A major histocompatibility complex class II restriction for BioBreeding/Worcester diabetes-inducing T cells

Karen E. Ellerman
University of Massachusetts Medical School

Arthur A. Like
University of Massachusetts Medical School, Arthur.Like@umassmed.edu

Follow this and additional works at: http://escholarship.umassmed.edu/oapubs

Part of the Endocrinology, Diabetes, and Metabolism Commons, and the Medical Pathology Commons

Repository Citation
http://escholarship.umassmed.edu/oapubs/1045

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
A Major Histocompatibility Complex Class II Restriction for BioBreeding/Worcester Diabetes-inducing T Cells

By Karen E. Ellerman and Arthur A. Like

From the Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0125

Summary

Inbred diabetes-prone (DP) BioBreeding/Worcester (BB/Wor) (RT1\(u\)) rats develop spontaneous autoimmune diabetes, which, like human insulin-dependent diabetes mellitus, is mediated by autoreactive T lymphocytes. Breeding studies have shown an absolute requirement for at least one copy of the major histocompatibility complex (MHC) RT1\(u\) haplotype for spontaneous diabetes expression. Concanavalin A-activated spleen cells from acutely diabetic DP rats adoptively transfer diabetes only to recipients that express at least one RT1\(u\) haplotype. To investigate the basis for the MHC requirement in BB/Wor autoimmunity, diabetes-inducing T cell lines were derived from the spleens of acutely diabetic DP rats. Upon activation in vitro with islet cells, the T cell lines adoptively transfer insulin and diabetes into young DP recipients and non-diabetes-prone RT1 congenic rat strains that are class II \(u\). Recipients that are RT1\(u\) at only the class I A or C locus, but not at the class II B/D loci, do not develop diabetes after T cell transfer. The adoptive transfer of diabetes by Concanavalin A-activated diabetic DP spleen cells also requires that donor and recipient share class II B/D\(u\) gene products. Furthermore, the adoptive transfer of diabetes into MHC class II\(u\) congenic rats is independent of the class I A or C gene products; i.e., it occurs in the presence of class I A\(u\) C\(u\) or A\(u\) C\(u\) gene products. BB/Wor T cells can be activated in vitro for the transfer of diabetes with islet cell antigens and class II\(u\)-positive but not class II\(u\)-negative antigen-presenting cells. The inductive phase of BB diabetes is therefore MHC class II restricted, and this appears to operate at the level of interaction between inducing T cells and class II\(u\) antigen-presenting cells. These results may explain the well-documented, but not yet understood, MHC class II genetic contribution to insulin-dependent diabetes mellitus pathogenesis, and they may facilitate the development of protocols designed to prevent diabetes onset in susceptible individuals.

Diabetes-prone (DP)\(^1\) BioBreeding/Worcester (BB/Wor) rats develop spontaneous autoimmune diabetes, in which the frequency of insulin-dependent, ketosis-prone hyperglycemia is 80–95% in both sexes. BB diabetes is characterized morphologically by a \(\beta\) cell–specific mononuclear cell infiltrate (insulitis) within the pancreatic islets of Langerhans. The autoimmune attack selectively destroys the insulin-producing \(\beta\) cells, with sparing of glucagon-, somatostatin-, and pancreatic polypeptide–synthesizing islet cells (1)

\(^1\)Abbreviations used in this paper: BB/Wor, BioBreeding/Worcester; CAS, Con A-activated Lewis rat splenocytes; DP, diabetes prone; DR, diabetes resistant; IDDM, insulin-dependent diabetes mellitus; NOD, nonobese diabetic; SEE, staphylococcal enterotoxin E.

BB/Wor rat diabetes is \(T\) cell dependent; the development of hyperglycemia is prevented by neonatal thymectomy (3) and in vivo treatment with mAbs directed against CD5\(^+\) (pan \(T\)) or CD8\(^+\) (cytotoxic) \(T\) cells (4). Spontaneous BB diabetes is an MHC-linked disease. Breeding studies have shown an absolute requirement for at least one copy of the MHC RT1\(u\) haplotype for the appearance of spontaneous diabetes in crosses between BB and non-BB strains of rat (5–7). Genetic susceptibility, however, has not been previously assigned to single genes of the MHC, nor have the immune effector mechanisms leading to \(\beta\) cell destruction been identified as being class I–or class II–restricted events.

