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ABSTRACT 
 

Epithelial cells that lose attachment to the extracellular matrix (ECM) 

undergo a specialized form of apoptosis called anoikis. Anoikis has an important 

role in preventing oncogenesis, particularly metastasis, by eliminating cells that 

lack proper ECM cues. The basis of anoikis resistance remains to be determined 

and to date has not been linked to alterations in expression or activity of 

previously identified anoikis effector genes. Here, I utilized two different 

screening strategies to identify novel anoikis effector genes and miRNAs in order 

to gain a deeper understanding of anoikis and the potential mechanisms of 

anoikis resistance in cancer.  

 

Using large-scale RNA interference (RNAi) screening, I found that 

KDM3A, a histone H3 lysine 9 (H3K9) mono- and di-demethylase plays a pivotal 

role in anoikis induction. In attached breast epithelial cells, KDM3A expression is 

maintained at low levels by integrin signaling. Following detachment, integrin 

signaling is decreased resulting in increased KDM3A expression. RNAi-mediated 

knockdown of KDM3A substantially reduces apoptosis following detachment and, 

conversely, ectopic expression of KDM3A induces cell death in attached cells. I 

found that KDM3A promotes anoikis through transcriptional activation of BNIP3 

and BNIP3L, which encode pro-apoptotic proteins. Using mouse models of 

breast cancer metastasis I show that knockdown of Kdm3a enhances metastatic 

potential. Finally, I find defective KDM3A expression in human breast cancer cell 
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lines and tumors. Collectively, my results reveal a novel transcriptional regulatory 

program that mediates anoikis. 

 

Next, I sought to discover miRNAs involved in anoikis by investigated 

changes in miRNA expression during anoikis using small RNA sequencing 

technology. Through this approach I discovered that miR-203 is an anoikis 

effector miRNA that is also highly down-regulated in invasive breast cancer cells. 

In breast epithelial cells, miR-203 is induced upon the loss of ECM attachment 

and inhibition of miR-203 activity leads to a resistance to anoikis. I utilized a dual 

functional- and expression- based RNA sequencing approach and found that 

miR-203 directly targets a network of pro-survival genes to induce cell death 

upon detachment. Finally, I found that the loss of miR-203 in invasive breast 

cancer leads to the elevation of several anoikis-related pro-survival target genes 

to contribute to anoikis resistance. Taken together, my studies reveal novel 

pathways through which cell death is induced upon detachment from the ECM 

and provide insight into potential mechanisms of anoikis resistance in cancer.  
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CHAPTER I: INTRODUCTION 
 

Cancer Background and History 
 

The disease of cancer is, at its core, a genetic disease rising from 

acquired mutations and alterations in the genome over time that cause an 

uncontrolled growth of cells. Over the last few decades significant advances in 

cancer research have allowed us to have a better understanding of how cancer 

develops and the genetic events that are required to result in tumorigenesis. 

Although most of the knowledge we now have about cancer has been discovered 

in the last few decades, cancer itself is not a new disease. The first known 

description of cancer comes from ancient Egypt where they described breast 

tumors that were removed by cauterization and it was also stated back then that 

“there is no treatment” for these tumors. (History of Cancer, ACS, pg 1) 

 

Genetic alterations that contribute to cancer development can occur by a 

multitude of mechanisms. One method is by DNA mutation, which happens at a 

constant rate in human cells but occasionally a mutation occurs in a gene that 

contributes to tumorigenesis. Another method of genetic alteration is by 

epigenetic changes, which are modifications made to DNA that do not alter the 

DNA sequence but do affect gene expression. Finally, chromosome alterations 

such as deletions, translocations, or duplications can dramatically alter gene 
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expression and lead to tumor development (Hsu and Moorhead, 1956; Stich and 

Emson, 1959). These types of genomic instability give rise to the heterogeneous 

traits of cancers.  

 

 In the past decade, with the complete sequencing of the human genome 

and the significant advances in massive sequencing technology we have been 

able to identify traits of cancer including gene expression profiles, mutations 

across cancer genomes, chromosomal abnormalities and microRNA (miRNA) 

expression profiles (Consortium, 2001). These methods have identified multiple 

genetic and epigenetic changes within the cancer cells themselves and within the 

tumor microenvironment that lead to the development of cancer and subsequent 

metastasis of some cancers.  

 

In addition to the genetic components of cancer development, recent work 

has shown that the tumor microenvironment is also an important aspect of 

cancer biology (Hofmann et al., 2003; Kaur et al., 2016; Lizotte et al., 2016). The 

tumor microenvironment of a solid tumor includes multiple different types of cells 

and the extra cellular matrix (ECM), all of which evolve as the tumor progresses. 

Cancer stem cells, cancer cells, cancer associated fibroblasts, endothelial cells, 

pericytes, and immune inflammatory cells all make up the tumor 

microenvironment and each cell type contributes to the development of the tumor 

(the immune inflammatory cells can be either tumor-promoting or tumor-killing 
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cells).  All of these components play a significant role in tumorigenesis and add a 

layer of complexity to the study of cancer biology (Hanahan and Weinberg, 

2011). 

 

One widely accepted hypothesis of how genetic alterations lead to 

tumorigenesis is the “two hit” hypothesis which states that a cell must acquire two 

cancer driving mutations in order for that cell to begin uncontrolled proliferation 

and subsequent tumor growth (Tomlinson et al., 2001). Alfred Knudson 

suggested the Two Hit Hypothesis in 1971 after studying children with heritable 

and sporadic retinoblastoma. Knudson found that heritable retinoblastoma 

always presented in both eyes and occurred earlier than sporadic 

retinoblastoma. From these results Knudson hypothesized that multiple genetic 

alterations are required for the development of tumors and that the children with 

heritable retinoblastoma were already born with one “hit” and had a higher 

chance of acquiring a second “hit” than normal children (Knudson, 1971). This 

hypothesis was later confirmed by the finding that the Retinoblastoma (Rb) tumor 

suppressor gene is inactivated in children with heritable retinoblastoma and is 

commonly inactivated in a variety of other cancers (Horowitz et al., 1990). 

 

 It has been proposed that genomic instability leads to eight biological 

capabilities of cancer cells termed, “hallmarks” of cancer, that are acquired 

during the development of human tumors. Resisting cell death is counted as one 
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of these hallmarks of cancer (Hanahan and Weinberg, 2000, 2011). Cell death or 

apoptosis was first identified as a barrier to cancer development in hormone-

dependent tumors. When the hormone is present, the cancer cells thrive and 

proliferate uncontrolled but when the hormones were withdrawn from these 

tumors it resulted in massive apoptosis in the tumor cells (Kerr et al., 1972). 

Additionally, the overexpression of the activated MYC oncogene in primary 

human cells resulted in apoptosis, suggesting that apoptosis is a mechanism of 

ridding the body of cells with mutations that activate oncogenes (Evan et al., 

1992).  

 

Death from cancer is not caused by the primary tumor in most cases but is 

eventually caused by metastasis, a greek word meaning “displacement”, to 

distant organs, which then result in organ failure. In 1889 Stephen Paget 

proposed that the “seed and soil” theory of metastasis where certain cells from 

the primary tumor, the “seeds”, are able to form secondary tumors in specific 

organ microenvironments, the “soil” (Fidler, 2003). The general principle behind 

the “seed and soil” hypothesis remains true today and the multiple steps that lead 

the “seed” to the “soil” has been defined and is termed the “metastatic cascade” 

(Colombano and Reese, 1980).  

 

The metastatic cascade involves multiple steps that primary tumor cells 

must go through to establish a tumor in a secondary site. In the first step of the 



 

 
 

5 

metastatic cascade, cells detach from the primary tumor and invade and 

intravasate into the circulatory system where the tumor cells are able to travel 

through the bloodstream. Next, metastatic cells must extravasate and invade into 

secondary tumor sites, usually specific organs that depend on the primary 

cancer. Finally, the metastatic cells must interact with the microenvironment of 

the secondary organ site and initiate tumor growth (Chambers et al., 2002). As 

with the primary tumor, the tumor microenviroment plays a significant role in 

metastatic tumor development, when the primary tumor cells reach a secondary 

site a supportive microenvironment is developed to facilitate tumor growth 

(Hanahan and Weinberg, 2011). While the metastatic cascade has been 

delineated and there has been a great deal of research on metastatic cancers in 

recent times, there remains a vast amount of unknowns and further studies on 

the genetic alterations and changes in the tumor microenvironment that 

contribute to metastasis are needed.  

 

Anoikis 
 

Epithelial cells that lose attachment to the extracellular matrix (ECM), or 

attach to an inappropriate ECM, undergo a specialized form of apoptosis called 

anoikis meaning “the state of being without a home” (Frisch and Francis, 1994a; 

Frisch and Francis, 1994b). Anoikis was first identified in Madin-Darby canine 

kidney epithelial (MDCK) cells through the observation that disruption of the cell-

matrix interactions by forcing the cells to grow in suspension, resulted in 



 

 
 

6 

apoptosis. The result was confirmed by the addition of integrin blocking 

antibodies to the media of attached cells, which also led to apoptosis due to the 

loss of integrin signaling.  This initial study on anoikis also found that both the 

overexpression of BCL-2 and the transformation of cells with activated RAS or 

SRC conferred resistance to anoikis, suggesting early on that anoikis resistance 

might be an important aspect of cancer biology and might contribute to the 

cancer hallmark of avoiding apoptosis (Frisch and Francis, 1994b).  

 

Several signaling pathways have been shown to regulate anoikis. In 

particular, anoikis is suppressed by integrin signaling, which functions through 

focal adhesion kinase (FAK), a non-receptor tyrosine kinase and an activator of 

the RAF/MEK/ERK pathway (King et al., 1997). Upon interactions of integrins 

with ECM proteins, FAK is auto-phosphorylated and activated. The auto-

phosphorylation of FAK leads to activation and recruitment of SRC, which then 

further phosphorylates FAK leading to the fully active form of FAK. Activated FAK 

leads to downstream pro-survival signals through the PI3K pathway and the 

RAF/MEK/ERK pathway (Calalb et al., 1995; Lietha et al., 2007). Following 

detachment and loss of integrin signaling, FAK is inactivated and the 

downstream pro-survival signals are lost (Frisch et al., 1996).  Ectopic expression 

of a constitutively active form of FAK causes resistance to anoikis in two different 

epithelial cells lines, MDCK and HaCat cells (Frisch et al., 1996), similarly, FAK 
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blocking antibodies or a dominant-negative FAK mutant leads to increased 

sensitivity to anoikis (Bouchard et al., 2007).  

 

Upstream of FAK are integrins, which directly contact ECM proteins to 

initiate downstream pro-survival signaling. Integrins consist of two subunits, the α 

and β subunits, and each integrin is defined depending on the specific subunits. 

There are 4 integrins that are known to play a role in cell survival signaling, α5β1, 

αvβ3, α1β1 and α6β1, all of which result in different downstream signaling 

consequences (Brassard et al., 1999; Matter et al., 1998; O'Brien et al., 1996; 

Zhang et al., 1995). The interactions between integrins and the ECM act through 

a pro-survival signaling pathway within cells to promote survival, growth and 

proliferation. When the integrin-ECM interactions are lost or disrupted or when a 

cell interacts with an ECM that is not ideal for the cell-specific integrins, the pro-

survival signals are lost leading to cell death.  

 

Anoikis is also suppressed by integrin-mediated, ligand independent 

activation of the epidermal growth factor receptor (EGFR) signaling pathway, 

which, like FAK, also stimulates pro-survival RAF/MEK/ERK activity.  Integrin-

ECM interactions lead to the production of reactive oxygen species (ROS), which 

activate SRC. SRC activation leads to the ligand independent phosphorylation 

and activation of EGFR leading to the activation of the pro-survival MAPK and 

Akt pathways (Moro et al., 1998). Upon detachment of cells from the ECM, 



 

 
 

8 

EGFR expression is lost which leads to accumulation of the pro-apoptotic protein 

BIM and subsequent anoikis, however ectopic expression of EGFR causes 

resistance to anoikis in detached cells (Reginato et al., 2003).  

 

The FAK and EGFR cell signaling pathways have been found to regulate 

the levels of BIM (also called BCL2L11) and BMF, two pro-apoptotic members of 

the BCL2 family of apoptosis regulators that are known to contribute to anoikis 

(Reginato et al., 2003; Schmelzle et al., 2007). Specifically, activated EGFR and 

ERK suppress BIM activity through phosphorylation and ubiquitin-mediated 

degradation of BIM when cells are attached to the ECM (Collins et al., 2005). 

However, depletion of BIM or BMF diminishes but does not completely prevent 

anoikis (Reginato et al., 2003; Schmelzle et al., 2007), suggesting the existence 

of other pro-apoptotic factors and regulatory pathways that can promote anoikis. 

The basis of anoikis resistance remains to be determined and to date has not 

been linked to alterations in expression or activity of BIM or BMF. 

 

While the major signaling pathways involved in anoikis have been identified, 

to date there have been many groups that have identified downstream novel 

anoikis effector genes. The previously discussed BIM and BMF were identified by 

specifically looking at the expression of a subset of BCL2 pro-apoptotic proteins 

and microarray analysis, respectively (Reginato et al., 2003; Schmelzle et al., 
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2007), other studies have utilized multiple approaches to identify other anoikis 

effector genes.  

 

Previous unbiased screening approaches have identified several other novel 

anoikis effector genes. A genome wide retroviral cDNA library was the first 

screening approach used to discover anoikis effectors in rat intestinal epithelial 

(RIE-1) cells. The screen identified a neurotrophic tyrosine kinase receptor, TrkB, 

that activates downstream PI3K signaling to suppress anoikis and enhance 

metastasis (Douma et al., 2004). A more recent genome wide shRNA loss of 

function screen in RWPE-1 prostate cells found that alpha/beta hydrolase 

domain containing 4 (ABHD4) promotes anoikis through cleavage of PARP and 

Caspase-3 (Simpson et al., 2012).  

 

Additional studies have taken more directed approaches to identifying anoikis 

effector genes such as studying genes already known to play a role in apoptosis. 

One such study identified IGF-1 as an anoikis suppressor in mouse embryonic 

fibroblast cells (MEF) that acts through activation of Ras (Valentinis et al., 1999). 

Another directed study found that angiopoietin-like 4 (ANGPTL4) promotes cell 

survival upon detachment by elevating levels of reactive oxygen species (ROS), 

which then activate the pro-survial ERK and PI3K pathways (Zhu et al., 2011).  
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Anoikis is studied in cell culture by detaching cells from adherent 

conditions and plating the cells on poly-hydroxyethylmethacrylate (polyHEMA) 

coated or ultra low attachment plates to force the cells to grow in suspension. 

The polyHEMA coating prevents cell attachment by preventing the deposition of 

ECM because of its non-ionic nature, thereby forcing cells to grow in suspension 

(Frisch and Francis, 1994b). While there are now standard experiments to model 

anoikis in vitro, in vivo anoikis experiments are less straightforward. Cells require 

specific ECM attachments from their native environment, therefore when cells 

enter a foreign environment anoikis should occur.  Sensitivity to anoikis in vivo 

was observed in one study that found that tumor cells show enhanced metastasis 

when the primary tumor is orthotopically grown as compared to ectopic tumors, 

which proved the importance of tumor cell and ECM interactions (Glinskii et al., 

2003).  

 

Anoikis Resistance and Metastasis 
 

Throughout the metastatic cascade, cells need the ability to survive 

without attachment to neighboring cells and the original ECM and thus need to 

acquire resistance to anoikis (Frisch and Ruoslahti, 1997). Metastatic cells need 

to bypass anoikis both when the tumor cell detaches from the primary tumor, and 

therefore from the ECM, and enters the bloodstream and then when the tumor 

cell arrives at a secondary site where there is a different ECM composition and 

therefore different signaling from the primary tumor microenvironment.  
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Anoikis plays an important role in preventing oncogenesis, particularly 

metastasis, by eliminating cells that lack proper ECM cues (Simpson et al., 2008; 

Zhu et al., 2001). Previous studies have shown that when malignant cells lose 

contact with both neighboring tumor cells and their ECM, the cells will normally 

undergo apoptosis (Glinskii et al., 2003). However, metastatic cells must bypass 

this cell death in order to detach from the primary tumor and enter the circulatory 

system and finally extravasate into a secondary site and form a tumor in that 

secondary site. Since the secondary tumor site most often contains a different 

ECM than the primary site, the metastatic cells also need to bypass anoikis after 

the last step of metastasis (Berezovskaya et al., 2005; Howard et al., 2008).  

 

In addition to the role anoikis plays in preventing metastasis, there is also 

evidence to suggest that anoikis functions to prevent the invasion of tumor cells 

into the luminal space, which is a characteristic of epithelial tumors (Debnath et 

al., 2002). In general, epithelial-derived cancers, such as breast cancer, develop 

resistance to anoikis which results in the filling of the luminal space or ductal 

carcinoma in situ (DCIS), an early stage in breast cancer tumorigenesis 

(Schwartz, 1997). 

 

While multiple anoikis pathways and effectors have been discovered and 

studied since anoikis was first identified, there are likely many other factors 
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involved in anoikis. Anoikis is proving to be a complex biological process that has 

a link to tumorigenesis and metastasis that has yet to be fully defined. The 

mechanism of resistance to anoikis in cancer remains largely unknown. It is likely 

that critical anoikis effectors are genetically altered in cancer so it is important to 

relate anoikis research back to human cancer in order to understand the 

mechanism by which cancer cells, specifically metastatic cells, bypass anoikis. 

This knowledge would lead to a greater understanding of metastasis and 

potentially new avenues for therapeutics.  

 

Epigenetics and Cancer 

Epigenetics, DNA modifications that do not change the DNA sequence, affect 

gene expression through chromatin associated proteins and post-translational 

modifications of histones. Specific mechanisms of epigenetic regulation include 

DNA methylation, post-translational modifications of histones (methylation, 

acetylation, sumoylation, ubiquitination), and nucleosome remodeling. The 

mysregulation of epigenetic mechanisms has been shown to contribute to human 

disease and many defects in epigenetic mechanisms have been linked to cancer 

development (Bracken et al., 2003; Lin and Nelson, 2003; Sato et al., 2003).   

Identification of epigenetic alterations in cancer has led to the development of 

various therapies that target epigenetic mechanisms that promote cancer. Two 

drugs that target DNA methyl transferases (5-azacytidine and decitabine) were 

some of the first epigenetic-based drugs to be approved to treat human disease 
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(SAIKI et al., 1978; van Groeningen et al., 1986). Rapid advances in the field of 

epigenetics and cancer have led to the development of several potent inhibitors 

of histone methyltransferases (Kubicek et al., 2007), histone demethylases (Feng 

et al., 2016), and chromodomain proteins (Ren et al., 2015). Because the 

epigenetic landscape and mechanisms are complex we likely do not have a full 

understanding of the involvement of all epigenetic regulating proteins in cancer 

development and further studies and developments are needed to create a 

clearer picture.  

