences) are shown. Red indicates a

chromosome with a perfectly matched region. Plum indicates

matched sequences obtained from the UCSC Genome Browser

(http://genome.ucsc.edu). Blue indicates matched sequences

calculated from the Sanger miRBase::Sequences (http://micro-

rna.sanger.ac.uk) based on the stem-loop structures.

Found at: doi:10.1371/journal.pone.0002820.s004 (0.28 MB

PDF)

Table S2 Conservation of 276 hES cell-specific miRNAs in

vertebrates. Human miRNA genes were compared with genes of

various vertebrate species by multiple alignments to determine the

conservation of 276 miRNAs across species. All alignments were

tracked from the UCSC Genome Browser (http://genome.ucsc.

edu) with the BLAST-Like Alignment Tool (BLAT). The

evolutionary conservation of miRNAs was measured in 17

vertebrates, including mammalian, amphibian, bird, and fish

species. Multiple alignment of the following gene assemblies were

used to generate the analysis track: human (Mar. 2006, hg18),

chimpanzee (Nov 2003, panTro1), Nmacaque (Jan 2006, rhe-

Mac2),Nmouse (Feb 2006, mm8),Nrat (Nov 2004, rn4),Nrabbit (May

2005, oryCun1),Ndog (May 2005, canFam2),Ncow (Mar 2005,

bosTau2),Narmadillo (May 2005, dasNov1),Nelephant (May 2005,

loxAfr1),Ntenrec (Jul 2005, echTel1),Nopossum (Jan 2006, mon-

Dom4),Nchicken (Feb 2004, galGal2),Nfrog (Oct 2004, xen-

Tro1),Nzebrafish (May 2005, danRer3),Ntetraodon (Feb 2004,

tetNig1),Nfugu (Aug 2002, fr1). Conservation of miRNA genes in

4 species was defined as perfect alignment of at least 3 species

among mouse, rat, rabbit, dog and cow (rarely, armadillo,

elephant, tenrec or opossum) with a human miRNA sequence. If

an miRNA had more than one matched region (repeats) in human

chromosomes and only one region was perfectly aligned with other

species, it was defined as conserved. Sequence alignments with 2

mismatches or a single mismatch in the miRNA seed region (2–8

nucleotides) were designated as nonconserved.

Found at: doi:10.1371/journal.pone.0002820.s005 (0.33 MB

PDF)

Figure 4. RISC in hES cells retains specific target RNA cleavage
activity. (A) Northern blot analysis of miR-302b and miR let-7a
expression in hES and HeLa cells, respectively. Total RNA was prepared
from hES and HeLa cells and RNAs (10 mg) were loaded onto gels and
miRNA bands were resolved by 14% denaturing gels. miRNAs were
hybridized with various 32P labeled specific DNA probes as indicated.
Specific bands were visualized by phosphoImager. tRNA band shows
the loading control. (B) Specific target RNA cleavage by RISC
programmed with miR-302 and let-7a. RISC activity of miR-302b, a
representative miRNA expressed in hES cells and not in HeLa cells, and
let-7a was analyzed by incubating cell extracts with a 32P-cap-labeled
substrate mRNA that was perfectly complementary to miR-302b or let-
7a. Cleavage reactions and product analysis were performed as
previously described [27]. Labels indicate amount of extracts (0, 1,
and 3 mg) from hES and HeLa cells, target RNA and cleavage products.
doi:10.1371/journal.pone.0002820.g004
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Table S3 Differential expression levels and evolutionary conser-

vation of hES cell-specific miRNAs during embryoid body (EB)

formation. miRNA expression was analyzed in hES cells and EBs

after 14 days of differentiation. miRNA expression is arranged by

log2 ratio in hES cells/EBs (EB/ES) for 30 of ,276 miRNAs

whose log2 ratio .1. miRNA conservation in various species was

determined as described in Table 1.

Found at: doi:10.1371/journal.pone.0002820.s006 (0.18 MB

PDF)
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