BB/Wor diabetes can be adoptively transferred with acutely diabetic DP spleen cells that have been activated in vitro with Con A, a polyclonal mitogen (8), or staphylococcal enterotoxin E (SEE; Toxin Technology, Sarasota, FL) (9), a T cell receptor \(V\beta\) family–specific stimulus (10). Adoptive transfer has been demonstrated using young DP (8), cyclophosphamide–treated histocompatible RT1\(u\) non-BB (11) or athymic nude RT1\(u\) rats (12) as recipients. Transfer studies using young DP recipients have implicated both the CD4\(^+\) (13) and CD8\(^+\) (14) \(T\) cell subsets as being necessary for adoptive transfer. Since DP recipients possess
After 3 d, the activated blasts were purified on Histopaque 1077 (Sigma Chemical Co., St. Louis, MO) (1,800 rpm, 20 min, 22°C and plated at 10^5/ml in 10% CAS, and passaged several times before restimulation with antigen (islet cells or SEE) and APC. Culture medium consisted of RPMI 1640, 1 mM sodium pyruvate, 2 mM glutamine, 10 mM Heps, 5 x 10^{-5} M 2-ME, and 1X antibiotic-antimycotic (GIBCO BRL, Gaithersburg, MD). Before adoptive transfer, T cell lines were activated for 3 d with antigen and APC. Blast-transformed cells were harvested on Histopaque 1077 and cultured for a further 2 d in 10% CAS. Resting (unstimulated) T cells were transferred after two passages in 10% CAS.

Adoptive Transfer of T Cell Lines into DP Rats. T cells were injected intraperitoneally into 21–28-d female DP rats, which were monitored for 21 d after transfer for the development of glycosuria (TesTape; Eli Lilly and Co., Indianapolis, IN) and hyperglycemia (blood glucose ≥13.8 mmol/liter; Beckman glucose analyzer II; Beckman Instruments, Inc., Fullerton, CA). The mean age at onset of spontaneous diabetes in the University of Massachusetts Medical Center DP colony is 75 d for females with an incidence of 0.04% at 45 d of age. Hyperglycemia detected before 45 d of age was considered to be the result of the injected T cells. Diabetic rats were killed on the day of detection, and nondiabetic rats at 21 d after transfer.

Adoptive Transfer of T Cell Lines into RTI^a Congenic Rats. Islet cell-activated T cells were injected intraperitoneally into 21–30-d male and female congenic rats treated 24 h earlier with cyclophosphamide (Cytoxan; Mead Johnson Laboratories, Princeton, NJ), 180 mg/kg body weight i.p. Rats were monitored for 21 d for the development of glycosuria and hyperglycemia (blood glucose ≥13.8 mmol/liter).

Con A Activation of Acutely Diabetic DP Spleen Cells. Spleens were taken from acutely diabetic DP rats (duration of disease <5 d), processed into single-cell suspensions, and cultured at 5 x 10⁶ cells/ml in RPMI 1640, 2 mM glutamine, 10 mM Heps, 5 x 10^{-5} M 2-ME, 5% FCS, and 4 µg/ml Con A (ICN Biomedicals, Inc., Costa Mesa, CA) for 3 d at 37°C. 6.5% CO₂. Activated cells were washed four times in RPMI 1640 before injection. One spleen equivalent of Con A–activated cells was injected intraperitoneally into recipient rats.

Adoptive Transfer of T Cell Lines into RTI^a Congenic Rats. Islet cell-activated T cells were injected intraperitoneally into 21–30-d female congenic rats treated 24 h earlier with cyclophosphamide and glucagon (16) to evaluate the selective destruction of pancreatic and β cells.