 

Histone Methylation 
 

One major aspect of epigenetic control of gene expression and source of 

aberrant gene expression in cancer is changes in chromatin modifications. In 

general, histone modifications change the structure and function of chromatin, 

subsequently leading to changes in gene expression. Transcription can either be 

activated or repressed by histone modifications based on the modifications that 

are present on a specific gene (Liu et al., 2005; Pokholok et al., 2005). Lysine 

acetylation on histones is associated with transcriptional activation whereas 

lysine methylation can be associated with either transcriptional activation or 

transcriptional repression depending on which lysine residue is methylated. The 

differing effects on transcription by methylated lysines occur from the formation of 

differing binding sites for chromo-domain proteins that have different effector 

functions (Vakoc et al., 2005). Histone modifications can be altered in cancer 
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through the differing expression of histone modifying enzymes. This can lead to 

aberrant changes in gene expression that can promote tumor growth and 

metastasis (Van Rechem et al., 2015; Xiang et al., 2007; Yamane et al., 2007).   

 

Methylation is a post-translational modification of lysine and arginine 

residues on histones that affects gene expression. It has been demonstrated that 

histone lysine methylation can occur in the mono-, di-, or tri-methyl state and 

arginine methylation can occur in the mono- or di-methylated state. Histone 

methylation affects gene expression through the recruitment of “reader” proteins, 

which then recruit protein complexes that can either repress or enhance 

transcription (reviewed in (Musselman et al., 2012)). Histone methylation was 

found to be a reversible modification with the discovery of the first histone 

demethylase, KDM1A/LSD1 (Shi et al., 2004). Since the discovery of LSD1, a 

family of proteins that contain homologous JmjC domains have been identified 

and each member of the family has been shown to demethylate specific histone 

lysine residues, some specifically demethylate mono- di- or tri-methylated 

lysines, while one member of the JmjC family has been shown to demethylate 

histone arginine residues (Chang et al., 2007).  

 

KDM3A is a member of the JmjC domain-containing protein family of 

histone demethylases. Proteins in this family have a catalytic JmjC domain that 

demethylates lysine and arginine residues on histones in an oxidative reaction 
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that requires Fe(II) and alpha-ketoglutarate as cofactors (Tsukada et al., 2006). 

KDM3A (also called JMJD1A or JHDM2A) is a histone demethylase that has 

been shown to specifically demethylate mono- and di-methyl histone H3 lysine 9 

(H3K9me1 and H3K9me2) but not tri-methyl Histone H3 lysine 9 (H3K9me3) 

(Yamane et al., 2006). Both H3K9me1 and H3K9me2 have been identified as 

transcriptionally repressive marks, although H3K9me2 has also been discovered 

to be present on several actively transcribed genes (Lienert et al., 2011; 

Snowden et al., 2002). As suggested by its function, KDM3A has been implicated 

as an activator of transcription and acts as a coactivator for androgen receptor 

(AR) (Yamane et al., 2006) and hypoxia-inducible factor (HIF) (Beyer et al., 

2008). In addition to the JmjC domain, KDM3A also contains a Zinc Finger 

domain that likely contributes to DNA binding and transcriptional activation of 

specific target genes (Yamane et al., 2006).  

 

While the exact mechanism by which KDM3A controls gene expression is 

known, the role KDM3A plays in cancer is not well understood and has so far 

been controversial. There have been differing studies suggesting that KDM3A is 

both anti-oncogenic (Du et al., 2011) and pro-oncogenic (Krieg et al., 2010), 

suggesting that the role of KDM3A is likely dependent on other factors and could 

differ among tissue types. Further research is needed to determine the factors 

that influence the tissue or cancer type specific role that KDM3A plays in cancer 

progression.  
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microRNA 
 

microRNAs (miRNAs) are short RNA molecules (~22 nucleotides) that 

regulate gene expression through translational repression and mRNA decay 

(Djuranovic et al., 2012), recent evidence even suggests that mRNA degradation 

by miRNAs is the predominant reason for reduced protein levels in mammals 

(Guo et al., 2010). The first miRNA (lin-4) was discovered in C. elegans in 1993 

and in the more than two decades since the discovery of miRNAs, over a 

thousand miRNAs have been identified in the human genome (Griffiths-Jones et 

al., 2008; Lee et al., 1993 

). The discovery that miR-15 and miR-16 are frequently downregulated in 

chronic lymphocytic leukemia (CLL) marked the first implication of miRNA 

involvement in cancer (Calin et al., 2002). In the time since the CLL study, there 

have been thousands of other published studies that aim to define the 

relationship between miRNAs and cancer.  

 

The genes encoding miRNAs are transcribed by RNA polymerase II into 

long transcripts, which are then processed by the RNAse III protein, DROSHA, 

into a ~60 nucleotide precursor miRNA hairpin (pre-miRNA) (Zeng et al., 2005). 

Exportin5 then transports the pre-miRNA into the nucleus where it is further 

processed by another RNAse III protein, DICER (Zhang et al., 2002), which 

generates a mature ~22 nucleotide mature miRNA. The mature miRNA is then 

loaded into an Argonaute (Ago) protein in the RNA-induced silencing complex 
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(RISC), which is then directed to specific target mRNAs. While mature miRNAs 

can interact with Ago1-4, Ago2 is the Argonaute responsible for targeted mRNA 

degradation by miRNAs (Meister et al., 2004). 

 

miRNAs control the expression of target genes through specificity in the 

seed sequence region (7 nucleotides) of the miRNA that binds to the 

complementary sequence in the 3’ untranslated region (3’UTR) of transcripts to 

inhibit translation of the mRNA and inhibit transcription by causing the 

deadenylation and decay of the target mRNA (Guo et al., 2010).  Classicaly, it 

was thought that the major mechanism of miRNA repression was through 

inhibition of translation, however recent data suggests that the main mechanism 

of mammalian miRNA repression is by mRNA degradation (Guo et al., 2010). 

Several databases (including Targetscan and miRDB) exist to predict the target 

mRNAs of miRNAs based on matching the seed sequence of the miRNA to a 

complementary sequence in the 3’UTR of known genes (Agarwal et al., 2015).  

 

The expression of miRNAs themselves is regulated by two different 

methods— transcriptional changes that can affect the levels of pri-miRNA 

transcripts or post-transcriptional changes in processing of the pre-miRNA or the 

mature miRNA. One method by which the transcription of pri-miRNAs is 

controlled is through transcription factors. For example, E2F7 (a member of the 

E2F family of transcription factors) directly binds to the promoters of miR-25, 
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miR-92a, and miR-7 to repress the transcription of the corresponding pri-miRNAs 

(Mitxelena et al., 2016). Another mechanism of transcriptional control of miRNAs 

is by DNA methylation. Previous studies have identified miR-31 (Augoff et al., 

2012), the miR-200 cluster (Wee et al., 2012) , and miR-33b (Yin et al., 2016) as 

just a few of the miRNAs that are aberrantly expressed in cancer due to DNA 

hypermethylation.  

 

The processing of all miRNAs requires the same large protein complex 

machinery (i.e. DROSHA and DICER), however recent studies have started to 

uncover regulatory factors that influence the processing of specific miRNAs or 

specific groups of miRNAS.  On a global level, mutations in both DROSHA and 

DICER have been discovered to effect miRNA processing in cancer (Heravi-

Moussavi et al., 2012; Rakheja et al., 2014). Recent discoveries provide 

examples of how specific miRNA expression can be regulated by DICER 

regulatory factors that influence the processing of that specific miRNA. One 

example of miRNA-specific altered processing occurs when RNA editing of the 

pri-miR-151 completely blocks DICER cleavage of pre-miR-151 (Kawahara et al., 

2007). The processing of specific miRNAs can also be regulated uridylation, 

mediated by Lin28 and TUT4, of the pre-miR, which also blocks DICER cleavage 

of the pre-miR (Heo et al., 2009). The study of factors affecting miRNA 

processing is a relatively new field of research and knowledge on miRNA 

processing will likely grow over the coming years.  
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 Previous studies have established that miRNAs are widely dysregulated in 

cancers (Zhang et al., 2006), however few miRNAs have been implicated in 

promoting or suppressing anoikis. Because miRNAs have not been widely 

studied in the context of anoikis, the role of miRNAs in anoikis remains to be 

determined. Previous studies have suggested that the miR-200 family both 

enhances anoikis sensitivity (Howe et al., 2012) and promotes anoikis resistance 

and metastasis (Yu et al., 2013). Given the critical role that miRNAs play in gene 

expression, it is likely that miRNAs play a yet to be determined role in anoikis, 

revealing that further studies should be done to fully delineate the role of miRNAs 

during anoikis.  

 

While many miRNAs can be grouped into families or clusters, there is a 

subset that do not cluster with any other miRNAs, miR-203 falls into this 

category. miR-203 was identified in multiple genome wide miRNA profiling 

studies but a group that studied the role of miR-203 in primary keratinocyte 

differentiation was the first to identify a function of miR-203 when they showed 

that miR-203 suppressed the “stemness” of skin stem cells (Lena et al., 2008). 

Since the first miR-203-specific study in 2008, research has mostly been focused 

on the role miR-203 plays in cancer.  
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Several groups have implicated miR-203 as a tumor suppressor and anti-

invasion miRNA specifically. Since 2008 there have been similar studies 

performed in multiple different tissues that suggest miR-203 is universally an 

anti-proliferative miRNA (Ding et al., 2013; Furuta et al., 2010; Noguchi et al., 

2012; Saini et al., 2011; Viticchie et al., 2011), while the exact mechanism of 

proliferation and invasion suppression likely differs between cancer types. 

Further investigation showed that miR-203 is epigenetically silenced by promoter 

methylation in some cancers including ovarian carcinoma (Iorio et al., 2007) and 

rhabdomyosarcoma (Diao et al., 2014). Expression analysis of several miRNAs 

in breast cancer cells lines revealed that miR-203 is highly downregulated in 

invasive breast cancer cell lines compared to both normal breast epithelial 

(MCF10A cells) and less invasive breast cancer cell lines (Luo et al., 2013) and 

is significantly downregulated in human triple negative breast cancer samples 

(Yu et al., 2012). Furthermore, ectopic expression of miR-203 in cancer cell lines 

inhibits proliferation, migration, and invasion (Noguchi et al., 2012). To date, miR-

203 has not been implicated in anoikis and the exact role miR-203 plays in 

inhibiting breast cancer invasion and metastasis has yet to be determined.  

 

As stated above, the main mechanism by which miRNAs control cellular 

processes is by targeting one or more specific mRNAs resulting in decreased 

protein output of those targets. There are several hundred predicted miR-203 

target genes based on the seed sequence of miR-203 and the sequences of the 
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3’UTR of target mRNAs. However, only a few of these predicted targets have 

been confirmed as bona fide miR-203 targets including p63 (Yi et al., 2008), 

ABL1 (Bueno et al., 2008), BMI1 (Chen et al., 2015), BIRC5, LASP1 (Wang et 

al., 2012), Survivin (Bian et al., 2012), E2F3 (Noguchi et al., 2012), SNAI2 

(Zhang et al., 2011) and RUNX2 (Taipaleenmaki et al., 2015). Interestingly, most 

of the bona fide target genes have been identified across different tissues and 

the targets do not seem to overlap between tissue types, with the exception of 

p63 which has been confirmed in multiple cell types (Lena et al., 2008; Yi et al., 

2008; Yuan et al., 2011) This suggests that tissue type could play an important 

role in determining the specific miR-203 target genes.  

 

RNAi screens 
 

RNA interference (RNAi) is a cellular process that involves degradation of 

mRNAs through sequence specific binding of small interfering RNAs (siRNAs) 

that was first discovered in Caenorhabditis elegans (C. elegans) (Fire et al., 

1998). For more than a decade, scientists have utilized RNAi as a research tool 

to deplete specific mRNA transcripts by inserting sequence specific RNAi 

reagents into cell culture or whole organisms in order to delineate the function of 

specific genes. In addition to targeted gene depletion, libraries consisting of small 

hairpin RNAs (shRNAs) designed to target the whole genome have been used to 

perform genome wide screens with phenotypic readouts. shRNA libraries are 

designed using microRNA (miRNA) and small interfering RNA (siRNA) 
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technology, where a hairpin similar to the structure of pre-miRNA transcripts are 

ligated into lentiviral or retroviral plasmids. Once the plasmid is inside the cell, the 

hairpin is loaded into the endogenous small RNA processing machinery, which 

results in small RNAs that inhibit the transcription of its target gene in a siRNA-

like mechanism. The genome wide shRNA libraries contain multiple different 

shRNAs to target each gene in the genome and are normally used in a pool 

format. This has proven to be a successful unbiased approach that has allowed 

scientists to identify novel genes that are involved in biological processes from 

immunology (Ng et al., 2007) to cancer biology (Gazin et al., 2007). 

 

shRNA screens (both whole genome and directed smaller scale screens) 

have proven to be useful research tools in cancer research. The most common 

form of RNAi screening used to study cancer biology are cell culture based loss 

of function screens with a phenotypic readout (e.g. (Wajapeyee et al., 2008) and 

(Kessler et al., 2012)). More recently, in vivo shRNA screens have been 

successful in identifying novel oncogenes and tumor suppressors in mouse 

models of cancer because of the long-term stable suppression of mRNA 

transcripts by shRNAs (Gargiulo et al., 2014). The research in the Green lab in 

recent years has been focused on utilizing shRNA genome wide screens to 

identify novel factors in multiple aspects of transcription and cancer biology. 

Specifically, our lab has used RNAi screens to identify new genes involved in 

oncogene induced senescence (Wajapeyee et al., 2008), genome integrity (Fang 
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et al., 2015), chemotherapy resistance (Ma et al., 2014), lung cancer progression 

(Lin et al., 2014), aberrant oncogenic methylation (Fang et al., 2014), and glioma 

progression (Sheng et al., 2010). We use a genome wide small hairpin RNA 

(shRNA) library that contains ~62,400 shRNAs directed against ~28,000 genes 

(Silva et al., 2003; Silva et al., 2005).  

 

 

Small RNA Profiling 
 
 After the discovery of miRNA and subsequent identification of multiple 

miRNAs that are dysregulated in cancer, the field was seeking to study the 

expression of multiple miRNAs in cancers but in the early 2000’s northern 

blotting was the only technique available to determine the expression of a 

miRNA. Northern blots had many limitations for detecting multiple miRNAs in a 

study, including the high amount of RNA needed for one northern blot and the 

need to use radioactive labels to detect the miRNA. Thus, a miRNA microarray 

was developed to profile the expression of all known miRNAs in human and 

mouse tissues (Liu et al., 2004).  Not long after the development of the miRNA 

microarray multiple groups started using high throughput sequencing as a direct 

method of profiling small RNA expression, this method has allowed for both 

determining the expression of known miRNAs in the genome and identifying 

novel miRNAs (Lu et al., 2006; Ruby et al., 2006). 

 



 

 
 

24 

 Small RNA profiling has become a standard, unbiased method for 

identifying miRNAs that are involved in cellular processes and diseases. The 

advantages of using the small RNA sequencing method of profiling miRNAs 

include the high sequence accuracy, which has the potential of identifying novel 

miRNAs. While there have been a plethora of miRNA profiling studies done in 

human cancers there has yet to be any study of miRNA changes during the 

process of anoikis—there has even been very few directed miRNA studies in 

anoikis research.  

 

Focus of this dissertation 
 

While there are several known anoikis effector genes reviewed above, in 

the first part of my thesis research, I chose to use a genome wide RNAi screen to 

identify novel anoikis effector genes. With this approach, I sought to identify 

novel anoikis pathways by performing the unbiased genome wide shRNA screen 

in breast epithelial cells to identify novel anoikis effector genes. The screen 

identified multiple novel factors as anoikis effector genes, including KDM3A, 

ZCCHC24, ZNF345, METAP1D, and PIH1D3. I chose to focus my investigation 

on the histone demethylase, KDM3A, because of the intriguing possibility that 

epigenetics and transcription play a major role in the control of anoikis. In this 

study, I identify KDM3A as an anoikis effector that is induced upon detachment of 

cells from the ECM. I further delineated the mechanism by which KDM3A 

functions to promote anoikis in human breast epithelial cells and showed that the 
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activation of KDM3A upon detachment from the ECM causes transcriptional 

activation of two pro-apoptotic BH3-only proteins, BNIP3 and BNIP3L resulting in 

anoikis. Also, knockdown of KDM3A causes a non-metastatic breast cancer cell 

line to become metastatic, implicating the loss of KDM3A in anoikis resistance 

and enhanced metastasis.  

 

In the second part of my thesis research, I sought to identify changes in 

miRNA expression during anoikis to discover miRNAs that could be implicated in 

anoikis resistance during cancer development. To date there have been a wide 

array of whole genome miRNA studies completed in cancers (Iorio et al., 2007; 

Mi et al., 2007; Wölfl et al., 2011) including breast cancers (Fassan et al., 2009; 

Luo et al., 2013) and even profiling miRNAs at different stages of breast cancer 

(Dadiani et al., 2016). However, there have not yet been any anoikis-related 

genome wide miRNA studies completed, only directed miRNA investigations into 

how a few single miRNAs play a role in anoikis have been done (as discussed 

above), leaving the possibility that there are other miRNAs involved in anoikis 

that have yet to be identified. I completed genome wide miRNA profiling during 

the early stages of anoikis by using small RNA sequencing. Through these 

miRNA profiling experiments, I found a group of miRNAs that are upregulated 

during anoikis and a separate group that are downregulated during anoikis. From 

these two group of miRNAs, I chose to focus on the most highly upregulated 

miRNA, miR-203, because miR-203 had already been implicated as a tumor-
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supressive miRNA (as discussed above). I found that miR-203 is significantly 

upregulated during anoikis and promotes cell death. I also identified several pro-

survival miR-203 target genes that are downregulated by miR-203 upon 

detachment of the cells from the ECM and therefore lead to cell death.  My 

results show that miR-203 is a novel anoikis effector miRNA and in addition to 

previous studies, my results suggest that miR-203 is a tumor suppressor miRNA 

in triple negative and invasive breast cancers.  