Materials and Methods

Animals. BB/Wor DP and BB/Wor diabetes-resistant (DR) rats and inbred PVG.R8, PVG.R23, LEW1.AR2, and LEW1.WR1 rats were raised at the University of Massachusetts Medical Center (Worcester, MA) under viral antibody–free conditions. Viral antibody–free LEW1.AR2 and LEW1.WR1 breeding stock were obtained from the Central Institute for Laboratory Animal Breeding (Hannover, Germany).

Islet Cell Preparation. Islets were isolated from 90-d DR rats by the method of Gotot et al. (15). Pancreatic tissue was digested with 4 mg/ml collagenase P (Boehringer Mannheim Corp., Indianapolis, IN) for 25 min at 37°C. Islets were enriched on Histopaque 1077 Sigma Chemical Co., St. Louis, MO) (1,800 rpm, 30 min, 4°C) and purified by handpicking under a microscope. Islets were dispersed in trypsin/EDTA (12 min at 37°C) and immediately cryopreserved in 10% DMSO/45% RPMI 1640/45% FCS. Freshly thawed islet cells were γ irradiated (3,000 R) before use. To deplete residual islet-associated APC, freshly thawed islet cells at 10⁵/ml were sonicated 2 x 20 s on ice with an ultrasonicator (Microson; Heat Systems Inc., Farmingdale, NY).

Generation of T Cell Lines. Spleens were taken from acutely diabetic DP rats (duration of disease <5 d), processed into single-cell suspensions, allowed to adhere to plastic for 2 h at 37°C, and plated at 6 x 10⁶ nonadherent cells/ml in RPMI 1640, 2% autologous rat serum, and 2 µg/ml SEE at 37°C in 6.5% CO₂. After 3 d, the activated blasts were purified on Histopaque 1077 (2,000 rpm, 20 min, 22°C) and plated at 10⁵/ml in RPMI 1640, 10% heat-inactivated FCS (HyClone Laboratories, Logan, UT), and 5% supernatant from 48-h Con A–activated Lewis rat splenocytes (CAS). After two to three passages in CAS, the cells were restimulated for 3 d at 4 x 10⁵/ml with whole 3,000-R irradiated DR islet cells (freshly thawed after cryopreservation), 5% CAS, and 1,25 x 10⁵/ml irradiated nonadherent DP spleen cells (3,000 R) in RPMI 1640, 1% autologous rat serum. The ratio of islet cells to T cells was ~1:22. Antigen-activated blasts were again purified on Histopaque 1077 (2,000 rpm, 15 min, 22°C), plated at 10⁵/ml in 10% CAS, and passaged several times before restimulation with antigen (islet cells or SEE) and APC. Culture medium consisted of RPMI 1640, 1 mM sodium pyruvate, 2 mM glutamine, 10 mM Heps, 5 x 10⁻⁵ M 2-ME, and 1X antibiotic-antimycotic (GIBCO BRL, Gaithersburg, MD). Before adoptive transfer, T cell lines were activated for 3 d with antigen and APC. Blast-transformed cells were harvested on Histopaque 1077 and cultured for a further 2 d in 10% CAS. Resting (unstimulated) T cells were transferred after two passages in 10% CAS.

Adoptive Transfer of T Cell Lines into DP Rats. T cells were injected intraperitoneally into 21–28-d female DP rats, which were monitored for 21 d after transfer for the development of glycosuria (TesTape; Eli Lilly and Co., Indianapolis, IN) and hyperglycemia (blood glucose ≥13.8 mmol/liter; Beckman glucose analyzer II; Beckman Instruments, Inc., Fullerton, CA). The mean age at onset of spontaneous diabetes in the University of Massachusetts Medical Center DP colony is 75 d for females with an incidence of 0.04% at 45 d of age. Hyperglycemia detected before 45 d of age was considered to be the result of the injected T cells. Diabetic rats were killed on the day of detection, and nondiabetic rats at 21 d after transfer.