 

In conclusion, I have identified two novel factors that are critical anoikis 

effectors, KDM3A and miR-203. My research furthers the general understanding 

of the process of anoikis and provides insight into potential mechanisms of 

anoikis resistance in metastatic tumor cells.  
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CHAPTER II: MATERIALS AND METHODS 
 
Cell lines and culture 
 

T47D, MDA-MB-231, BT549, Hs578t, and CLS1 cells were obtained from ATCC 

(Manassas, VA) and grown as recommended by the supplier. MCF7 cells 

(National Cancer Institute, Bethesda, MD) were maintained in DMEM (GE 

Healthcare Life Sciences, Marlborough, MA) supplemented with 1X nonessential 

amino acids (NEAA; Thermo Scientific, Waltham, MA) and 10% fetal bovine 

serum (FBS; Atlanta Biologics, Norcross, GA). MCF10A cells (ATCC) were 

maintained in DMEM/F12 (GE Healthcare Life Sciences) supplemented with 5% 

donor horse serum (Thermo Scientific), 20 ng/ml epidermal growth factor 

(Peprotech, Rocky Hill, NJ), 10 µg/ml insulin (Life Technologies, Grand Island, 

NY), 1 ng/ml cholera toxin (Sigma-Aldrich, St. Louis, MO), 100 µg/ml 

hydrocortisone (Sigma-Aldrich), 50 U/ml penicillin (Thermo Scientific), and 50 

µg/ml streptomycin (Invitrogen, Grand Island, NY). SUM149 cells were obtained 

from Dr. Donald Hnatowich (University of Massachusetts Medical School, 

Worcester, MA) and grown in RPMI (Invitrogen) supplemented with 10% FBS, 

0.01% insulin, 50 U/ml penicillin, and 50 µg/ml streptomycin. 67NR and 4T07 

cells were obtained from Dr. Fred Miller (Wayne State University School of 

Medicine, Detroit, MI) and were grown in high glucose DMEM (GE Healthcare 

Life Sciences) supplemented with 10% FBS, 50 U/ml penicillin, and 50 µg/ml 

streptomycin.  
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Ectopic expression 
 
KDM3A and KDM3A(H1120G/D1122N) were PCR amplified from pCMV-

JMJD1A and pCMV-JMJD1A(H1120G/D1122N), respectively, obtained from Dr. 

Peter Staller (Biotech Research and Innovation Centre, University of 

Copenhagen, Denmark), using primers (forward, 5’-

CTCGAGCCGTTAAGGTTTGCCAAAAC-3’ and reverse, 5’-

ATCGTTAACAGGGAGATT AAGGTTTGCCA-3’) engineered with XhoI and HpaI 

restriction sites and then cloned into pMSCVpuro (ClonTech Laboratories, Inc., 

Mountain View, CA). BNIP3L was PCR amplified from Bnip3L pcDNA3.1 

(plasmid #17467, Addgene, Cambridge, MA) using primers (forward, 5’-

AATCTCGAGCATGTCGTCCCACCTAGT-3’ and reverse 5’-

ATCGAATTCTTAATAGGT GCTGGCAGAGG-3’) engineered with XhoI and 

EcoRI restriction sites and cloned into pMSCVhygro (ClonTech Laboratories, 

Inc.). BNIP3 was PCR amplified from MGC Human BNIP3 cDNA (Dharmacon, 

Marlborough, MA) using primers (forward, 5’-AATCTCGAGCAT 

GTCGCAGAACGGAGCG-3’ and reverse 5’- 

ATCGAATTCACTAAATTAGGAACGCAGC AT-3’) engineered with XhoI and 

EcoRI restriction sites and cloned into pMSCVpuro.  

 

MCF10A cells stably expressing pMSCVpuro-JMJD1A, pMSCVpuro-JMJD1A-

H1120G/D1122N, pMSCVpuro-BNIP3, pMSCVhygro-BNIP3L, pMSCVpuro-

empty, pMSCVhygro-empty, pBABE-MEK2DD (obtained from Dr. Sylvain 
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Meloche, Universite de Montreal), pBABE-EGFR (Addgene), or pBABE-empty 

(Addgene) were generated by retroviral transduction as described previously 

(Santra et al., 2009). Twelve days after puromycin or hygromycin selection, cells 

were stained with 0.5% crystal violet.  

 

RNA interference  
 

The human shRNAmir pSM2 library (Open Biosystems/Thermo Scientific, 

Pittsburgh, PA) was obtained through the University of Massachusetts Medical 

School RNAi Core Facility (Worcester, MA). Retroviral pools were generated and 

used to transduce MCF10A cells as described previously (Gazin et al., 2007). 

Following puromycin selection, transduced cells were divided into two 

populations: one was plated on poly-HEMA-coated tissue culture plates (plates 

were coated with poly-HEMA (20 mg/ml) (Sigma-Aldrich), dried at room 

temperature overnight, and washed with phosphate buffered saline (PBS) before 

use) and grown for 10 days, and the other was grown for 10 days under normal 

tissue culture conditions. Cells that survived 10 days in suspension (a time point 

at which >95% of cells transduced with the control NS shRNA were killed) were 

seeded under normal tissue culture conditions to expand the population. shRNAs 

present in the surviving suspension population and the attached population were 

identified by deep sequencing at the University of Massachusetts Medical School 

Deep Sequencing Core Facility (Worcester, MA). The frequency of individual 

shRNAs in each sample was determined as described previously (Xie et al., 
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2012). The raw sequencing data have been uploaded to NCBI Gene Expression 

Omnibus with accession number GSE80144, and are accessible to reviewers 

through the following link: 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=inevskwqzxaprmb&acc=G

SE80144. 

 

For stable shRNA knockdowns, 1x105 cells were seeded in a six-well plate to 

50% confluency and subsequently transduced with 200 µl lentiviral particles 

expressing shRNAs (obtained from Open Biosystems/Thermo Scientific through 

the UMMS RNAi Core Facility, listed in Supplementary file 1) in a total volume of 

1 ml of appropriate media supplemented with 6 µg/ml polybrene (Sigma-Aldrich). 

Media was replaced after overnight incubation to remove the polybrene, and viral 

particles and cells were subjected to puromycin selection (2 µg/ml) for 3 days. 

 

qRT-PCR 
 

Total RNA was isolated and reverse transcription was performed as described 

(Gazin et al., 2007), followed by qRT-PCR using Power SYBR Green PCR 

Master Mix (Applied Biosystems, Grand Island, NY). RPL41 or GAPDH were 

used as internal reference genes for normalization. See Table 2.1 and 2.3 for 

primer sequences. Each sample was analyzed three independent times and the 

results from one representative experiment, with technical triplicates or 

quadruplicates, are shown. 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=inevskwqzxaprmb&acc=GSE80144
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=inevskwqzxaprmb&acc=GSE80144
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Anoikis assays 
 

Cells were placed in suspension in normal growth media in the presence of 0.5% 

methyl cellulose (Sigma Aldrich) (to avoid clumping of cells) on poly-HEMA-

coated tissue culture plates. All anoikis assays were done at a cell density of 

3x105 cells/ml. Control cells were cultured under normal cell culture conditions. 

Cell death was measured by staining the cells with FITC-conjugated Annexin-V 

(ApoAlert, ClonTech) according to the manufacturer’s instructions followed by 

analysis by flow cytometry (Flow Cytometry Core Facility, University of 

Massachusetts Medical School) at the indicated times. To restore integrin 

signaling in suspension, media was supplemented with 5% growth-factor-

reduced Matrigel (BD Biosciences, San Diego, CA). Each sample was analyzed 

in biological triplicate 

 

Immunoblot analysis 
 

Cell extracts were prepared by lysis in Laemmli buffer in the presence of 

protease inhibitor cocktail (Roche, Indianapolis, IN). The following commercial 

antibodies were used: beta-ACTIN (Sigma-Aldrich); BNIP3, BNIP3L, KDM3A, 

H3K9me2 (all from Abcam, Cambridge, MA); cleaved Caspase 3, BIM, phospho-

ERK1/2, total ERK1/2, phospho-EGFR, total EGFR, phospho-FAK (all from Cell 

Signaling Technology, Danvers, MA); total FAK (Millipore, Billerica, MA); GFP 
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(One World Lab, San Diego, CA); and α-tubulin (TUBA; Sigma-Aldrich). 

 

Chemical Inhibitor Treatment 
 

Cells were treated with dimethyl sulfoxide (DMSO), 1, 5 or 10 µM U0126 (Cell 

Signaling Technology), gefitinib (Santa Cruz Biotechnology, Inc., Dallas, TX), or 

FAK inhibitor 14 (CAS 4506-66-5, Santa Cruz Biotechnology, Inc.) for 48 hours 

prior to preparation of cell extracts or total RNA isolation, as described above.  

 

ChIP assays 
 

ChIP assays were performed as previously described (Gazin et al., 2007) using 

antibodies against KDM3A and H3K9me2 (both from Abcam) and H3K9me1 

(Epigentek). ChIP products were analyzed by qPCR (see Table 2.2 for promoter-

specific primer sequences). Samples were quantified as percentage of input, and 

then normalized to an irrelevant region in the genome (~3.2 kb upstream from the 

transcription start site of GCLC). Fold enrichment was calculated by setting the 

IgG control IP sample to a value of 1. Each ChIP experiment was performed 

three independent times and the results from one representative experiment, with 

technical duplicates, are shown.  
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Analysis of KDM3A expression in human breast cancer samples 
 

This study was approved by the institutional review boards at the University of 

Massachusetts Medical School (UMMS) and the Mayo Clinic. Total RNA from 24 

breast cancer patient samples were obtained from Fergus Couch (Mayo Clinic, 

Rochester, MN) and total RNA from five normal breast samples were obtained 

from the University of Massachusetts Medical School Tissue and Tumor Bank 

Facility. KDM3A expression was measured by qRT-PCR in technical triplicates of 

each patient sample. Statistical analysis (unequal variance t-test) was performed 

using R, a system for statistical computation and graphics (Ihaka and Gentleman, 

1996). The Oncomine Cancer Profiling Database (Compendia Bioscience, Ann 

Arbor, MI) was queried using the cancer type Breast Cancer and a threshold p-

value of 0.05 to access Finak (Finak et al., 2008), Sorlie (Sorlie et al., 2001), 

Zhao (Zhao et al., 2004) and TCGA (TCGA, 2011) datasets. Histograms 

depicting KDM3A gene expression in each sample, and the p value for the 

comparison of KDM3A expression between the groups, were obtained directly 

through the Oncomine software. 

 

Animal experiments 
 

All animal protocols were approved by the Institution Animal Care and Use 

Committee (IACUC). Animal sample sizes were selected based on precedent 

established from previous publications.  
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In vivo anoikis assays 
 
CLS1 cells were stably transduced with either a NS or Kdm3a shRNA and 

selected with 2 µg/ml puromycin for 5 days. Stably transduced CLS1 cells 

(2x105) were injected into the tail vein of 4-6 week old female BALB/c mice 

(Taconic Biosciences) (n=4 mice per shRNA). Two weeks post injection the lungs 

were harvested, dissociated into single cell suspension, and plated onto tissue 

culture plates. Transduced CLS1 cells were selected for by treating the 

dissociated lung cells with 2 µg/ml puromycin. Surviving colonies were stained 

with crystal violet and quantified by counting. All experiments were performed in 

accordance with the Institutional Animal Care and Use Committee (IACUC) 

guidelines. 

 

Pulmonary tumor assay 
 
67NR cells were transduced with a NS or Kdm3a shRNA and selected with 2 

µg/ml puromycin for 5 days. Stably transduced 67NR cells (2x105) were injected 

into the tail vein of 6-8 week old female BALB/c mice (n=3 mice per shRNA). Five 

weeks post injection, mice were given an intraperitoneal injection of D-Luciferin 

(100 mg/kg) (Gold Biotechnology, St. Louis, MO) and imaged on the Xenogen 

IVIS-100 (Caliper Life Sciences). Images were taken with Living Image software. 

All experiments were performed in accordance with the Institutional Animal Care 

and Use Committee (IACUC) guidelines. 
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Spontaneous metastasis assays 
 
Female BALB/c mice (4-6 weeks) were purchased from Charles River 

Laboratories (Shrewsbury, MA). The mice were housed in facilities managed by 

the McGill University Animal Resources Centre (Montreal, Canada), and all 

animal experiments were conducted under a McGill University–approved Animal 

Use Protocol in accordance with guidelines established by the Canadian Council 

on Animal Care.  

 

Spontaneous metastasis studies were carried out as previously described 

(Tabaries et al., 2011). Briefly, 4T07 cells expressing a NS or Kdm3a shRNA 

were harvested from subconfluent plates, washed once with PBS, and 

resuspended (5x103 cells) in 50 µl of a 50:50 solution of Matrigel (BD 

Biosciences) and PBS. This cell suspension was injected into the right abdominal 

mammary fat pad of BALB/c mice (n=10 mice per shRNA) and measurements 

were taken beginning on day 7 post-injection. Animals that did not develop a 

primary tumor were excluded from the study. Tumor volumes were calculated 

using the following formula: πLW
2/6, where L is the length and W is the width of the 

tumor. Tumors were surgically removed, using a cautery unit, once they reached 

a volume around 500 mm3, approximately 3 weeks post injection. Lungs were 

collected 8 weeks post-injection. Tumor burden in the lungs was quantified from 



 

 
 

36 

four H&E stained step sections (200 µm/step). The number of lesions per section 

were counted using Imagescope software (Aperio, Vista, CA). 

 

Small RNA Profiling 
 

Total RNA was isolated with the mirVana kit (Thermo Fisher Scientific), then 18–

24-nt-long RNA was gel purified.  Size-selected RNA was derived from at least 

50 μg total RNA for attached and detached (24 hours) MCF10A cells. Small RNA 

Library preparation was as described previously (Ghildiyal et al., 2008). Deep 

sequencing was performed at the Umass Medical School Deep Sequencing Core 

Facility. Reads were mapped to known human miRNAs using miRAnalyzer 

(Hackenberg et al., 2011). 

 

Northern Blot Analysis 
 

Total RNA was isolated with the mirVana kit (Thermo Fisher Scientific). At least 

20 μg total RNA was loaded on a 15% denaturing urea-polyacrylamide gel. Semi-

dry transfer was used to transfer the gel to a Hybond N+ nylon membrane (GE 

Healthcare Life Sciences). RNA was crosslinked to the membrane by irradiation 

with 254 nm UV light and the membrane was pre-hybridized with Church buffer 

at 37oC. 5’end P32-labeled Starfire probes (Integrated DNA Technologies) for 

miR-203 (TAGTGGTCCTAAACATTTCA) and U6 

(CACGAATTTGCGTGTCATCCTTGCGCAGGGGCC) were added to the pre-
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hybridization reaction and incubated overnight to detect miRNA. U6 RNA was 

used as a loading control.  

 

miRNA-qRT-PCR 
 

Total RNA was isolated with the mirVana kit (Thermo Fisher Scientific).  At least 

1 μg of RNA was used for cDNA reactions using the miScript II RT Kit (Qiagen) 

according to the manufacturer’s protocol followed by qRT-PCR using the miScript 

SYBR Green kit (Qiagen) with the Universal Primer included in the kit and a 

forward primer specific to the miRNA of interest. U6 RNA was used as an internal 

control (see Table 2.4 for primer sequences).  Each sample was analyzed three 

independent times and the results from one representative experiment, with 

technical triplicates or quadruplicates, are shown. 

 

miRNA Ectopic Expression and Inhibition 

 

For ectopic expression, the pre-miR-203 hairpin sequence was obtained from 

miRBase (mirbase.org). Pre-miR-203 was PCR amplified from MCF10A genomic 

DNA using primers (Forward 5’-AATCTCGAGCTCCTCTCTCCGCAGCTC-3’ 

and Reverse 5’- ATCGAATTCGCACCCCTGACTGTGACTCTG-3’) engineered 

with restriction sites, EcoRI and XhoI, then cloned into pMSCVpuro (ClonTech 

Laboratories, Inc.). Cells stably expressing pMSCVpuro-pre-miR-203 or 
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pMSCVpuro-emtpy were generated by retroviral transduction as described 

previously (Santra et al., 2009). 

 

For miRNA inhibition, a miArrest miRNA Inhibitor specific to miR-203 was 

obtained from Genecopoeia (Rockville, MD). The inhibitor was packaged into 

lentiviral particles and used to infect cells. The scrambled control inhibitor was 

also obtained from Genecopoeia.  

 

AGO2 Immunoprecipitation 

 

Cells were lysed for 30 minutes on ice in cell lysis buffer then centrifuged for 30 

minutes at 14,000 rpm at 4°C. The supernatant was used as cell lysate for the IP. 

Mouse anti-AGO2 (Abcam) was coupled to Protein G Dynabeads (Thermo Fisher 

Scientific) then added to lysates. Antibody-lysate mixtures were rotated for 4 

hours at 4°C to bind RISC in each sample. The beads were washed in IP wash 

buffer supplemented with a protease inhibitor cocktail then eluted in TriPure 

Reagent (Roche Life Sciences). mRNA was purified from immunoprecipitated 

protein complexes using the mirVana miRNA isolation kit (Thermo Fisher 

Scientific). 

 

RNA sequencing and Data Analysis 
 

Total RNA was extracted from MCF10A cells expressing a pMSCV-empty vector 
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control or a pMSCV-pre-miR-203 using the mirVana miRNA Isolation Kit (Thermo 

Fisher Scientific) and mRNA purification, cDNA synthesis, and amplification were 

carried out according to the TrueSeq RNA sample preparation guide (Illumina). 

Libraries were sequenced as 100-bp paired end using Illumina HiSeq 2000. All 

reads were mapped to the human genome using TopHat, followed by running 

Cufflinks to assemble and quantify the transcriptome (Trapnell et al., 2012). 

Empty Vector control and pMSCV-pre-miR-203 total RNA samples were run in 

duplicate. Ago2 IP RNA isolates were run in identical fashion. Relative 

abundances were measured in fragments per kilobase of exon per million 

fragments mapped (FPKM). 