Adoptive Transfer of T Cell Lines into RTI^a Congenic Rats. Islet cell-activated T cells were injected intraperitoneally into 21–30-d female congenic rats treated 24 h earlier with cyclophosphamide and glucagon (16) to evaluate the selective destruction of pancreatic and β cells.
riched on density gradients and recultured in CAS as a source of T cell growth factors. At the second round of antigen-specific selection, T cells were stimulated with whole BB/Wor islet cells and APC. Islet cell-reactive T lymphocytes were density gradient purified and passaged further in CAS. At the third cycle of antigen activation, T cells lines were restimulated with either SEE and APC or with islet cells and APC. This protocol generates a population of T cells with potent diabetes transfer activity. A single intraperitoneal injection of 12-34 $\times 10^6$ T cells adoptively transferred diabetes into 21-28-d-old DP recipients in as few as 5 d after cell injection (Table 1), with a mean time to hyperglycemia of 7.9 d ($n = 48$). DP rats also develop spontaneous thyroiditis, although at a low and variable incidence (22). Diabetic recipients of T cell lines, however, did not develop thyroiditis ($n = 48$). Hyperglycemia was always accompanied by a β cell-destructive insulitis. Only antigen-activated T cells transfer disease; unstimulated (resting) T cells transferred >5 d after antigen activation (with islet cells or SEE) did not induce adoptive diabetes (Table 1, line 4) or insulin. By single-color flow cytometry, the cell lines were comprised (at all time points tested) of 70-90% CD4$^+$ and 10-30% CD8$^+$ T cells (data not shown). Although DP rats have low, barely measurable levels of CD8$^+$/CD5$^+$ CTLs and increased numbers of CD8$^+$/CD5$^+$/3.2.3$^+$ NK cells (23, 24), the T cell lines did not contain 3.2.3$^+$ NK cells at any time. The cell lines proliferate in vitro in response to both islet cells and SEE (data not shown). One cell line (A91-1), also derived from acutely diabetic DP spleens, was initially selected and then repetitively stimulated in vitro with whole islet cells and APC, but it did not transfer diabetes or insulin to any of 28 DP recipients (21-25 d old) given 19-57 $\times 10^6$ T cells (data not shown). The initial in vitro activation step with SEE appears to select for T cells with both islet cell reactivity and diabetes transfer capabilities.

Adoptive Transfer of T Cell Line-mediated Diabetes is MHC Class II$^+$ Restricted and Independent of Class I Haplotype. To exclude the possibility that the T cell lines were simply accelerating or costimulating an endogenous immune process genetically present in DP recipients, T cell lines were transferred into RT1 congenic non-BB strains of rat. These congenics contain non-BB RT1u genes, in different allelic combinations on the genetic background of parental Lewis (RT1l) and PVG (RT1v) strains. Neither the RT1u congenics nor their parental strains spontaneously develop insulitis or diabetes. To prepare congenic rats for BB/Wor T cell injections, recipients were treated with cyclophosphamide 24 h before transfer. Cyclophosphamide depletes T cells and enables RT1 congenic rats to accept the BB/Wor T cells, with which they share only partial genetic identity (11). Cyclophosphamide alone does not induce diabetes or insulitis in RT1 congenic rats (see Table 3).

Ilet cell-activated T cell lines injected into PVG.R8 rats induced diabetes and insulin in 14 out of 17 recipients, with a mean time to hyperglycemia of 7.4 d (Tables 2 and 3). Pancreatic tissue sections taken from diabetic and control cyclophosphamide-treated PVG.R8 rats were immunostained for the localization of islet cell peptide hormones. Islets of Langerhans from diabetic rats exhibited destructive lymphocytic insulitis with depletion of insulin-producing β cells and sparing of glucagon-producing α cells (Fig. 1 C and D) and somatostatin-producing δ cells (data not shown). Cyclophosphamide-treated rats revealed no insulitis and had normal numbers and distributions of α, β (Fig. 1, A and B), and δ cells. Islet cell-activated T cells also transferred diabetes and insulitis into 9 out of 10 LEW1.WR1 rats (Table 3), with a mean time to hyperglycemia of 9.7 d and a mean blood glucose of 20.4 mmol/liter. Thus, BB/Wor islet cell-activated T cell lines have an in vivo specificity for insulin-producing β cells, even when transferred into a non-BB genetic environment.

When islet cell-activated T cells were transferred into PVG.R23 recipients, none of the rats developed insulitis or diabetes (Table 3). T cell lines from the lines used in these experiments (at the same or a later passage) transferred diabe-

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Incidence of diabetes</th>
<th>Stimulus</th>
<th>Cell No.</th>
<th>Mean time to diabetes</th>
<th>Mean blood glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF-1</td>
<td>6/6</td>
<td>Islet cells</td>
<td>16-20</td>
<td>7</td>
<td>26.4</td>
</tr>
<tr>
<td>BF-1</td>
<td>3/3</td>
<td>SEE</td>
<td>32</td>
<td>5</td>
<td>25.0</td>
</tr>
<tr>
<td>BB-3</td>
<td>4/4</td>
<td>Islet cells</td>
<td>19</td>
<td>6</td>
<td>19.8</td>
</tr>
<tr>
<td>BB-3</td>
<td>0/4</td>
<td>None</td>
<td>22</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>BB-3</td>
<td>2/2</td>
<td>Islet cells</td>
<td>12</td>
<td>8</td>
<td>15.7</td>
</tr>
<tr>
<td>BB-5</td>
<td>3/3</td>
<td>SEE</td>
<td>34</td>
<td>12</td>
<td>28.9</td>
</tr>
<tr>
<td>J193</td>
<td>2/3</td>
<td>Islet cells</td>
<td>17</td>
<td>7</td>
<td>27.9</td>
</tr>
</tbody>
</table>

T cell lines were activated for 3 d with islet cells/APC or SEE/APC as described in Materials and Methods. Blast-transformed cells were harvested on Histopaque 1077 and cultured for a further 2 d in 10% CAS. Resting T cells (no stimulus) were transferred after 2 passages in CAS. T cells were injected intraperitoneally into 21-28-d female DP rats. Recipients were monitored for 21 d for the development of hyperglycemia (blood glucose ≥13.8 mmol/liter). A total of 45 out of 48 DP rats injected with T cell lines developed diabetes, with a mean time to hyperglycemia of 7.9 d.
T cell lines were activated for 3 d with islet cells and APC as described in Materials and Methods. Blot-transformed cells were harvested on Histopaque 1.077 and cultured for a further 2 d in 10% CAS. T cells were injected intraperitoneally into 21-30-d female PVG.R8 rats treated 24 h earlier with cyclophosphamide, 180 mg/kg body weight. None of eight female PVG.R8 rats given 180 mg/kg cyclophosphamide alone developed diabetes or insulitis. All rats were monitored for 21 d for the development of glycosuria and hyperglycemia (blood glucose \(> 13.8 \) mmol/liter).

The combined data from Tables 2 and 3 demonstrate that donor and recipient must share class II \(\text{RT1}^{\alpha} \) gene products. Thus, the induction of transferred diabetes is dependent upon CD4+ T cell recognition of \(\beta \) cell autoantigen in the context of class II \(\text{RT1}^{\alpha} \) gene products.

As assessed by adoptive transfer, the cognitive or inducive phase of BB diabetes is MHC class \(\text{II}^{\alpha} \) restricted and can proceed in the presence of either class I \(\text{A}^{\alpha} \) or \(\text{C}^{\alpha} \) gene products. Thus, the induction of transferred diabetes is dependent first upon CD4+ T cell recognition of \(\beta \) cell autoantigen in the context of class II \(\text{RT1}^{\alpha} \) in recipient target tissue (islet of Langerhans). These experiments do not, however, rule out a role for CD8+ CTL in the autoimmune attack leading to \(\beta \) cell destruction.