 

Statistics 
 

All quantitative data were collected from experiments performed in at least 

triplicate, and expressed as mean ± standard deviation, with the exception of 

Figures 3.31 and 3.32, which are expressed as mean ± SEM. Differences 

between groups were assayed using two-tailed Student’s t test, except where 

noted above. Significant differences were considered when P<0.05. 
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Gene Forward primer sequence (5’->3’) Reverse primer sequence (5’->3’) 

BAD 
aagactccagctctgcagag 
 

Atgatggctgctgctggttg 

BAK 
tcgacttcatgctgcatcac 
 

acaaactggcccaacagaac 

BAX 
actggacagtaacatggagctg 
 

aaacatgtcagctgccactc 
 

BID 
tgttctgacaacagcttccg 
 

atcagtctgcagctcatcgtag 
 

BIK 
tggctttcatctacgaccagac 
 

gtggtgaaaccgtccatgaaac 
 

BIM tgcagacattttgcttgttcaa 
Gaaccgctggctgcataataat 
 

BMF gaggtacagattgcccgaaa 
Ttcaaagcaaggttgtgcag 
 

BNIP3 
Acgagcgtcatgaagaaagg 
 

aatccgatggccagcaaatg 

BNIP3L 
tgcgaggaaaatgagcagtc 
 

tgccattgctgctgttcatg 
 

BOK 
Acatctccctgcagtctgag 
 

tgcctgcagagaagatgtgg 
 

Gapdh tgcaccaccaactgcttagc 
Ggcatggactgtggtcatgag 
 

HRK 
caccagcgcaccatgtgg 
 

cagccaaggccagtaggtg 
 

JMJD1A 
gagttcaaggctgggctattgt 
 

ttcagccactttgatgcagcta 

Jmjd1a 
attcgagctgtttcccacac 
 

tccaagactccccatcaaac 

METAP1D 
aacaacgtgctctgtcatgg 
 

accacattcgtccacattgc 
 

MULE 
tcaccgcactgtgttaaacc 
 

tgcgcttgacatcaaagtcg 
 

NOXA 
agagctggaagtcgagtgtg 
 

gaagtttctgccggaagttcag 
 

PIH1D3 tattcagacagcaggtgggaac 
agccactagttcactgcaac 
 

PUMA 
acctcaacgcacagtacgag 
 

acctaattgggctccatctcg 
 

RPL41 cattaaatagccgtagacggaactt 
gcgcagaggtttccaaaaaa 
 

ZCCHC24 
Tgccacatcaacgtgtatcca 
 

ggccgtcgggcttctc 

ZNF345 
aaacagggatctcaggaaggac 
 

ggatactgaaagtgggcatgtc 
 

 

  

Table 2.1. qRT-PCR primer sequences for Chapter III.  
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Gene Forward primer sequence (5’ -> 
3’) 

Reverse primer sequence (5’ -> 
3’) 

BNIP3 CACTAGCAGGATGGAAAGACG ACTCTCTGGGCACTGGCTAC 

BNIP3L AGATACCCTGGGTAGCAGTAAC ACCCGGTAAAGAACTAGCAGAG 

JMJD1A CGCTTGTAAAATGGGAGGCATG TTGTGTGCTCTGGACCTGAAG 

NCR (GCLC) ATGGTTGCCACTGGGGATCT TGCCAAAGCCTAGGGGAAGA 

 

  
Table 2.2. ChIP-qRT-PCR primer sequences for Chapter III.  
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Gene Forward primer sequence (5’->3’) Reverse primer sequence (5’->3’) 

AKAP7 acgctgaactagtaaggctcag tgcttcggttttcacagagc 

ANKH ttcatggacgcaatggcatg atctgagattgaggcacatccc 

C4orf33 tgggaaggcaaagcttatctcc tgtccttgctgcagttcatg 

CSRNP2 ttaaatgccaggtggatcgc attcaatgcgtcctgccatg 

GMEB1 tttgcagttacagcctgtgc tccgacccagcttcataaatcc 

HBEGF tttgaaagcccaaggtgctg aaagctacaggcatggaagc 

IFIT3 aagggcgaaggtgtgttttg tacatcgcaattgccagtcc 

IMPACT accccaaatggacactttgc taaatccgcacgttcttgcc 

KIAA1430 tagcacccgggaaaaactactc ttttgcttcccggcttttcc 

KLC4 tgtacaggagtttgggtctgtg tgccggcttttgctcatttc 

LIN7C tgaaagccgcacaaggaaag ttgcctgcgttttgctgatc 

LNX2 aaccgagcacacaaccattc aatgccaagctgttcaccag 

MAP4K3 aattgcatcagcgaggacac ttaggctttggtggcaaagg 

MSRB3 ttggccttcattccacgatg aaaatgtgcccaaggtgagc 

NEDD9 atcttggccatcaacaagcc tgcgttggtgttgatggttg 

NFIL3 aggccacgcaaaaactttcc ttggggcactatgcttttcg 

NIPAL3 acgccaacaacattgtcgtg cccttgaatggacaagacaagc 

PAPSS2 aaatatccgccggattgctg attttgcgggcattctcacg 

PARP11 ttgcaggaaaaaggctcagc tgctggtaccatgaaacagc 

PDE4D tctgagcaacccaacaaagc tttccacggaagcattgtgc 

PDE6D tggctttgtgatccctaactcc ttaagacgcttgctggcatc 

PPAP2B aaatgacgctgtgctctgtg agcagcccacttgcttatagag 

PRKAB1 tctttgtggatggtcagtggac acacatcggagcacttttgg 

PRPS2 aggctgttgtcgtcacaaac ttgcttcggccaagatcatg 

PSMD5 tacggccattgcaaaccaac agctttgtcatgctccacag 

RAPGEF1 tgttgtactgcgaggcattc tgacgcgcttcttgaatgtg 

RASSF6 atcacagcaacaccctgaag agctgcttcactcatggttc 

RPRD2 tctcagcagagacccatttcac atgggcgttttggtgcaaag 

SEC24D aatggctgccatcgattgtg acactggattaaggctccactg 

SEMA5A aaggcctgttacagcaaagg agacaggcgtgaatgcattg 

SMG8 ttgctggaccaacttaggagtc aaagttgttgtcggctgtgc 

SOX13 tgccatgctgtttgagaagc tgctgctgctttgcaatctg 

TP63 tgcaggactcggacctgagt tgttcaggagccccaggtt 

TRPV4 ttttccgattcctgctcgtc ttgcacaccttcatgttggc 

TTC39A aaaggcggcatcaaagttcg ttgtgaggactgaacaaggc 

USP8 gctgtcgaagaagctgaaagac ttttgttgtagccgctgtgc 

VAV3 tccaaaagtgctgggcattg accagccatttgcactcatc 

WDR69 tgcaactgcttcagctgatg accttccagtttggcaatgc 
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ZNF281 ttgccaaagcctccttttgg aggtgtcaactgctgatgtg 

ZNF440 ttgtgtgtggagaagttggc tgccttgtgtccaatgtcac 

ZXDB acacttggaaaagccgttgc aaccatgtgcgtcttcatgc 

pre-miR-
203 gctgggtccagtggttctta gccgggtctagtggtcctaa 

  

Table 2.3. List of qRT-PCR primers for miR-203 candidate target genes 
(Chapter IV).  
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RNA 
Forward primer sequence (5’-
>3’) 

Reverse primer sequence (5’-
>3’) 

miR-197    cgggtagagagggcagtgggagg     Universal Primer (Qiagen) 

miR-203 gtgaaatgtttaggaccactag Universal Primer (Qiagen) 

miR-324 cgcatcccctagggcattggtgt   Universal Primer (Qiagen) 

U6 ctcgcttcggcagcaca aacgcttcacgaatttgcgt 

 
 
 
 
 
 
 

 
  

Table 2.4. List of miRNA-qRT-PCR primer sequences (Chapter IV).  
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CHAPTER III: The histone H3K9 demethylase KDM3A promotes anoikis by 
transcriptionally activating pro-apoptotic genes BNIP3 and BNIP3L 

 

Preface 
 
 This research chapter derives from the work I started in my first year in 

Michael Green’s lab, which was completed in the summer of 2016 when it was 

published in the journal eLife entitled “The histone H3K9 demethylase KDM3A 

promotes anoikis by transcriptionally activating pro-apoptotic genes BNIP3 and 

BNIP3L”. I am the first author of this publication with additional authors Stephane 

Gobeil, Sebastien Tabaries, Tessa Simone, Lihua (Julie) Zhu, Peter Siegel and 

Michael Green.  

 

The project was initiated by Stephane Gobeil, a post doctoral associate in 

the Green lab who was my direct mentor for my first year in the lab. Stephane 

developed and performed the genome wide screen for anoikis effector genes and 

validated the candidates. Lihua (Julie) Zhu performed the bioinformatic analysis 

to identify the shRNAs in the deep sequencing of the genome wide screen. 

Stephane also helped perform the in vivo anoikis experiments. Michael Green 

and myself conceived all of the other experiments in this chapter. I performed 

and analyzed all of the subsequent experiments except for the in vivo 

spontaneous metastasis assays which were performed by Sebastien Tabaries in 
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the lab of Peter Siegel at McGill University, Sebastien and Peter also collected 

and analyzed the data from these experiments. Tessa Simone assisted with 

performing and analyzing the annexin-V FACS experiments and Lynn 

Chamberlain and Alysia Bryll provided experimental assistance. Michael Green 

and myself wrote the manuscript with editorial assistance from Sara Deibler. 

Douglas Green (St. Jude Hospital) provided valuable advice on the manuscript. 

  



 

 
 

47 

Abstract 
 

Epithelial cells that lose attachment to the extracellular matrix undergo a 

specialized form of apoptosis called anoikis. Here, using large-scale RNA 

interference (RNAi) screening, we find that KDM3A, a histone H3 lysine 9 (H3K9) 

mono- and di-demethylase, plays a pivotal role in anoikis induction. In attached 

breast epithelial cells, KDM3A expression is maintained at low levels by integrin 

signaling. Following detachment, integrin signaling is decreased resulting in 

increased KDM3A expression. RNAi-mediated knockdown of KDM3A 

substantially reduces apoptosis following detachment and, conversely, ectopic 

expression of KDM3A induces cell death in attached cells. We find that KDM3A 

promotes anoikis through transcriptional activation of BNIP3 and BNIP3L, which 

encode pro-apoptotic proteins. Using mouse models of breast cancer metastasis 

we show that knockdown of Kdm3a enhances metastatic potential. Finally, we 

find defective KDM3A expression in human breast cancer cell lines and tumors. 

Collectively, our results reveal a novel transcriptional regulatory program that 

mediates anoikis. 
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Introduction 
 

Epithelial cells that lose attachment to the extracellular matrix (ECM), or 

attach to an inappropriate ECM, undergo a specialized form of apoptosis called 

anoikis. Anoikis has an important role in preventing oncogenesis, particularly 

metastasis, by eliminating cells that lack proper ECM cues (Simpson et al., 2008; 

Zhu et al., 2001). Anoikis also functions to prevent the invasion of tumor cells into 

the luminal space, which is a hallmark of epithelial tumors (Debnath et al., 2002). 

In general, epithelial-derived cancers, such as breast cancer, develop resistance 

to anoikis (reviewed in (Schwartz, 1997). Several signaling pathways have been 

shown to regulate anoikis (reviewed in (Paoli et al., 2013). In particular, anoikis is 

suppressed by integrin signaling, which functions through focal adhesion kinase 

(FAK), an activator of the RAF/MEK/ERK pathway (King et al., 1997). FAK 

signaling is active in attached cells and is inactive following detachment (Frisch 

et al., 1996). Anoikis is also suppressed by integrin-mediated, ligand independent 

activation of the epidermal growth factor receptor (EGFR) signaling pathway 

(Moro et al., 1998), which, like FAK, also stimulates RAF/MEK/ERK activity.  

 

These cell signaling pathways have been found to regulate the levels of 

BIM (also called BCL2L11) and BMF, two pro-apoptotic members of the BCL2 

family of apoptosis regulators previously shown to contribute to anoikis (Reginato 

et al., 2003; Schmelzle et al., 2007). However, depletion of BIM or BMF 

diminishes but does not completely prevent anoikis (Reginato et al., 2003; 
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Schmelzle et al., 2007), suggesting the existence of other factors and regulatory 

pathways that can promote anoikis. Moreover, the basis of anoikis resistance 

remains to be determined and to date has not been linked to alterations in 

expression or activity of BIM or BMF. 
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Results 
 

Identification of KDM3A as an anoikis effector in breast cancer epithelial 

cells. 

 
To investigate the possibility that there are additional factors and 

regulatory pathways that promote anoikis, we performed a large-scale RNA 

interference (RNAi) screen for genes whose loss of expression confer anoikis 

resistance. The screen was performed in MCF10A cells, an immortalized but 

non-transformed human breast epithelial cell line that has been frequently used 

to study anoikis (see, for example, (Huang et al., 2010; Reginato et al., 2003; 

Schmelzle et al., 2007; Taube et al., 2006). A genome-wide human small hairpin 

RNA (shRNA) library comprising ~62,400 shRNAs directed against ~28,000 

genes (Silva et al., 2003; Silva et al., 2005) was divided into 10 pools, which 

were packaged into retroviral particles and used to stably transduce MCF10A 

cells. Following selection, the cells were divided into two populations, one of 

which was plated on poly-2-hydroxyethylmethacrylate (HEMA)-coated plates for 

10 days to inhibit cell attachment to matrix, and another that was cultured 

attached to matrix for 10 days as a control (Figure 3.1). Surviving cells were 

selected and shRNAs identified by deep sequencing. Bioinformatic analysis of 

the two populations identified 26 shRNAs whose abundance was significantly 

enriched >500-fold following detachment (Table 3.1); such shRNAs presumably 
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confer upon MCF10A cells a selective advantage by protecting them from 

undergoing anoikis.  

 

 To validate candidates isolated from the primary screen, we selected the 

top 20 most highly enriched shRNAs and analyzed them in an independent 

assay for their ability to confer resistance to anoikis. Briefly, MCF10A cells were 

transduced with a single shRNA, detached from matrix for 96 hours, and 

analysed for cell death by annexin V staining. As expected, knockdown of BIM, a 

positive control, decreased cell death following detachment compared to the 

control non-silencing (NS) shRNA (Figure 3.2). Of the 20 candidate shRNAs 

tested, five reduced the level of detachment-induced apoptosis compared to the 

NS shRNA, indicating they conferred anoikis resistance (Figure 3.2). Similar 

results were obtained using a second, unrelated shRNA directed against the 

same target gene (Figure 3.3). Quantitative RT-PCR (qRT-PCR) confirmed in all 

cases that expression of the target gene was decreased in the knockdown cell 

line (Figure 3.4).  

 

One of the top scoring validated candidates was KDM3A (Table 3.1), a 

histone demethylase that specifically demethylates mono-methylated (me1) and 

di-methylated (me2) histone H3 lysine 9 (H3K9) (Yamane et al., 2006). H3K9 

methylation is a transcriptional repressive mark, and the identification of KDM3A 

raised the intriguing possibility that induction of anoikis involves transcriptional 
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activation of specific genes through H3K9me1/2 demethylation. Therefore, our 

subsequent experiments focused on investigating the role of KDM3A in anoikis.  

 

We asked whether ectopic expression of KDM3A was sufficient to 

promote cell death in attached cells. MCF10A cells were transduced with a 

retrovirus expressing wild-type KDM3A, a catalytically inactive KDM3A mutant 

[KDM3A(H1120G/D1122N)] (Beyer et al., 2008) or, as a control, empty vector 

(Figure 3.5), and then treated with puromycin for 10 days at which time viability 

was assessed by crystal violet staining. The results of Figure 3.5 show that 

ectopic expression of wild-type KDM3A but not KDM3A(H1120G/D1122N) 

greatly reduced MCF10A cell viability. Collectively, these results demonstrate 

that KDM3A is necessary and sufficient for efficient induction of anoikis in breast 

epithelial cells. 

 

Detachment and loss of integrin and growth factor receptor signaling 

induces KDM3A expression. 

 
We next examined the relationship between KDM3A expression and 

induction of anoikis. The immunoblot of Figure 3.6 shows that KDM3A protein 

levels were undetectable in attached MCF10A cells, but robustly increased in a 

time-dependent manner following detachment. The qRT-PCR analysis of Figure 

3.6 shows that an increase in KDM3A expression following detachment was also 

detected at the mRNA level. 
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We next sought to understand the basis for the increase in KDM3A levels 

following detachment. As mentioned above, anoikis is suppressed by integrin 

signaling, which functions through FAK, a regulator of the RAF/MEK/ERK 

pathway (Frisch et al., 1996; King et al., 1997). Detachment causes a disruption 

in integrin–ECM contacts, resulting in a loss of FAK signaling in the detached 

cells (Frisch and Francis, 1994a; Frisch et al., 1996), which we observed have 

elevated KDM3A levels (see Figure 3.6). We therefore tested whether restoration 

of integrin signaling in detached cells would block the increase in KDM3A levels. 

The results of Figure 3.7 show that the addition of growth factor reduced Matrigel 

basement membrane-like matrix, which restores integrin signaling, to detached 

cells markedly blocked the elevated levels of the BIM isoform BIMEL, as 

expected, and KDM3A. Treatment of MCF10A cells with a FAK inhibitor 

increased the levels of KDM3A protein and mRNA (Figure 3.8). Thus, the 

increase in KDM3A levels upon detachment of MCF10A cells is due, at least in 

part, to the loss of integrin/FAK signaling.   

 

We next analyzed the relationship between the EGFR signaling pathway 

and KDM3A levels. In the first set of experiments, we ectopically expressed 

either EGFR or a constitutively active MEK mutant, MEK2(S222D/S226D) 

(MEK2DD) (Voisin et al., 2008), both of which have been previously shown to 

block anoikis in detached cells (Reginato et al., 2003). Consistent with these 

previous results, Figure 3.9 shows that in detached MCF10A cells, expression of 
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either EGFR or MEK2DD substantially decreased the level of BIMEL (Reginato et 

al., 2003). Expression of either EGFR or MEK2DD also decreased the levels of 

KDM3A in detached MCF10A cells. Conversely, KDM3A protein levels were 

increased in attached MCF10A cells treated with the EGFR inhibitor gefitinib 

(Barker et al., 2001; Ward et al., 1994) (Figure 3.10) or the MEK inhibitor U0126 

(Favata et al., 1998) (Figure 3.11). Both gefitinib and U0126 treatment also 

resulted in increased KDM3A mRNA levels (Figure 3.10 and 3.11).  

 

KDM3A induces anoikis by transcriptionally activating BNIP3 and BNIP3L. 
 

The results described above suggest a model in which following 

detachment, the resulting increase in KDM3A demethylates H3K9me1/2 to 

stimulate expression of one or more pro-apoptotic genes. To test this model and 

identify pro-apoptotic KDM3A target genes, we took a candidate-based approach 

and analyzed expression of a panel of genes encoding pro-apoptotic BCL2 

proteins (Boyd et al., 1994; Lomonosova and Chinnadurai, 2008; Matsushima et 

al., 1998) in attached MCF10A cells and detached cells expressing a NS or 

KDM3A shRNA. We sought to identify genes whose expression increased 

following detachment in control but not in KDM3A knockdown cells. We found 

that expression of the vast majority of genes encoding pro-apoptotic BCL2 

proteins were unaffected by detachment in MCF10A cells (Figure 3.12). 

Consistent with previous results (Reginato et al., 2003; Schmelzle et al., 2007), 

expression of BIM and BMF were increased upon detachment. However, 
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knockdown of KDM3A did not decrease expression of either BIM or BMF. By 

contrast, following detachment, expression of BNIP3 and BNIP3L increased, and 

were the only genes whose expression was diminished more than 2-fold by 

KDM3A knockdown (Figure 3.12). We therefore performed a series of 

experiments to determine whether BNIP3 and BNIP3L are critical KDM3A target 

genes that mediate anoikis. 