Class \(\text{II}^{\alpha} \) Restriction of BB Diabetes Operates at the Level of Interaction between Inducing T Cells and APC. To examine the APC as a potential locus for the class \(\text{II}^{\alpha} \) restriction, BB T cell lines were activated in parallel with sonicated BB islet cells and BB or RT1 congenic APC (irradiated spleen

<table>
<thead>
<tr>
<th>Strain</th>
<th>RT1 haplotype</th>
<th>Cell No.</th>
<th>Incidence of diabetes</th>
<th>Incidence of insulitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVG.R8</td>
<td>(\text{A}^{\alpha}\text{D}^{\alpha}\text{C}^{\alpha})</td>
<td>16-39</td>
<td>14/17</td>
<td>14/17</td>
</tr>
<tr>
<td>PVG.R8</td>
<td>(\text{A}^{\alpha}\text{D}^{\alpha}\text{C}^{\alpha})</td>
<td>0</td>
<td>0/8</td>
<td>0/8</td>
</tr>
<tr>
<td>PVG.R23</td>
<td>(\text{A}^{\alpha}\text{D}^{\alpha}\text{C}^{\alpha})</td>
<td>27-36</td>
<td>0/14</td>
<td>0/14</td>
</tr>
<tr>
<td>PVG.R23</td>
<td>(\text{A}^{\alpha}\text{D}^{\alpha}\text{C}^{\alpha})</td>
<td>0</td>
<td>0/11</td>
<td>0/11</td>
</tr>
<tr>
<td>LEW1.AR2</td>
<td>(\text{A}^{\alpha}\text{D}^{\alpha}\text{C}^{\alpha})</td>
<td>36</td>
<td>0/7</td>
<td>0/7</td>
</tr>
<tr>
<td>LEW1.AR2</td>
<td>(\text{A}^{\alpha}\text{D}^{\alpha}\text{C}^{\alpha})</td>
<td>0</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>LEW1.WR1</td>
<td>(\text{A}^{\alpha}\text{D}^{\alpha}\text{C}^{\alpha})</td>
<td>28</td>
<td>9/10</td>
<td>9/10</td>
</tr>
<tr>
<td>LEW1.WR1</td>
<td>(\text{A}^{\alpha}\text{D}^{\alpha}\text{C}^{\alpha})</td>
<td>0</td>
<td>0/7</td>
<td>0/7</td>
</tr>
</tbody>
</table>

21-30-d-old male and female RT1 congenic rats received cyclophosphamide, 180 mg/kg body weight intraperitoneally, 24 h before cell transfer. Control rats received cyclophosphamide alone. Rats were monitored for 21 d for glycosuria and hyperglycemia (blood glucose \(\geq 13.8 \) mmol/liter).
cells). The sonication step was added to deplete the islet cells of intact class II^a APCs of BB origin, as such cells are a normal component of the islets of Langerhans. After activation, equal numbers of T cells were injected into 21-25-d DP recipients, which were monitored for hyperglycemia for 15 d after cell injection. BB T cells activated in vitro with islet cell antigens and BB, PVG.R8 (B/D^α), or LEW1.WR1 (B/D^α) APC, but not PVG.R23 (B/D^α) or LEW1.AR2 (B/D^α) APC, adoptively transferred diabetes (Table 5). Thus, BB diabetes-inducing T cells are class II^a restricted both in vivo and in vitro. The class II restriction appears to operate at the level of the interaction between inducing T cells and class II^a APC.

Discussion

BB autoimmune diabetes is an MHC-linked disease with a requirement for both CD4⁺ (13) and CD8⁺ (4, 14) T cells. To investigate the basis for the MHC requirement, diabetes-inducing T cell lines were generated from the spleens of acutely diabetic DP rats. When activated in vitro with whole islet cells and APC, the T cell lines have potent diabetes transfer activity, wherein a single injection of T cells adoptively transferred hyperglycemia into 21-28-d-old DP recipients in as few as 5 d after injection. Hyperglycemia was always accompanied by a β cell-destructive insulitis with sparing of the glucagon- and somatostatin-secreting islet cells. Although DP rats may also develop spontaneous thyroiditis (22), diabetic recipients of T cell lines never manifested any signs of intrathyroid lymphocytic infiltrates. Interestingly, the T cell lines can also be activated for diabetes transfer with the superantigen, SEE. The ability of a superantigen to activate diabetes-inducing T cells is reminiscent of a recent report suggesting a role for superantigen in human IDDM etiology (25).

To determine which type of T cell initiates the development of diabetes, BB/Wor T cell lines were injected into non-diabetes-prone RT1^u class I or class II congenic recipients. Upon islet cell activation in vitro, the T cell lines rapidly transferred insulitis and diabetes into class II^u congenic rats. Recipients that are RT1^u at only the class I A or C locus, but not at the class II B/D loci, did not develop diabetes after T cell transfer. The adoptive transfer of dia-

Figure 1. Photomicrographs show adjacent pancreatic islet sections taken from PVG.R8 rats treated with cyclophosphamide alone (A, B) or cyclophosphamide followed 24 h later by an injection of islet cell-activated BB/Wor T cells (C, D). Tissues were fixed in Bouin's solution, and an immunoperoxidase technique was used for identification of insulin (A, C) and glucagon (B, D). The islets of cyclophosphamide control (A, B) reveal no evidence of insulitis. Insulin-positive β cells (A) and surrounding glucagon-positive α cells (B) are normal in appearance. The islets of the diabetic rat reveal an intraslit mononuclear cell infiltrate with almost complete destruction of the pancreatic β cells (C). Peripheral glucagon-positive α cells (D) are preserved in the diabetic PBV.R8 rats. A and B, ×200; C and D, ×170.
with class I hyperexpression and infiltrating CD8+ T cells process and then present antigen to cell peptide-specific protein that is taken up by class II+ intraislet APC, which being invariant concomitants of the autoimmune attack BB rat cell peptide-specific CD8+ T cells do, however, express class I products in vivo, producing cell targets do not express detectable MHC A u C u (PVG.RS) or A u C a (LEW1.W1L1) gene products. In important in BB diabetes. Anti-CD8 mAb treatment re-
of cell cytolysis. CD8+ T cells are known to be critically specific CD8+ T cells, which would serve as the final effectors of CD4+ T cells in a class II-restricted manner. The activated course of spontaneous BB/Wor insulitis and diabetes (30).

<table>
<thead>
<tr>
<th>Experiment No.</th>
<th>Source of APC</th>
<th>Class II loci</th>
<th>Incidence of diabetes</th>
<th>Mean time to diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BB/Wor</td>
<td>B/Da</td>
<td>7/8</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>PVG.R23</td>
<td>B/Da</td>
<td>0/8</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>BB/Wor</td>
<td>B/Da</td>
<td>6/7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>LEW1.WR1</td>
<td>B/Da</td>
<td>4/5</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>BB/Wor</td>
<td>B/Da</td>
<td>7/8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>PVG.R8</td>
<td>B/Da</td>
<td>8/9</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>PVG.R8</td>
<td>B/Da</td>
<td>1/2</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>LEW1.AR2</td>
<td>B/Da</td>
<td>0/3</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>BB/Wor</td>
<td>B/Da</td>
<td>4/4</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>LEW1.AR2</td>
<td>B/Da</td>
<td>0/2</td>
<td>—</td>
</tr>
</tbody>
</table>

BB/Wor T cells (4 × 10⁶/ml) were activated in parallel with DP or RT1 congenic 3,000-R spleen cells (2 × 10⁶/ml), 5% FCS, 5% CAS, and sonicated BB islet cells. The sonicated were always checked microscopically for the absence of whole cells. Islet cell sonicates were used at a ratio of 1 cell equivalent per 21 T cells. After 3 d, blasts were harvested on Histopaque 1077 and cultured for 2 d in 10% CAS. Equal numbers of T cells (usually 25 × 10⁶) were then injected intraperitoneally into 21–25-d female DP rats, which were monitored for 15 d for development of glycemia and hyperglycemia (blood glucose ≥13.8 mmol/liter). The MHC contains the predominant genetic susceptibility factors for IDDM in humans (41, 42), the BB rat (7), and the NOD mouse (43, 44). In particular, MHC class II genes are associated with disease susceptibility in all three species (45-47). The manner in which the products of the IDDM-associated MHC genes influence the pathogenesis of diabetes is still unknown. The mechanism could be either at the level of thymic T cell selection or during peripheral immune response activation, both of which require appropriate peptide presentation by MHC molecules. Our data indicate that, in the BB rat, the MHC class II ge-