 

In the first set of experiments we analyzed BNIP3 and BNIP3L protein 

levels during anoikis induction. The immunoblot of Figure 3.13 shows that BNIP3 

and BNIP3L levels were very low in attached cells and substantially increased 

following detachment, with a time course similar to that of detachment-induced 

KDM3A expression (see Figure 3.6). The chromatin immunoprecipitation (ChIP) 

experiment of Figure 3.14 shows that KDM3A was bound to the BNIP3 and 

BNIP3L promoters in detached but not attached cells. Moreover, the levels of 

H3K9me2 and H3K9me1 (Figure 3.15) on the BNIP3 and BNIP3L promoters 

were greatly diminished following detachment, which was counteracted by 

knockdown of KDM3A. Conversely, overexpression of KDM3A but not 

KDM3A(H1120G/D1122N) in attached MCF10A cells resulted in decreased 

levels of H3K9me1 and H3K9me2 on the BNIP3 and BNIP3L promoters and 

increased expression of BNIP3 and BNIP3L (Figure 3.16). Finally, knockdown of 

BNIP3 or BNIP3L (Figure 3.17) resulted in decreased apoptosis following 

detachment (Figure 3.18). To further establish the pro-apoptotic role of BNIP3 
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and BNIP3L in MCF10A cells, we ectopically expressed BNIP3, BNIP3L or both 

in attached cells (Figure 3.19). Figure 3.19 shows that moderate cell death was 

observed upon ectopic expression of either BNIP3 or BNIP3L, but substantial cell 

death occurred in cells ectopically expressing both BNIP3 and BNIP3L. 

Collectively, these results establish BNIP3 and BNIP3L as critical KDM3A target 

genes that mediate anoikis (Figure 3.20).   

 

KDM3A prevents metastasis and its expression is defective in human 

breast cancer cell lines and tumors. 

 

We considered the possibility that decreased KDM3A expression may 

contribute to anoikis resistance in breast cancer cells and performed a series of 

experiments to test this idea. We first analyzed a panel of human breast cancer 

cell lines (BT549, MDA-MB-231, MCF7, SUM149 and T47D) comparing, as a 

control, anoikis-sensitive MCF10A cells. As expected, detachment-induced 

apoptosis was significantly diminished in breast cancer cell lines compared to 

MCF10A cells, indicative of anoikis resistance (Figure 3.21). Moreover, following 

detachment of the breast cancer cell lines, induction of KDM3A at both the 

protein and mRNA (Figure 3.22) levels was much lower than that observed in 

MCF10A cells. However, ectopic expression of KDM3A was sufficient to induce 

apoptosis in each of the five breast cancer cell lines (Figure 3.23). Collectively, 
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these results indicate that anoikis-resistance of human breast cancer cells is due, 

at least in part, to inefficient induction of KDM3A following detachment. 

 

We next analyzed KDM3A expression in human breast cancer patient 

samples. Interrogation of the Oncomine database (Rhodes et al., 2007) revealed 

decreased expression levels of KDM3A in several breast cancer datasets (Figure 

3.24). To confirm these in silico results, we analyzed KDM3A expression by qRT-

PCR in a series of human breast cancer patient samples. The results of Figure 

3.25 show that compared to normal breast epithelium KDM3A expression was 

significantly decreased in a high percentage of breast cancers. Likewise, basal 

KDM3A expression levels were also diminished in most human breast cancer cell 

lines analyzed (Figure 3.26).   

 

 Finally, we performed a series of experiments to determine whether 

KDM3A affects metastatic potential. We first asked whether depletion of KDM3A 

would promote anoikis resistance in vivo using a mouse pulmonary survival 

assay. Briefly, immortalized but non-transformed mouse mammary epithelial 

CLS1 cells were stably transduced with an NS or Kdm3a shRNA (Figure 3.27) 

and injected into the tail vein of syngeneic mice. After 2 weeks, the lungs were 

harvested, dissociated into single cell suspensions, and plated in media 

containing puromycin to select for cells expressing the shRNA. The surviving 

colonies were visualized by crystal violet staining and quantified. The results of 
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Figure 3.27 show that Kdm3a knockdown significantly increased the number of 

cells that survived in the mouse lung relative to the control NS shRNA. 

 

 In a second set of experiments, we used a well-characterized mouse 

breast cancer carcinoma progression series comprising isogenic cell lines with 

increasing metastatic potential: (1) non-invasive and non-metastatic 67NR cells, 

which form primary tumors, (2) invasive and non-metastatic 4T07 cells, which 

enter the circulation but fail to establish secondary tumors, and (3) highly 

metastatic 4T1 cells, which disseminate widely and colonize distant organ sites 

(Aslakson and Miller, 1992). qRT-PCR analysis revealed decreased Kdm3a 

expression in cell lines with greater metastatic potential (Figure 3.28). We 

expressed either a control NS shRNA or a Kdm3a shRNA in 67NR cells 

containing a luciferase reporter gene (Figure 3.29). Cells were injected into the 

tail veins of three syngeneic mice and pulmonary metastases were visualized by 

live animal imaging after 5 weeks. The results of Figure 3.29 show, as expected, 

that control 67NR cells failed to form pulmonary metastases in any of the three 

mice analyzed. By contrast, Kdm3a knockdown 67NR cells formed substantial 

pulmonary metastases in all three mice.  

 

 Finally, in a more stringent metastasis experiment, control and Kdm3a 

knockdown 4T07 cells (Figure 3.30), a non-metastatic mouse breast cancer cell 

line, were injected in the mammary fat pad of ten syngeneic mice. After 22 days 
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the primary tumors were surgically removed and 8 weeks post-injection the 

animals were sacrificed and pulmonary tumors quantified. The growth of primary 

tumors formed by NS or Kdm3a knockdown cells was similar (Figure 3.31). 

However, Kdm3a knockdown cells caused significantly increased metastatic 

burden in the lungs compared to control 4T07 cells (Figure 3.32). Consistent with 

our results, knockdown of Bnip3 has also been shown to cause increased 

metastasis in similar in vivo experiments (Manka et al., 2005). Collectively, these 

results show that KDM3A functions to prevent metastasis.  
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Transduce with human retrovirual shR N A pools
Puromycin select

Pool surviving cells
Purify genomic DNA
PCR amplify and sequence by high-throughput sequencing to identify    
shRNAs

MCF10A human breast epithlial cells

Replate cells on
poly-HEMA-coated plates

After 10 days, wash and add fresh media containing 
puromycin
Replate on non-poly-HEMA-coated plates for 5 days

Replate cells on
non-poly-HEMA-coated plates

Bioinformatics to identify shRNAs enriched following detachment

Validate with individual shRNAs

Figure 3.1. Schematic of the design of the large-scale RNAi screen to identify 
anoikis effectors. 
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Fold 
enrichment 
(detached vs. 
attached) 

shRNA sequence Gene symbol Gene name 

1620.792946 TAACACTTCACTGTAACTC ZCCHC24 zinc finger CCHC-type containing 24 

1324.931564 AAATGCTTCACAATCAAAG KDM3A lysine demethylase 3A 

1139.789798 TAATCTTCAAATAAGCTGA RALBP1 ralA binding protein 1 

947.6848454 TCACTTACAAGTTTCTTTC RFC1 Replication factor C subunit 1 

848.4223889 AATATAAGGATTGCTATCG LRIG3 
leucine-rich repeats and 
immunoglobulin like domains 3 

798.0503961 TTAAGTAGCTTAGAGAGGG PIH1D3 PIH1 domain containing 3 

720.0231915 TGTCATTCCAAGAGATCCT DKK1 
dickkopf WNT signaling pathway 
inhibitor 1 

710.1463302 ATTTGCCGGAGGATCAAGG SENP6 SUMO1/sentrin specific peptidase 6 

681.0095893 AATCTAATACATTAATCTG PLEKHG1 
pleckstrin homology and RhoGEF 
domain containing G1 

671.1327279 TTGGAGATGAGGCTCAGTG FGD5 
FYVE, RhoGEF and PH domain 
containing 5 

665.2066111 TAATCCAATAATTCATTTC LOC339524  

659.2804943 TTAAAATGGAGACACCATC METAP1D 
methionyl aminopeptidase type 1D 
(mitochondrial) 

645.3541198 ATTCCTTCAAGATTTCAAG VMP1 vacuole membrane protein 1 

633.6006548 TCTCTGATGCTGAGTAAGG ZNF345 zinc finger protein 345 

619.2792059 TTCTATCGAATAAGCAATC FAM227B 
family with sequence similarity 227 
member B 

610.5022036 TTACGTTTCTGAATTTCTG PDE7A(variant 2) phosphodiesterase 7A 

609.6640814 AACTTATAGACATTCAGAC GPC5 glypican 5 

605.9454431 TTCCCTCACATGTGGGATG AP4M1 
adaptor related protein complex 4 mu 1 
subunit 

598.4192748 ATTGAAATATTGAAACTTC SUSD1 sushi domain containing 1 

561.9934101 ATAGAGAAAGTCTTTATAC RBFOX3 
RNA binding protein, fox-1 homolog (C. 
elegans) 3 

559.5241948 TAGAATAAGAACTACTGTC DNAJB9 
DnaJ heat shock protein family (Hsp40) 
member B9 

543.6619555 TTAATCTTATCTTTGCCTG CYP39A1 
cytochrome P450 family 39 subfamily A 
member 1 

527.4243955 TGAAAGACTTAACAATTGG CECR5-AS1 CECR5 antisense RNA 1 

526.4367093 TAACTTCAAAGGTGTATCC ADH7 
alcohol dehydrogenase 7 (class IV), mu 
or sigma polypeptide 

518.5352203 ATAGATATATGCATTTAGG RNF125 
ring finger protein 125, E3 ubiquitin 
protein ligase 

513.1029465 TATTAGGAATCTTAACCAC HOXA11 homeobox A11 

Table 3.1 List of 26 shRNAs, and the target genes, whose abundance was significantly 
enriched >500-fold following detachment of MCF10A cells. 



 

 
 

62 

 

  

Figure 3.2. Knockdown of anoikis effector candidate genes causes a 
resistance to anoikis. (A) Cell death, monitored by annexin V staining, in 
MCF10A cells expressing a non-silencing (NS) shRNA and cultured attached to 
the matrix, or in detached cells (cultured in suspension for 96 h) expressing a 
NS shRNA or one of five candidate shRNAs. Error bars indicate SD. P value 
comparisons are made to the detached, NS shRNA control. **P<0.01. (B) FACS 
analysis. Representative FACS plots corresponding to the bar graph in A. 
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Figure 3.3. Knockdown of anoikis effector candidate genes with a second 
shRNA also causes a resistance to anoikis. (A) Cell death, monitored by 
annexin V staining, in MCF10A cells expressing a non-silencing (NS) shRNA and 
cultured attached to the matrix, or in detached cells (cultured in suspension for 96 
h) expressing a NS shRNA or one of five candidate shRNAs unrelated to those 
used in Figure 3-2. Error bars indicate SD. **P<0.01. (B) Representative FACS 
plots corresponding to (A). 
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Figure 3.4. Analysis of BIM and candidate shRNA knockdown 
efficiencies. qRT-PCR analysis monitoring knockdown efficiencies of BIM 
and two unrelated shRNAs directed against the five candidate genes in 
MCF10A cells. Error bars indicate SD. *P<0.05; **P<0.01. 
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Figure 3.5. Ectopic expression of WT KDM3A but not a catalytic dead 
mutant causes cell death in MCF10A cells. (A) Crystal violet staining of 
MCF10A cells expressing vector, KDM3A or the catalytically-inactive 
KDM3A(H1120G/D1122N) mutant. (B) Immunoblot analysis monitoring levels of 
KDM3A in MCF10A cells expressing vector, KDM3A or 
KDM3A(H1120G/D1122N). The results confirm increased expression of KDM3A 
in cells transfected with KDM3A-expressing plasmids. α-tubulin (TUBA) was 
monitored as a loading control. 
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Figure 3.6.  KDM3A is induced upon detachment from the ECM. (A) 
Immunoblot monitoring KDM3A levels in attached MCF10A cells, or 
detached cells cultured in suspension for 4, 8 or 24 h. β-actin (ACTB) was 
monitored as a loading control. (B) qRT-PCR analysis monitoring KDM3A 
mRNA levels in attached MCF10A cells, or detached cells cultured in 
suspension for 24 h. Error bars indicate SD. **P<0.01. 
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Figure 3.7. The induction of KDM3A upon detachment from the ECM is due 
to the loss of integrin signaling. Immunoblot monitoring levels of KDM3A and 
BIMEL in attached MCF10A cells or detached MCF10A cells cultured in 
suspension for 24 h and treated in the presence or absence of Matrigel. α-
tubulin (TUBA) was monitored as a loading control. 
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Figure 3.8. Inhibition of FAK in attached MCF10A cells causes 
induction of KDM3A. (A) Immunoblot monitoring levels of KDM3A, 
phosphorylated FAK (p-FAK) or total FAK (t-FAK) in MCF10A cells 
treated for 48 hours with 0, 1, 5 or 10 µM FAK inhibitor. (B) qRT-PCR 
analysis monitoring KDM3A expression in MCF10A cells treated for 48 
hours with 0, 1, 5 or 10 µM FAK inhibitor.  
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Figure 3.9. Ectopic expression of EGFR or an activated form of MEK 
blocks the induction of KDM3A upon detachment from the ECM. 
Immunoblot monitoring levels of KDM3A and BIMEL in MCF10A cells 
expressing either vector, EGFR or MEK2DD and cultured as attached (A) or 
detached (D) cells grown in suspension for 24 h. 
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Figure 3.10.  Inhibition of EGFR in attached MCF10A cells causes 
induction of KDM3A. (A) Immunoblot monitoring levels of KDM3A, 
phosphorylated EGFR (p-EGFR) or total EGFR (t-EGFR) in MCF10A cells 
treated for 48 hours with 0, 1, 5 or 10 µM Gefitinib. (B) qRT-PCR analysis 
monitoring KDM3A expression in MCF10A cells treated for 48 hours with 0, 
1, 5 or 10 µM Gefitinib. 
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Figure 3.11.  Inhibition of ERK in attached MCF10A cells causes 
induction of KDM3A. (A) Immunoblot monitoring levels of KDM3A, 
phosphorylated ERK (p-ERK) or total ERK (t-ERK) in MCF10A cells 
treated for 48 hours with 0, 1, 5 or 10 µM U0126. (B) qRT-PCR 
analysis monitoring KDM3A expression in MCF10A cells treated for 
48 hours with 0, 1, 5 or 10 µM U0126. 
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Figure 3.12. Knockdown of KDM3A abrogates the induction of BNIP3 
and BNIP3L upon detachment of MCF10A cells from the ECM. (A) qRT-
PCR analysis monitoring expression of pro-apoptotic BCL2 genes in 
detached MCF10A cells grown in suspension for 24 h and expressing a NS 
or KDM3A shRNA. The expression of each gene is shown relative to that 
obtained in attached cells expressing a NS shRNA, which was set to 1. P 
value comparisons for each gene are made to the NS shRNA control. Genes 
whose expression is decreased >2-fold upon KDM3A knockdown are 
indicated in red. (B) qRT-PCR analysis monitoring expression of BCL2 pro-
apoptotic genes in detached MCF10A cells expressing a NS or a second, 
unrelated KDM3A shRNA to that used in Figure 3A. The expression of each 
gene is shown relative to that obtained in attached cells, which was set to 1. 
Error bars indicate SD. *P<0.05; **P<0.01. 



 

 
 

73 

  
 

 
 
 
 
 

 
 
 
 
 
 
 
 
  

TUBA

BNIP3

A
tta

ch
ed

D
et

ac
he

d 
(2

4 
h)

D
et

ac
he

d 
(4

 h
)

D
et

ac
he

d 
(8

 h
)

BNIP3L

Figure 3.13. BNIP3 and BNIP3L are induced upon detachment 
from the ECM.  Immunoblot analysis monitoring levels of BNIP3 and 
BNIP3L in attached MCF10A cells, and detached cells following 
growth in suspension for 4, 8 or 24 h. 
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Figure 3.14. KDM3A is enriched on the promoters of BNIP3 and 
BNIP3L upon detachment from the ECM. ChIP monitoring binding 
of KDM3A on the promoters of BNIP3 and BNIP3L or a negative 
control region (NCR) in attached MCF10A cells or detached cells 
grown in suspension for 24 h. P value comparisons for each region 
are made to the attached control. Error bars indicate SD. *P<0.05; 
**P<0.01 
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Figure 3.15. The levels of H3K9me1 and H3K9me2 on the BNIP3 and BNIP3L 
promoters are diminished following detachment, which is counteracted by 
knockdown of KDM3A. (A) ChIP monitoring the levels of H3K9me1 on the 
promoters of BNIP3 and BNIP3L or a negative control region (NCR) in attached 
MCF10A cells or detached cells expressing a NS or KDM3A shRNA and grown in 
suspension for 24 h. (B)ChIP monitoring the levels of H3K9me2 on the promoters 
of BNIP3 and BNIP3L or a negative control region in attached MCF10A cells or 
detached cells expressing a NS or KDM3A shRNA and grown in suspension for 24 
h. P value comparisons for each region are made to the detached, NS shRNA 
control. Error bars indicate SD. *P<0.05; **P<0.01. 
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Figure 3.16. Overexpression of KDM3A, but not 
KDM3A(H1120G/D1122N), in attached MCF10A cells results in decreased 
levels of H3K9me1 and H3K9me2 on the BNIP3 and BNIP3L promoters 
and increased expression of BNIP3 and BNIP3L. (A) ChIP monitoring the 
levels of H3K9me1, H3K9me2 and KDM3A on the promoters of BNIP3 and 
BNIP3L or a negative control region (NCR) in attached MCF10A cells 
expressing empty vector, wild-type KDM3A or KDM3A(H1120G/D1122N). The 
increased occupancy of KDM3A(H1120G/D1122N) on the BNIP3 and BNIP3L 
promoters is not unexpected because the mutations are in the catalytic 
domain and should not affect DNA binding. (B) qRT-PCR analysis monitoring 
expression of BNIP3, BNIP3L or KDM3A in attached MCF10A cells expressing 
empty vector, wild-type KDM3A or KDM3A(H1120G/D1122N). Error bars 
indicate SD. *P<0.05; **P<0.01. 
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Figure 3.17. Analysis of BNIP3 and BNIP3L shRNA knockdown 
efficiencies. qRT-PCR analysis monitoring knockdown efficiency of two 
unrelated BNIP3 and BNIP3L shRNAs in MCF10A cells. Error bars 
indicate SD. **P<0.01. 



 

 
 

78 

 
 
 

Figure 3.18.  Knockdown of BNIP3 and BNIP3L causes resistance to anoikis upon 
detachment from the ECM. (A) Cell death, monitored by annexin V staining, in 
MCF10A cells expressing a NS, BNIP3 or BNIP3L shRNA. (B) Cell death, monitored by 
annexin V staining, in MCF10A cells expressing a non-silencing (NS) shRNA or BNIP or 
BNIP3L shRNA unrelated to that used in A. Error bars indicate SD. *P<0.05; **P<0.01. 

(C) Representative FACS plots corresponding to A and B 
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Figure 3.19. Ectopic expression of BNIP3 and BNIP3L causes cell death in 
attached MCF10A cells.  (A) Immunoblot analysis monitoring levels of BNIP3 or 
BNIP3L in MCF10A cells expressing vector, BNIP3 or BNIP3L. The results confirm 
increased expression of the proteins. α-tubulin (TUBA) was monitored as a loading 
control. (B) Crystal violet staining of MCF10A cells expressing vector, BNIP3, 
BNIP3L or both BNIP3 and BNIP3L 
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Figure 3.20. KDM3A induces anoikis by transcriptionally activating 
BNIP3 and BNIP3L. Model of KDM3A activity in response to detachment 
from the ECM in MCF10A cells. When MCF10A cells are detached from the 
ECM the loss of integrin signaling leads to the induction of KDM3A, which 
then demethylates H3K9me1 and H3K9me2 on the promoters of BNIP3 and 
BNIP3L leading to transcriptional activation and subsequent cell death.   
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Figure 3.21. Breast cancer cell lines are resistant to anoikis. (A) Cell death, 
monitored by annexin V staining, in MCF10A cells and a panel of human breast 
cancer cell lines cultured as attached cells or detached following growth in 
suspension for 96 h. Error bars indicate SD. P value comparisons for each breast 
cancer cell line are made to the detached MCF10A sample. *P<0.05; **P<0.01. 
(B) Representative FACS plots corresponding to A.  
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Figure 3.22. KDM3A is not induced in anoikis resistant breast 
cancer cell lines upon detachment from the ECM. (A) Immunoblot 
analysis monitoring KDM3A levels in MCF10A cells and a panel of 
human breast cancer cell lines cultured as attached (A) cells or detached 
(D) following growth in suspension for 24 h. All images for the KDM3A 
antibody were cropped from the same blot, and thus were processed and 
exposed in the same manner, as were images for the TUBA loading 
control. (B) qRT-PCR analysis monitoring KDM3A expression in MCF10A 
cells and a panel of human breast cancer cell lines cultured as attached 
cells or detached following growth in suspension for 24 h. Error bars 
indicate SD. P value comparisons for each breast cancer cell line are 
made to the detached MCF10A sample.  *P<0.05; **P<0.01. 
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Figure 3.23.  Ectopic expression of WT KDM3A, but not catalytically 
inactive KDM3A, causes cell death in a panel of breast cancer cell 
lines. Crystal violet staining of human breast cancer cells expressing vector, 
KDM3A or KDM3A(H1120G/D1122N). 
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Figure 3.24. Oncomine analysis of KDM3A expression in breast cancer. 
The Oncomine Cancer Profiling database was queried to access Finak (A), 
Sorlie (B), Zhao (C) and The Cancer Genome Atlas (TCGA) (D) breast 
cancer data sets. The results reveal that KDM3A is significantly under-
expressed in breast carcinoma relative to normal tissue. 
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Figure 3.25. Human breast cancers have a low expression of KDM3A 
compared to normal breast tissue. qRT-PCR analysis monitoring KDM3A 
expression in normal breast epithelial cells and human breast tumors. TN, 
triple negative [estrogen receptor-negative (ER-), human epidermal growth 
factor receptor 2-negative (HER2-) and progesterone receptor-negative (PR-
)]. Error bars indicate SD. The differences in expression between subtypes 
were not statistically significant. *P<0.05; **P<0.01. 
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Figure 3.26.  A panel of breast cancer cells have a low level of basal 
KDM3A expression in attached cells. qRT-PCR analysis of KDM3A 
expression in MCF10A cells and a panel of human breast cancer cell 
lines cultured as attached cells. The results were normalized to that 
obtained in MCF10A cells, which was set to 1. The results show that 
basal KDM3A expression levels were diminished in four of five human 
breast cancer cell lines analyzed. Error bars indicate SD. *P<0.05; 
**P<0.01. 
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Figure 3.27. Knockdown of Kdm3a in CLS1 cells causes resistance to 
anoikis in vivo. (A) qRT-PCR analysis monitoring knockdown efficiency of 
Kdm3a in CLS1 cells. Error bars indicate SD. (B) Mouse pulmonary survival 
assay. (Left) Representative plates showing colony formation of CLS1 cells 
expressing a NS or Kdm3a shRNA that had been isolated from mouse lungs 
following tail vein injection. (Right) Quantification of colony formation (n=4 mice 
per shRNA). Error bars indicate SD. *P<0.05; **P<0.01. 
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Figure 3.28. Kdm3a expression progressively decreases across a 
mouse breast cancer carcinoma progression series. qRT-PCR 
analysis of Kdm3a expression in 67NR, 4T07, and  4T1 cells. Error bars 
indicate SD. **P<0.01. 
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Figure 3.29. Knockdown of Kdm3a in 67NR cells causes tumor growth 
in the lungs. (A) Analysis of Kdm3a shRNA knockdown efficiency in mouse 
67NR cells. qRT-PCR analysis monitoring knockdown efficiency of Kdm3a in 
67NR cells. Error bars indicate SD. **P<0.01. (B) Live animal imaging 
monitoring lung tumor metastasis in mice following injection of 67NR cells 
expressing a NS or Kdm3a shRNA (n=3 mice per group). 
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Figure 3.30. Analysis of Kdm3a shRNA knockdown efficiency in 
mouse 4T07 cells. qRT-PCR analysis monitoring knockdown 
efficiency of two unrelated Kdm3a shRNAs in 4T07 cells. Error bars 
indicate SEM. *P<0.05. 
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Figure 3.31. Knockdown of Kdm3a in 4T07 cells leads to increased 
metastatic burden in the lungs. (A) Primary tumor growth in mice 
injected with 4T07 cells expressing a NS (n=7) or Kdm3a (n=8) shRNA. 
Error bars indicate SEM. The differences in primary tumor growth 
between groups were not statistically significant. (B) Metastatic burden. 
Number of metastatic lesions per lung in mice injected with 4T07 cells 
expressing a NS (n=7) or Kdm3a (n=8) shRNA. Error bars indicate SEM. 
**P<0.01. 
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Figure 3.32. Confirmation of the results of Figure 3-31 with a second 
unrelated Kdm3a shRNA. (A) Primary tumor growth in mice injected with 4T07 
cells expressing a NS (n=7) or Kdm3a (n=9) shRNA unrelated to that used in 
Figure 3-31. Error bars indicate SEM. (B) Number of metastatic lesions per lung 
in mice injected with 4T07 cells expressing a NS (n=7) or Kdm3a (n=9) shRNA 
unrelated to that used in Figure 4I. Error bars indicate SEM. **P<0.01. The 
differences in primary tumor growth between groups were not statistically 
significant. 
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Conclusions 
 
 

Based on the results presented above, we propose a model of anoikis 

induction that is illustrated in Figure 3.20 and discussed below. Following 

detachment of non-transformed cells, integrin signaling is decreased leading to 

decreased FAK, EGFR and RAF/MEK/ERK signaling and subsequent 

transcriptional induction of KDM3A. The increased levels of KDM3A result in its 

recruitment to the pro-apoptotic genes BNIP3 and BNIP3L, where it promotes 

demethylation of inhibitory H3K9me1/2 marks and transcriptional activation of the 

two genes, resulting in anoikis induction. Consistent with this model, previous 

studies have shown that hypoxia results in transcriptional activation of KDM3A, 

BNIP3 and BNIP3L (Beyer et al., 2008; Sowter et al., 2001).  

 

We have found that in anoikis-resistant human breast cancer cell lines and 

tumors, KDM3A expression is defective, highlighting the importance of this 

pathway in promoting anoikis. And we found that the knockdown of Kdm3a 

caused a non-metastatic mouse mammary carcinoma cell line to metastatize to 

the lung. In agreement with this result it has been previously shown that the 

knockdown of BNIP3 causes enhanced metastasis to the lung in the same 

mouse cell line (Manka et al., 2005). Collectively, our results reveal a novel 
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transcriptional regulatory program that mediates anoikis in non-transformed cells 

and is disabled during cancer development.  

 

As described above, previous studies have shown that BIM and BMF are 

also effectors of anoikis (Reginato et al., 2003; Schmelzle et al., 2007). However, 

we have found that unlike BNIP3 and BNIP3L, BIM and BMF are not regulated 

by KDM3A. Thus, our results reveal that anoikis is promoted by multiple non-

redundant pathways, which may help prevent the development of anoikis 

resistance.  

 

The role of KDM3A in cancer has not been thoroughly studied and has so 

far been controversial. There has been evidence to suggest that KDM3A has 

both an anti-oncogenic effect on cancer, as we presented here, (Du et al., 2011) 

and a pro-oncogenic effect (Krieg et al., 2010). In fact, in the time since we 

submitted our manuscript another group has published a study that shows 

KDM3A plays a pro-oncogenic role in breast cancer and that the knockdown of 

KDM3A sensitized breast cancer stem cells to chemotherapeutic drugs 

(Ramadoss et al., 2016). Although this other study on KDM3A did not specifically 

study anoikis, it is contradictory to our results in breast cancer. However, the 

opposing study does not use the same cell lines or mouse model of breast 

cancer as we do, leaving open the possibility that the role of KDM3A is context 

dependent and can even differ within the same cancer type.  Further research is 
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needed to fully elucidate the context dependent mechanism by which KDM3A 

functions in breast cancer and in other types of cancer.  

 

One aspect that has so far not been studied is the transcriptional control of 

KDM3A. We find that KDM3A is transcriptionally activated upon the loss of 

integrin signaling and the subsequent loss of FAK, EGFR and RAF/MEK/ERK 

signaling.  However, we have not identified the specific transcription factors or 

complexes that control the expression of KDM3A, which could be factors in 

identifying how the role of KDM3A differs between cancers. It is also possible 

that KDM3A activates the transcription of genes other than BNIP3 and BNIP3L 

following detachment, as we did not perform genome wide ChIP-sequencing 

experiments to identify all possible KDM3A sites.  

 

In conclusion, our results provide identification of a novel pathway that 

promotes anoikis and furthers the knowledge of the function of KDM3A. We offer 

insight into a potential mechanism of anoikis resistance in breast cancer and 

show that this mechanism of anoikis resisance can lead to increased metastasis. 

Taken together, our results have had a significant impact on the field of anoikis 

research.  
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CHAPTER IV: miR-203 regulates anoikis through targeting a network of 
pro-survival genes 

 
 

Preface 
 
 

This research chapter derives from a project that I designed and initiated 

in 2012 and has continued until the preparation of this dissertation. Michael 

Green and I had discussed the potential role of miRNAs during anoikis and after 

realizing that miRNA expression profiling during anoikis had not yet been 

performed, I set out to do just that. Desiree Brady, a graduate student in Phillip 

Zamore’s lab assisted me with the initial small RNA sequencing, which I 

performed in the Zamore lab with the help of Desiree. Phillip Zamore and his lab 

provided me with expertise, reagents, and protocols to assist in the successful 

completion of the small RNA sequencing. The small RNA sequencing data was 

generated by the UMMS Deep Sequencing Core Facility and analyzed by Lihua 

(Julie) Zhu and Jianhong Ou. The TCGA data was analyzed by Jun Yu. 

 

 The total RNA sequencing and AGO2-Immunoprecipitation RNA 

sequencing was conceived of and designed by me and performed by Alexander 

Boardman, a UMMS medical student who did a research project in the Green 

lab. All of the RNA sequencing data was also generated by the UMMS Deep 
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Sequencing Core Facility and analyzed by Lihua (Julie) Zhu and Jianhong Ou. 

Amy Virbasius and the UMMS shRNA Core Facility provided targeted shRNAs.  

 

 Tessa Simone assisted with the Annexin-V FACS experiments. Michael 

Green and myself conceived of and designed all other experiments and I 

performed all of the other experiments. I analyzed all the data and composed all 

of the figures with editorial assistance from Sara Deibler. Lynn Chamberlain 

provided experimental assistance with most of the qRT-PCR experiments.  
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Abstract 
 

Anoikis, apoptosis after detachment of cells from the ECM, is a complex and 

diverse biological process that is not yet fully understood. While genome wide 

studies have been performed to identify gene expression changes that play a 

role in anoikis, similar genome wide microRNA (miRNA) studies have not yet 

been done. Here, I completed miRNA expression profiling during the early stages 

of anoikis in breast epithelial cells and have identified miR-203 as a critical pro-

anoikis miRNA. After detachment, miR-203 is significantly upregulated and 

ectopic expression of miR-203 in attached cells causes widespread cell death. 

Likewise, inhibition of miR-203 causes a resistance to anoikis. Coordinated RNA 

sequencing and AGO2-immunoprecipitation RNA sequencing revealed miR-203 

directly targets a network of pro-survival genes after detachment to promote 

anoikis. Finally, I show that the elevation of four anoikis-related pro-survival miR-

203 target genes are elevated in breast cancers that have low miR-203.  
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Introduction 
 

Anoikis, cell death after detachment of epithelial cells from the extra 

cellular matrix (ECM) happens due to the loss of integrin signaling. Resistance to 

anoikis is a critical step in metastasis (reviewed in (Simpson et al., 2008)) 

however, the mechanism by which metastatic cells become resistant to anoikis is 

not well understood. Here, we performed genome wide small RNA sequencing 

analysis in anoikis-sensitive breast epithelial cells to determine changes in 

miRNA expression upon detachment from the ECM. We identified miR-203 as an 

anoikis effector miRNA and show that miR-203 is highly induced upon 

detachment and that inhibition of miR-203 results in a resistance to anoikis. 

Furthermore, we find that ectopic expression of miR-203 is sufficient to induce 

apoptosis in attached cells. Finally, we identified direct miR-203 target mRNAs 

through a dual functional- and expression-based RNA-sequencing approach. We 

show that a subset of miR-203 target genes contributes to cell survival and upon 

detachment, miR-203 targets this subset of mRNAs subsequently leading to 

detachment-induced apoptosis.  

 

The detachment-induced loss of integrin signaling triggers downstream 

intercellular signaling events leading to cell death. Many signaling pathways are 

known to be involved in anoikis, including FAK and RAF/MEK/ERK signaling. 

When cells are attached to the ECM, integrin signaling activates FAK which 

recruits and activates SRC. The activation of SRC then leads to 
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autophosphorylation and further activation of FAK, which activates PI3K and 

RAF/MEK/ERK signaling.  In addition to FAK, SRC activation also leads to 

phosphorylation and activation of EGFR, in a ligand-independent manner, which 

also activates RAF/MEK/ERK signaling. All of these signaling events in attached 

cells contribute to proliferation, growth, and survival of cells and when this 

signaling is lost upon detachment from the ECM it results in anoikis.  

 

Many studies to date have identified genes involved in anoikis whose 

expression is altered upon detachment (Pedanou et al., 2016; Reginato et al., 

2003; Schmelzle et al., 2007) leading to the hypothesis that anoikis is the 

consequence of global changes in gene expression upon detachment. While 

there have been studies that explore global mRNA expression changes upon 

detachment (Schmelzle et al., 2007), another mode of gene expression control 

that has yet to be well studied upon detachment is changes in microRNA 

(miRNA) expression. miRNAs control mRNA and protein expression by binding 

to the 3’UTRs of specific target genes which inhibits translation and degrades the 

mRNA. To date, few miRNAs have been shown to play a role in anoikis however, 

the global change in miRNA expression upon detachment has not been studied.  

 

While miRNAs have not been well studied in anoikis, they have been 

widely studied in breast cancer. Profiling studies have revealed multiple miRNAs 

that are either up- or down-regulated at different stages of breast cancer 
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progression (Luo et al., 2013; Wang and Wang, 2012). This led us to hypothesize 

that there are global changes in miRNA expression that are critical for anoikis 

and the alteration of these miRNAs in cancer could lead to anoikis resistance. 

Since the only studies to date that link miRNAs to anoikis investigate single (or a 

few) miRNAs, it is likely that we do not yet have a clear picture of the role of 

miRNAs during the process of anoikis.  

 

Here, we investigate changes in miRNA levels upon detachment of breast 

epithelial cells by small RNA sequencing. We show miR-203 is significantly 

induced upon detachment of cells and this induction is critical for anoikis. 

Additionally, we utilized a dual RNA-sequencing approach to identify direct miR-

203 target genes. We further show that a subset of these target genes 

contributes to cell survival and miR-203 targeted repression of these genes after 

detachment from the ECM contributes to anoikis. Finally, we found that four 

direct miR-203 anoikis-related target genes are significantly elevated in triple 

negative breast cancer, a subset of breast cancer where miR-203 has been 

shown to be highly downregulated compared to other types of breast cancer. 

Together, these results implicate miR-203 as an anoikis effector miRNA and 

suggest a link between decreased miR-203 expression and anoikis resistance in 

triple negative breast cancer.  

  



 

 
 

102 

 

Results 
 
 
Small RNA profiling identifies miR-203 as an anoikis effector in breast 

epithelial cells 

 
To investigate the role of miRNAs in anoikis we sought to measure 

changes in miRNA expression upon detachment of cells using small RNA 

sequencing (small RNA-seq). The small RNA-seq was performed in MCF10A 

cells, an immortalized but non-transformed breast epithelial cell line that is 

sensitive to anoikis in cell culture (Debnath et al., 2002; Reginato et al., 2003). 

Briefly, small RNA (18-24 nucleotides) was isolated from total RNA from attached 

MCF10A cells and detached MCF10A cells, cultured in suspension for 24 hours 

(on polyHEMA coated plates). After mapping the deep sequencing reads to the 

human miRNA genome, the analysis showed the miRNA content of each small 

RNA-seq sample was over 75% (Table 4.1). The deep sequencing analysis 

identified 9 upregulated miRNAs and 8 downregulated miRNAs that were greater 

than 100 counts per million in the sequencing reads and had P-values of less 

than 0.01 following detachment from the ECM (Table 4.2 and Figure 4.1). We 

were interested in the miRNAs that were upregulated post-detachment because 

the induction suggested that those miRNAs could be critical anoikis effector 

miRNAs.  
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To validate the upregulated miRNAs we first identified which miRNAs 

were either implicated as tumor suppressive miRNAs or were implicated as pro-

apoptosis miRNAs. We then measured the level of individual miRNAs in 

MCF10A cells after detachment by directed miRNA-qRT-PCR analysis. We 

found that 3 of these miRNAs, miR-197 (Yang et al., 2015), miR-324 (XU et al., 

2014), and miR-203 (Wang et al., 2013) were significantly induced in MCF10A 

cells following detachment for 24 and 48 hours (Figure 4.2).   