Table 5. BB/Wor Diabetes-inducing T Cells Require Activation with MHC Class II-positive APC and Islet Cell Antigens for Disease Transfer

BB/Wor T cells (4 × 10⁶/ml) were activated in parallel with DP or RT1 congenic 3,000-R spleen cells (2 × 10⁶/ml), 5% FCS, 5% CAS, and sonicated BB islet cells. The sonicated were always checked microscopically for the absence of whole cells. Islet cell sonicates were used at a ratio of 1 cell equivalent per 21 T cells. After 3 d, blasts were harvested on Histopaque 1077 and cultured for 2 d in 10% CAS. Equal numbers of T cells (usually 25 × 10⁶) were then injected intraperitoneally into 21–25-d female DP rats, which were monitored for 15 d for development of glycemia and hyperglycemia (blood glucose ≥13.8 mmol/liter). The MHC contains the predominant genetic susceptibility factors for IDDM in humans (41, 42), the BB rat (7), and the NOD mouse (43, 44). In particular, MHC class II genes are associated with disease susceptibility in all three species (45-47). The manner in which the products of the IDDM-associated MHC genes influence the pathogenesis of diabetes is still unknown. The mechanism could be either at the level of thymic T cell selection or during peripheral immune response activation, both of which require appropriate peptide presentation by MHC molecules. Our data indicate that, in the BB rat, the MHC class II ge-

Table 5. BB/Wor Diabetes-inducing T Cells Require Activation with MHC Class II-positive APC and Islet Cell Antigens for Disease Transfer

BB/Wor T cells (4 × 10⁶/ml) were activated in parallel with DP or RT1 congenic 3,000-R spleen cells (2 × 10⁶/ml), 5% FCS, 5% CAS, and sonicated BB islet cells. The sonicated were always checked microscopically for the absence of whole cells. Islet cell sonicates were used at a ratio of 1 cell equivalent per 21 T cells. After 3 d, blasts were harvested on Histopaque 1077 and cultured for 2 d in 10% CAS. Equal numbers of T cells (usually 25 × 10⁶) were then injected intraperitoneally into 21–25-d female DP rats, which were monitored for 15 d for development of glycemia and hyperglycemia (blood glucose ≥13.8 mmol/liter). The MHC contains the predominant genetic susceptibility factors for IDDM in humans (41, 42), the BB rat (7), and the NOD mouse (43, 44). In particular, MHC class II genes are associated with disease susceptibility in all three species (45-47). The manner in which the products of the IDDM-associated MHC genes influence the pathogenesis of diabetes is still unknown. The mechanism could be either at the level of thymic T cell selection or during peripheral immune response activation, both of which require appropriate peptide presentation by MHC molecules. Our data indicate that, in the BB rat, the MHC class II ge-
netic contribution to IDDM pathogenesis may be explained by binding of β cell peptide to permissive class IIε molecules, resulting in the activation of diabetes-inducing T cells. Specifically, BB T cells can be activated in vitro for the transfer of diabetes with islet cell antigens and class IIε-positive, but not class IIε-negative, APC (Table 5). The MHC class II restriction of BB diabetes thus operates at the level of interaction between inducing T cells and class IIε APC. These data lend support to the peptide affinity model for the class II genetic contribution to IDDM susceptibility: Susceptibility is caused by peptide presentation by a class II gene product that binds diabetogenic peptide, resulting in the activation of β cell-specific autoreactive T cells (48).

We thank Sadie Costa, Victor DeStratis, Mary Gardner, Angelo Mascarenhas, and Lorna Pezanelli for outstanding technical support.

This work was supported by a grant from the American Diabetes Association to Karen E. Ellerman and by U.S. Public Health Service (USPHS) grant DK-19155 and USPHS contract NO1-DK-2-2201 to Arthur A. Like.

Address correspondence to Karen E. Ellerman, Ph.D., Department of Pathology, University of Massachusetts Medical Center, Worcester, MA 01655-0125.

Received for publication 10 April 1995 and in revised form 22 May 1995.

References