 

Both the small RNA-seq data and the miRNA-qRT-PCR revealed miR-203 

to be the most highly upregulated miRNA upon detachment, which we further 

confirmed by northern blot (Figure 4.3). Additionally, miR-203 has been shown to 

inhibit cancer cell invasion and proliferation (Benaich et al., 2014) and inhibits 

stem cell self-renewal (Yi et al., 2008). These data suggest that miR-203 is 

critical for anoikis and the loss of miR-203 potentially contributes to anoikis 

resistance in invasive cancers, therefore we focused our experiments on the role 

of miR-203 in anoikis. In order to identify the mechanism by which miR-203 is 

induced, we tested transcriptional activation of the precursor-miR-203 (pre-miR-

203). Increased transcription of the primary miR-203 (pri-miR-203) transcript 

would result in an increased expression of pre-miR-203 however, the results of 

Figure 4.4 show that only the mature miR-203 is significantly induced upon 

detachment whereas the expression of pre-miR-203 is not significantly changed. 

These results suggest that the induction of miR-203 is due to the increased 



 

 
 

104 

processing of mature miR-203 instead of increased transcription of the primary 

miR-203 transcript. 

 
miR-203 is critical for anoikis and is induced by the loss of integrin 

signaling 

 
 To determine if the induction of miR-203 promotes cell death after 

detachment from the ECM we ectopically expressed miR-203 in attached cells by 

transducing MCF10A cells with a retrovirus containing pre-miR-203 (Figure 4.5), 

which leads to high levels of mature miR-203 as a result of endogenous 

processing machinery (Isobe et al., 2014) or an empty vector control. The cells 

were treated with puromycin for 4 days after which survival was monitored by 

crystal violet staining and cell death was monitored by annexin-V.. The cells that 

contain the ectopically expressed pre-miR-203 show a significant decrease in 

survival (Figure 4.6) and a significant increase in cell death (Figure 4.7) as 

compared to an empty vector control in attached MCF10A cells.  This data 

demonstrates that the increased level of miR-203 causes cell death in MCF10A 

cells.  

 

 In order to prove that miR-203 is critical for detachment-induced apoptosis 

we performed inhibition experiments in MCF10A cells. Briefly, we transduced 

MCF10A cells with a lentiviral miR-203 inhibitor or a lentiviral scrambled control 

and cultured the cells in attached conditions or detached conditions for 96 hours 
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and analyzed cell death by annexin-V staining. We observed significantly 

decreased cell death in MCF10A cells expressing the miR-203 inhibitor upon 

detachment from the ECM as compared to the scrambled control expressing 

detached MCF10A cells (Figure 4.8). We confirmed the activity of the miR-203 

inhibitor in 293T cells with a GFP miR-203 sensor. The miR-203 sensor is 

manufactured to contain 2 miR-203 seed sequence sites in the 3’UTR of GFP so 

that increased GFP expression would indicate lower miR-203 activity and vice 

versa (Figure 4.9). This data shows that not only is miR-203 sufficient to cause 

cell death in MCF10A cells but it is necessary for normal levels of anoikis in 

MCF10A cells upon detachment from the ECM.   

 

 Anoikis occurs after cells detach from the ECM primarily because of the 

loss of integrin signaling (Frisch and Ruoslahti, 1997). We sought to confirm that 

induction of miR-203 after detachment is also primarily due to the loss of integrin 

signaling in order to solidify miR-203 as an anoikis effector. We restored integrin 

signaling in detached cells by adding growth factor reduced matrigel to the media 

and monitored the expression of miR-203 by miRNA-qRT-PCR. The results of 

Figure 4.10 show that the addition of growth factor reduced Matrigel basement 

membrane-like matrix, which restores integrin signaling, to the media significantly 

blocks the induction of miR-203 in detached cells. Therefore, miR-203 is induced 

following detachment from the ECM due to the loss of integrin signaling.  
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Identification of miR-203 target genes in breast epithelial cells through 

RNA-seq and AGO2-IP-RNA-seq  

 
 We next sought to determine the direct target genes that are critical for the 

function of miR-203 during anoikis by utilizing a dual unbiased, deep sequencing 

approach (Furuta et al., 2013). First, we performed RNA co-immunoprecipitation 

with an anti-Ago2 antibody in MCF10A cells expressing pre-miR-203 or an empty 

vector control followed by RNA-sequencing of the mRNAs from the Ago2-IP 

(Ago2-IP-Seq). A previous study has shown that the ectopically expressed 

miRNA overloads the RISC machinery in comparison to the endogenous 

miRNAs and the majority of mRNAs that are enriched in the Ago2-IP are direct 

targets of the miRNA of interest; however false positives are still a problem 

(Furuta et al., 2013). To rule out false positives from the AGO2-IP-Seq, we 

measured the global gene expression changes caused by the induction of miR-

203 by performing genome wide expression profiling RNA-sequencing in 

MCF10A cells that were transduced with either pre-miR-203 or an empty vector 

control. We then compared the negatively correlated genes in both sets of 

experiments (with p-values of less than 0.05) that were downregulated in the 

total-RNA-seq data but enriched in the AGO2-IP-RNA-seq data (Figure 4.11). 

We then compared the negatively correlated data with the list of predicted miR-

203 target genes from TargetScan (Appendix I). The combination of these data 
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analyses produced a list of 41 direct miR-203 target genes in MCF10A cells 

(Figure 4.12).   

 

 Recent evidence suggests that the dominant mechanism by which 

miRNAs repress their target genes is through mRNA degradation (Guo et al., 

2010) therefore, we validated miR-203 candidate target genes by monitoring 

mRNA expression using qRT-PCR analysis after ectopic expression of miR-203. 

We transduced MCF10A cells with pre-miR-203 or an empty vector control and 

monitored the expression of each target gene by qRT-PCR.  The results of 

Figure 4.13 show that 30 miR-203 target genes were significantly downregulated 

after ectopic expression of miR-203. Thus, these 30 genes are likely direct 

targets of miR-203 in MCF10A cells.  

 

 We then hypothesized that upon detachment, the induction of miR-203 

causes repression of at least a subset of miR-203 candidate target genes. To 

test this hypothesis, we measured the expression levels of the 41 miR-203 

candidate target gene mRNAs in detached MCF10A cells, cultured in suspension 

for 24 hours, by qRT-PCR analysis. The expression of 24 candidate target genes 

was significantly downregulated in detached cells as compared to attached 

MCF10A cells (Figure 4.14). These results suggest that the induction of miR-203 

after detachment of MCF10A cells leads to the downregulation of direct target 

mRNAs.  
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miR-203 targets a network of pro-survival genes to induce cell death upon 

detachment 

 
In the subset of the 24 miR-203 target genes that are downregulated upon 

detachment in MCF10A cells, 18 of those target genes correlate with the 

validated miR-203 target genes (Figures 4.13, 4.14 and Table 4.3).  After 

pathway and biological process analysis, these 18 anoikis-related miR-203 target 

genes do not seem to belong to the same pathway or contribute to the same 

biological process, therefore we hypothesized that these genes might contribute 

to cell survival and the repression of these genes upon miR-203 induction 

promotes anoikis. To test this hypothesis we transduced MCF10A cells with 

shRNAs against each of the 18 miR-203 anoikis-related target genes and 

monitored cell survival by crystal violet staining. Ten days after the shRNA 

transduction we stained the surviving cells with crystal violet to visualize the 

surviving colonies of each knockdown cell line. The results of Figure 4.15 show 

that the knockdown of 10 miR-203 target genes leads to some level of decreased 

survival or decreased proliferation in attached MCF10A cells as compared to a 

non-silencing (NS) control shRNA. We further confirmed these results by using a 

second unrelated shRNA against all 10 genes (Figure 4.16). These results 

suggest that miR-203 promotes anoikis by targeting and repressing a network of 

pro-survival genes in MCF10A cells upon detachment from the ECM.  
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miR-203 down regulation in invasive breast cancer cells contributes to 

anoikis resistance 

 
 Finally, miR-203 has previously been implicated as a tumor 

suppressive miRNA (Bueno et al., 2008) and as a suppressor of migration and 

invasion (Wang et al., 2012). Additionally, miR-203 has been shown to be highly 

downgregulated in triple negative breast cancer cells lines as compared to 

normal breast epithelial cells and less-invasive breast cancer cells lines by 

miRNA-microarray analysis (Luo et al., 2013). Certain subtypes of triple negative 

(not expressing the HER2, PR, or ER receptors, also named “basal-like”) breast 

cancers have been shown to be highly invasive and result in a poor prognosis 

(Cheang et al., 2008). These findings suggest the intriguing possibility that miR-

203 is critical for anoikis and that the loss of miR-203 and subsequent increase in 

anoikis resistance can contribute to invasiveness a subset of triple negative 

breast cancer cell lines.  

 

We sought to determine the role of downregulation of miR-203 in invasive 

triple negative breast cancer cells. First, consistent with previous studies (Luo et 

al., 2013) we observed that miR-203 is highly downregulated in two triple 

negative breast cancer cell lines, MDA-MB-231 and HS578T, as compared to 

MCF10A cells and less-invasive types of breast cancer cell lines, MCF7, BT474, 

and T47D cells (Figure 4.18). We have previously shown that all of these breast 

cancer cell lines are resistant to anoikis in cell culture (Pedanou et al., 2016). 
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Therefore, we proposed that miR-203 would not be induced upon detachment in 

these breast cancer cell lines, which could contribute to anoikis resistance. To 

test this hypothesis, we measured the expression of miR-203 by miRNA-qRT-

PCR in attached and detached MDA-MB-231 cells using MCF10A as a control. 

As expected, miR-203 was not induced upon detachment in MDA-MB-231 cells 

but was significantly induced upon detachment in MCF10A suggesting that miR-

203 is not functional in MDA-MB-231 cells (Figure 4.19). Next, we tested whether 

ectopic expression of miR-203 would be sufficient to decreased cell survival in 

MDA-MB-231 cells. We transduced MDA-MB-231 cells with pre-miR-203 or an 

empty vector control and monitored cell survival by crystal violet staining. Ten 

days after transduction we stained the cells with crystal violet to visualize the 

surviving colonies and found that the ectopic expression of miR-203 results in 

increased decreased survival or decreased proliferation in MDA-MB-231 cells. 

 

Finally, we sought to determine if the loss of miR-203 in triple negative 

breast cancer cells causes the elevation of the pro-survival anoikis-related miR-

203 target genes. We utilized The Cancer Genome Atlas (TCGA) database for 

breast cancer samples (Cancer Genome Atlas, 2012) and analyzed the 

expression of all 10 pro-survival anoikis-related miR-203 target genes (Figure 

4.15) in triple negative breast cancer tumors in comparison to the other 3 

subtypes of breast cancer (Her2, Luminal A, and Luminal B). Our analysis shows 

that 4 of these genes (WDR69, PRKAB1, HBEGF, and PRPS2) are significantly 
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elevated in triple negative breast cancer (Figure 4.21).  We next tested if the 

repression of these 4 elevated genes would lead to decreased survival in MDA-

MB-231 cells by transducing the cells with shRNAs against WDR69, PRKAB1, 

HBEGF, and PRPS2. Ten days after transduction we stained the cells with 

crystal violet to monitor the surviving cells. We show that the knockdown of all 4 

genes results in the decrease survival or decreased proliferation in MDA-MB-231 

cells (Figure 4.22). These results demonstrate that the elevation of WDR69, 

PRKAB1, HBEGF, and PRPS2 likely contributes to cell survival in triple negative 

breast cancer. Our results, together with previous studies that show the ectopic 

expression of miR-203 in MDA-MB-231 cells causes decreased invasion (Wang 

et al., 2012) suggests that the loss of miR-203 in triple negative breast cancer 

cells leads to anoikis resistance and contributes to the invasiveness of those 

cells.  
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Figures 
 
   

Sample Read Count % miRNA 

ATT_1 14,488,438 85.40% 

ATT_2 10,059,871 85.90% 

ATT_3 12,154,307 85.60% 

DET24H_1 18,775,691 85.50% 

DET24H_2 13,829,444 78.90% 

   

Table 4.1. Each sample for small RNA sequencing had a miRNA content of 
greater than 75%. After mapping to the human genome, the sequencing read 
count and percent miRNA for each attached (ATT) and detached (DET24H) 
small RNA sample from MCF10A cells is shown.  
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miRNA Log2 Fold Change P-Value 

hsa-miR-186-5p -4.618775671 8.10E-24 

hsa-miR-25-3p -3.028709298 2.33E-09 

hsa-miR-221-3p -2.975523674 1.34E-09 

hsa-miR-222-3p -2.905830044 6.66E-09 

hsa-miR-769-5p -2.117528652 0.000166001 

hsa-miR-99b-3p -1.792771293 0.002713491 

hsa-miR-33a-5p -1.752293009 0.00070066 

hsa-miR-671-5p -1.563884613 0.005425343 

hsa-miR-301a-3p 1.705978293 0.006965854 

hsa-miR-15a-5p 1.765685166 0.00754879 

hsa-miR-4301 1.824008742 0.004810525 

hsa-miR-197-3p 1.903970642 0.008652361 

hsa-miR-324-5p 1.941355323 0.007021097 

hsa-miR-15b-5p 1.96426179 0.00202066 

hsa-miR-1246 2.229184889 0.000488131 

hsa-miR-17-5p 2.856327723 3.27E-05 

hsa-miR-203a 3.313176801 1.62E-06 

   
 
 
  

Table 4.2. Changes in miRNA expression after detachment. The 
miRNAs that change in expression 24 hours post detachment in 
MCF10A cells are listed. The Log2 fold change is compared to attached 
MCF10A cells. All miRNAs included had a count per million that was 
greater than 100.  
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Figure 4.1. Several miRNAs show a significant change in expression 
upon detachment in MCF10A cells. Small RNA sequencing reveals that 9 
miRNAs are significantly (P<0.01) upregulated and 8 miRNAs are 
significantly (P<0.01) downregulated 24 hours after detachment in MCF10A 
cells.  
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Figure 4.2. Three miRNAs are significantly upregulated upon detachment 
in MCF10A cells. miRNA-qRT-PCR analysis of miR-203, miR-197, and miR-
324 at 24 and 48 hours post detachment in MCF10A cells. Statistics are 
compared to the values in attached cells, which were set to 1. U6 RNA was 
used as an internal control. Error bars indicate SD. *P<0.05; **P<0.01.  
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Figure 4.3. Confirmation of miR-203 upregulation upon detachment in 
MCF10A cells. (A) Northern blot analysis of miR-203 expression 24 and 48 
hours post detachment of MCF10A cells. (B) Quantification of the northern 
blot in A, using U6 as a loading control.  
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Figure 4.4. The induction of miR-203 is due to increased processing 
of the mature miRNA. (A) miRNA-qRT-PCR analysis of miR-203 in 
attached and detached MCF10A cells. U6 was used as an internal control. 
(B) qRT-PCR analysis of pre-miR-203 in the same attached and detached 
MCF10A samples used in A. RPL41 was used as an internal control.  Error 
bars indicate SD. **P<0.01. n.s.= not significant. 

n.s. 
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Figure 4.5. Ectopic expression of miR-203 in MCF10A cells. miRNA-
qRT-PCR analysis shows successful ectopic expression of miR-203 in 
MCF10A cells as compared to an empty vector control (EV).  Error bars 
indicate SD. **P<0.01. 
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Figure 4.6. Ectopic expression of miR-203 results in decreased cell 
survival or decreased proliferation in MCF10A cells. Crystal violet 
staining of MCF10A cells expressing vector or pre-miR-203.  
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Figure 4.7. Ectopic expression of miR-203 results in cell death in 
MCF10A cells. (A) Cell death, monitored by annexin-V staining, in MCF10A 
cells expressing an empty vector control or pre-miR-203. Error bars indicate 

SD. **P<0.01. (B) Representative FACS plots corresponding to A.  
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Figure 4.8. Inhibition of miR-203 causes resistance to anoikis in 
MCF10A cells. Cell death, monitored by annexin-V staining, in attached or 
detached (cultured in suspension for 96 h) MCF10A cells stably expressing a 
miR-203 inhibitor or a scrambled control. Error bars indicate SD. **P<0.01.  
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Figure 4.9. Confirmation of miR-203 inhibitor activity in 293T cells. 
Immunoblot analysis monitoring GFP expression after transfection of a 
GFP miR-203 sensor in 293T cells stably expressing either the miR-203 
inhibitor (miR-203i) or a scrambled control (SC). α–tubulin was monitored 
as a loading control.  
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Figure 4.10. The induction of miR-203 after detachment from the ECM is 
due to the loss of integrin signaling. miRNA-qRT-PCR analysis of miR-203 
in attached MCF10A cells or detached MCF10A cells cultured in suspension 
for 24 h and treated in the presence or absence of Matrigel. U6 was used as 
an internal control. Error bars indicate SD. 
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Figure 4.11. Schematic of the design of the dual RNA sequencing approach to 
identify direct targets of miR-203.  



 

 
 

125 

 

 
 
 
 
 
 
 
 
 
 
 

  

A
FA

P
1L2

A
K
A
P
7

A
N
K
H

C
4o

rf3
3

C
S
R
N
P
2

G
M

E
B
1

H
B
E
G

F

IF
IT

3

IM
P
A
C
T

K
IA

A
1430

K
LC

4

LI
N
7C

LN
X
2

M
A
P
4K

3

M
S
R
B
3

N
E
D
D
9

N
FIL

3

N
IP

A
L3

P
A
P
S
S
2

P
A
R
P
11

P
D
E
4D

P
D
E
6D

P
P
A
P
2B

P
R
K
A
B
1

P
R
P
S
2

P
S
M

D
5

R
A
P
G

E
F1

R
A
S
S
F6

R
P
R
D
2

R
P
R
D
2

S
E
C
24

D

S
E
M

A
5A

S
M

G
8

S
O

X
13

TP
63

TR
P
V
4

TTC
39

A

U
S
P
8

V
A
V
3

ZN
F28

1

ZN
F44

0

ZX
D
B

-2

-1

0

1

2

3

L
o

g
2

 F
o

ld
 C

h
a

n
g

e
miR-203 o/e

AGO2-IP

Figure 4.12. Forty-two candidate miR-203 target genes were identified by the 
dual RNA sequencing approach. Log2 fold change of genes that were 
significantly (P<0.05) enriched in the AGO2-IP sequencing and significantly 
(P<0.05) downregulated in the miR-203 ectopic expression RNA sequencing, all of 
which are also identified as potential miR-203 target genes in the Targetscan 
database.  
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Figure 4.13. Validation of thirty direct miR-203 target genes. qRT-PCR analysis 
of miR-203 target genes in MCF10A cells ectopically expressing miR-203 or an 
empty vector control. The expression of each gene is shown relative to that obtained 
in attached cells which was set to 1.  RPL41 was used as an internal control. Error 
bars indicate SD. *P<0.05; **P<0.01.   
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Figure 4.14. Twenty-five miR-203 target genes are significantly 
downregulated upon MCF10A cell detachment from the ECM. qRT-PCR 
analysis of the expression levels of miR-203 target genes in MCF10A cells 
cultured in suspension for 24 h. The expression of each gene is shown relative 
to that obtained in attached cells which was set to 1. RPL41 was used as an 
internal control. Error bars indicate SD. *P<0.05; **P<0.01.   
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Biological Process Gene Symbol Gene name

WDR69 dynein assembly factor with WD repeats 1

PDE6D phosphodiesterase 6D

PRKAB1 protein kinase AMP-activated non-catalytic subunit beta 1

HBEGF heparin binding EGF like growth facto

IFIT3 Interferon induced protein with tetratricopeptide repeats 3

SEMA5A semaphorin 5A

RPRD2 regulation of nuclear pre-mRNA domain containing 2 

SOX13 SRY-box 13

ZNF440 zinc finger protein 440

ZXDB zinc finger, X-linked, duplicated B 

Nucleotide biosynthesis PRPS2 phosphoribosyl pyrophosphate synthetase 2

Transporter ANKH ANKH inorganic pyrophosphate transport regulator

Cell adhesion NEDD9 neural precursor cell expressed, developmentally down-regulated 9

Cell differentiation PARP11 poly(ADP-ribose) polymerase family member 11 

KIAA1430 KIAA1430

LNX2 ligand of numb-protein X 2

C4orf33 chromosome 4 open reading frame 33 

PDE4D phosphodiesterase 4D

Signal Transduction

Positive regulation of cell migration or proliferation

Transcription regulation

Unkown 

Table 4.3. The list of miR-203 direct target genes that are degraded by 
miR-203 after detachment from the ECM in MCF10A cells. The target 
genes are sorted by biological process.  
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Figure 4.15. The knockdown of ten miR-203 target genes results in decreased 
cell survival or decreased proliferation in MCF10A cells. Crystal violet staining 
of MCF10A cells expressing shRNAs against ten direct miR-203 target genes or a 
NS control shRNA.  
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NS 

PRPS2 PDE6D C4orf33 SOX13 

SEMA5A WDR69 HBEGF NEDD9 

PRKAB1 KIAA1430 

 Figure 4.16. Confirmation of the results of Figure 4.15 with a second 
unrelated shRNA. Crystal violet staining of MCF10A cells expressing shRNAs 
against ten direct miR-203 target genes or a NS control shRNA.  
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Figure 4.17. Analysis miR-203 target shRNA knockdown efficiencies. qRT-
PCR analysis monitoring knockdown efficiencies of shRNAs directed against ten 
miR-203 target genes in MCF10A cells. Error bars indicate SD. **P<0.01.  
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Gene shRNA sequence 

C4ORF33 GAAGCTCTTTACCCTGTACCT 

HBEGF CTTCTCATGTTTAGGTACCAT 

KIAA1430 CCTCCCAAAGTGTTGGGATTA 

NEDD9 GCAGCTCAAGACCATAGTCAT 

PDE6D GCACATCCAGAGTGAGACTTT 

PRKAB1 GCCTGGCTATGGAACTAAATA 

PRPS2 GTCACAAACACAATTCCGCAA 

SEMA5A CCACAGATTACGGAACCATTA 

SOX13 CCTAAGACTATGTTGGTACTT 

WDR69 GCAGCAAGGATAATACCTGTA 

 

 
 
 
 
 
 
 
 
 
  

Table 4.4. List of shRNA sequences against ten miR-203 target genes.   
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Figure 4.18. miR-203 is highly downregulated in invasive breast cancer 
cell lines. miRNA-qRT-PCR analysis of miR-203 in 2 triple negative and 
invasive breast cancer cell lines (MDA-MB-231 and Hs578t) compared to 
MCF10A cells and 2 luminal type, non-invasive breast cancer cell lines (MCF7 
and T47D). U6 was used as an internal control. Error bars indicate SD. 
**P<0.01 
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Figure 4.19. miR-203 is not induced upon detachment in a triple negative 
breast cancer cell line. miRNA-qRT-PCR analysis of miR-203 in attached and 
detached MCF10A cells (left) and MDA-MB-231 cells (right). Each detached 
sample was compared to the attached sample of the same cell line, which was 
set to 1. U6 was used as an internal control.  Error bars indicate SD. **P<0.01 
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Figure 4.20. Ectopic expression of miR-203 causes decreased cell 
survival or decreased proliferation in a triple negative breast cancer cell 
line. (A) Crystal violet staining of MDA-MB-231 expressing an empty vector 
control or pre-miR-203. (B) Quantification of the crystal violet staining from A.  
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*	 *	
*	

*	
*	

*	*	*	*	

*	
*	*	

Figure 4.21. Four miR-203 target genes are elevated in triple negative 
breast cancer samples from the TCGA dataset. RNA-sequencing analysis 
of the TCGA dataset comparing the expression of miR-203 target genes in the 
four subtypes of breast cancer (Basal, Her2, Luminal A, and Luminal B). 
*P<0.05  
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NS WDR69 PRKAB1 PRPS2 HBEGF 

Figure 4.22. Knockdown of the four miR-203 target genes that are elevated 
in triple negative breast cancer results in decreased cell survival or 
decreased proliferation in a triple negative breast cancer cell line. Crystal 
violet staining of MDA-MB-231 cells expressing shRNAs directed against the 
four miR-203 target genes or a NS control.  
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Conclusions 
 

In this study, we have identified miR-203 as an anoikis effector miRNA. 

We initially discovered that miR-203 is induced upon detachment of breast 

epithelial cells through unbiased small RNA sequencing. We then found that 

miR-203 is both necessary and sufficient for detachment-induced cell death. 

Furthermore, we have identified several direct targets of miR-203 that act as pro-

survival genes in attached cells. We propose a model where, upon detachment, 

miR-203 is induced and subsequently binds to the 3’UTRs of direct target genes 

resulting in mRNA degradation of those pro-survival target genes finally resulting 

in anoikis (Figure 4.23).  

 

 These results both provide further insight into the mechanisms of 

detachment-induced cell death and further define the role of miR-203 as a growth 

and invasion suppressor miRNA. With this study we provide an intriguing link 

between miR-203 expression and function and anoikis resistance. As miR-203 

was previously identified to be a tumor-, migration-, and invasion-suppresor 

miRNA but has not been studied in the context of anoikis (Chen et al., 2015; 

Viticchie et al., 2011). 

 

 We have shown that the induction of miR-203 upon detachment is due to 

the loss of integrin signaling. Furthermore, we have demonstrated that this 
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induction is due to the increased processing of the mature miR-203 rather than 

increased transcriptional activation of the precursor miR-203. This is an intriguing 

result because the most common cause of elevated expression of specific 

miRNAs is due to the increased transcription of the precursor miRNA (Bail et al., 

2010; Calin et al., 2002). This is potentially one of the most interesting avenues 

of future research stemming from our investigation. Further research into the 

mechanism of increased processing of miR-203 upon the loss of integrin 

signaling would provide further understanding of the mechanism of miR-203 

during anoikis and potentially further our understanding of the loss of miR-203 in 

invasive breast cancer.  

 

 We have identified a network of pro-survival direct miR-203 target genes 

that are downregulated following the induction of miR-203, most likely by mRNA 

degradation. While these target genes are not known to be part of the same 

biological pathways (as shown in Table 4-4), we have identified that 10 of the 

target genes (SEC24D, PRPS2, HBEGF, WDR69, KIAA1430, PRKAB1, C4orf33, 

PDE6D, NEDD9, and SOX13) are pro-survival genes in MCF10A cells. Four of 

those pro-survival target genes (HBEGF, PRKAB1, PRPS2, and WDR69) are 

elevated in and potentially contribute to anoikis resistance in invasive breast 

cancer. Continued studies should concentrate on further defining the mechanism 

of how these genes contribute to cell survival.   
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 To date there has been no genome wide study of miRNAs involved in 

anoikis. There are only a few dozen directed studies of the role of specific 

miRNAs in anoikis, which leaves the field wide open for advances in miRNA 

research (Howe et al., 2012; Yu et al., 2013; Zhang et al., 2013). On the other 

hand, miRNAs have been very well studied in cancer, especially breast cancer 

(Hesse et al., 2013; Luo et al., 2013). This creates the possibility of correlating 

specific miRNA expression changes in anoikis with the corresponding expression 

level in the cancer of interest. We have done this with miR-203 by finding that 

miR-203 is induced upon detachment and subsequently found that miR-203 is 

highly downregulated invasive breast cancer cell lines. Since miR-203 was 

already implicated as a tumor- and invasion-suppressor, our data further defines 

the role of miR-203 and provides a link between miR-203 and anoikis resistance 

in cancer.  
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Figure 4.23.  Model of miR-203 during detachment. In attached cells miR-203 
is expressed at low levels, which leaves its pro-survival target genes expressed at 
normal levels leading to cell survival. Following detachment and the loss of 
integrin signaling, miR-203 is induced. The increased levels of miR-203 then bind 
to the 3’UTR of target genes and cause mRNA degradation of those target genes.  
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CHAPTER V: DISCUSSION AND CONCLUDING REMARKS 
 

Collectively, the results I present here in my dissertation reveal two novel 

anoikis pathways that provide further insight into the process of detachment-

induced apoptosis. My studies have revealed that (I) the histone demethylase, 

KDM3A is induced upon detachment from the ECM, which leads to cell death 

through the pro-apoptotic BNIP3 and BNIP3L BH3-only proteins and (II) miR-203 

is also induced following detachment from the ECM subsequently targeting and 

degrading a panel of pro-survival genes. Both of these pathways are 

dysfunctional in at least some types of breast cancer, which contributes to 

anoikis resistance in breast cancer cells.  

 

In my first investigation I used an unbiased genome wide shRNA screen to 

identify the H3K9me1/2 demethylase KDM3A as an anoikis effector. I show that 

the knockdown of KDM3A leads to anoikis resistance in a breast epithelial cell 

line. Furthermore, I found that KDM3A is transcriptionally induced upon 

detachment from the ECM due to the loss of integrin signaling and subsequent 

loss of FAK, EGFR and RAF/MEK/ERK signaling. I showed that KDM3A then 

demethylates H3K9me1/2 on the promoters of the pro-apoptotic proteins BNIP3 

and BNIP3L to promote anoikis. Finally, I revealed that KDM3A expression is low 

in human breast cancer samples and that the knockdown of Kdm3a causes a 

non-metastatic mouse breast carcinoma cell line to metastasize to the lungs. 
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Together, these results reveal a novel role for KDM3A in anoikis and provide 

insight into a potential mechanism of anoikis resistance.  

 

My results, combined with other published investigations discussed in 

Chapter I, suggest that there are multiple non-redundant pathways that promote 

anoikis, including the pathway that promotes Bim mediated cell death and the 

pathway identified in my study where KDM3A promotes BNIP3 and BNIP3L 

mediated cell death. Inhibition of each individual pathway results in 

approximately a 2-fold reduction in anoikis (Pedanou et al., 2016; Reginato et al., 

2003) suggesting that multiple factors are responsible for detachment induced 

cell death. To directly test this hypothesis, further experiments such as using 

shRNAs to knockdown both Bim and BNIP3 to determine if the double 

knockdown would result in a synergistic resistance to anoikis in detached 

MCF10A cells. These results could help to confirm that these pathways work 

separately from each other to result in anoikis.  

 

Although BNIP3 and BNIP3L, like Bim, are pro-apoptotic proteins they 

function differently than Bim, which could account for the results that BNIP3 and 

BNIP3L promote anoikis in a pathway that is separate from Bim. Bim is a classic 

BH3-only pro-apoptotic protein that functions primarily through BAX or BAK 

induced apoptosis (Willis et al., 2007). Alternatively, BNIP3 and BNIP3L are also 

BH3-only pro-apoptotic proteins that function through BAX or BAK induced 
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apoptosis but also function through Beclin-1 induced authophagy and possibly 

necrosis (Dhingra et al., 2014; Sowter et al., 2001). While Bim, BNIP3 and 

BNIP3L all function as general pro-apoptotic proteins, the specific mechanism of 

Bim differs from that of BNIP3 and BNIP3L leading to the possibility that these 

pro-apoptotic factors promote anoikis through separate mechanisms.  

 

In addition to the conclusions of my first investigation, I have also 

developed a novel assay to study anoikis in vivo. Classically, anoikis has been 

difficult to study in vivo. In cell culture experiments the cells can be forcibly 

detached from the ECM and grown in suspension whereas the same cannot be 

done in a mouse. This leaves many studies to only test tumor growth and 

metastasis in vivo to make inferences about anoikis instead of directly studying 

anoikis. The in vivo anoikis assay I present in my investigation takes advantage 

of the fact that normal epithelial cells require their native ECM signals to survive 

and when those cells encounter a foreign ECM the normal survival signaling 

would not be initiated leading to anoikis. I used a mouse breast epithelial cell line 

and injected this cell line into the lungs of syngeneic mice (via tail vein injection) 

with the premise that the cells should not survive in the foreign environment of 

the lung. As we expected, the vast majority of the control cells did not survive 

whereas a significantly higher number of the Kdm3a knockdown cells did survive. 

As this was consistent with my in vitro cell culture results, it shows that this assay 
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is sufficient to test anoikis in vivo and will now allow cell culture results to be 

confirmed in a mouse model. 

  

The basis of anoikis is that when cells detach from the ECM, integrin 

signaling is lost leading to cell death as discussed in depth in Chapter I, this was 

also the principle that both of my investigations were based on. However, I must 

add that while this is true in normal and non-malignant epithelial cells, such as 

MCF10A and MDCK cells (Frisch et al., 1996; Reginato et al., 2003), in most 

transformed cell lines integrin signaling is not lost upon detachment because 

some components of the pathway are constitutively activated (Shaw et al., 1997). 

This helps to explain why most cancer cell lines are not sensitive to anoikis in cell 

culture assays, as I showed for breast cancer cell lines in Figure 3.21.  

 

As stated in the Discussion of Chapter III, there have been differing 

conclusions about the function of KDM3A in cancer. I hypothesize that there are 

factors upstream of KDM3A, such as transcription factors or miRNAs that control 

the transcriptional activation of KDM3A and these factors may differ between 

tissue types and may even differ between subtypes of the same cancer type. We 

know that the inactivation of the FAK, EGFR, and RAF/MEK/ERK pathways 

leads to induction of KDM3A but we have not defined the exact mechanism of 

this induction. I hypothesize that either integrin, FAK, EGFR, and RAF/MEK/ERK 

signaling activate a transcriptional or translational repressor of KDM3A under 
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normal attached conditions or that the loss of these signaling pathways activates 

a transcriptional activator of KDM3A under detached conditions. There are 

examples in the literature of transcription and translation factors that are 

controlled by these signaling pathways (Decarlo et al., 2015; Gilley et al., 2003). 

A scientist following up on my KDM3A data could perform directed experiments 

with these known factors by using shRNA or CRISPR knockout to determine if 

the depletion of any of these transcription or translation factors affects the 

expression of KDM3A. Another method of testing this hypothesis would be to 

analyze the promoter of KDM3A for transcription factor binding sites and 

analyzing the interaction of those transcription factors in attached versus 

detached conditions. This hypothesis warrants further research to identify such 

factors and gain further insight into the role of KDM3A in cancer. Once these 

upstream factors are identified, their potential role in cancer might be able to 

explain the differences in KDM3A being both pro- and anti-oncogenic.  

 

In addition to transcription and translation factors that potentially control 

the expression of KDM3A, there is also the possibility that a miRNA could 

regulate KDM3A expression. Analyzing the 3’ UTR of KDM3A for miRNA seed 

sequences should reveal potential miRNA candidates. It would be especially 

interesting if one of the miRNAs identified as being significantly downregulated in 

Chapter IV of this dissertation were to control KDM3A expression so that in 

attached conditions the miRNA represses expression of KDM3A and upon 
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detachment and the loss of integrin signaling that miRNA is downregulated 

leading to increased expression of KDM3A.  After identification of a miRNA that 

controls KDM3A expression, it would be interesting to test if levels of that miRNA 

are controlled by FAK, EGFR, and/or RAK/MEK/ERK signaling which has been 

demonstrated in the past and would correlate well with all of my KDM3A data 

(Mito et al., 2013).  

 

While my results oppose most of the results in the other recently published 

study on KDM3A in breast cancer (Ramadoss et al., 2016), there is one 

unpublished observation that I made while performing my KDM3A knockdown 

experiments that could be consistent with the other published study. When I 

deplete KDM3A using shRNA in MCF10A cells I have observed that the cells 

seem to senesce, the cells proliferate slower than the non-silencing controls and 

the cells seem to flatten out on the plates. I have not measured this in any way 

so it is an unconfirmed opinion but it does warrant further investigation, as this 

would be consistent with the recent study from the Wang group. I hypothesize 

that the depletion of KDM3A causes MCF10A cells to senesce, which provides 

protection from anoikis upon detachment. The phenomenon of senescence being 

anti-apoptotic has been demonstrated in previous studies (Seluanov et al., 2001) 

and warrants further investigation in the case of KDM3A during anoikis. To test 

this hypothesis initially, one could assess the level of senescence following 

KDM3A knockdown through SA-beta-galactosidase staining (Dimri et al., 1995).  
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 In my KDM3A investigation, in collaboration with Dr. Peter Siegel’s lab at 

McGill University, we found that the knockdown of Kdm3a increased metastasis 

to the lungs, whereas the Wang group found that knockdown of KDM3A 

decreased metastasis to the lungs. These results stick out as the most glaring 

opposition between our investigations. While we used different model systems, 

ours was the 4T1 series of cell lines using syngeneic mice and the Wang group 

used a human breast cancer cell line with nude mice, both models were breast 

cancer so I would not anticipate such opposing results. While there is the 

unfortunate possibility that one of these studies could be due to some unknown 

experimental artifact, it should also be noted that the Wang group never 

performed a full metastatic assay where the cells are injected into the mammary 

fat pad and allowed to metastasize from there as we performed for my 

investigation. This could lead to some of the differences in results between the 

two studies. 

 

My data also seems to conflict with the previously published observation 

that hypoxia protects against anoikis in mammary epithelial cells (Whelan and 

Reginato, 2014). The conflict is that HIF1alpha transcriptionally activates KDM3A 

under hypoxic conditions (Beyer et al., 2008) and we observe that the induction 

of KDM3A is critical for normal levels of anoikis. There is another piece to this 

puzzle however, that the induction of BNIP3 by HIF1alpha leads to autophagic 
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cell death under hypoxic conditions (Azad et al., 2008). Both published results 

give conflicting views on the influence of hypoxia on cell death.  

 

Other aspects of the role of KDM3A that should be further studied are the 

global downstream transcriptional targets that are activated by KDM3A after 

detachment from the ECM. A genome wide ChIP-sequencing experiment in 

detached cells with both the KDM3A antibody and H3K9me1/2 antibodies would 

be a functional way of discovering all of the downstream targets of KDM3A. This 

avenue of study would offer even further insight into the function of KDM3A and 

would further define this novel anoikis pathway.  

 

Further animal studies could also be performed in order to delineate the 

role of KDM3A in breast cancer progression and anoikis resistance and could 

maybe resolve the discrepancies between my data and the Wang group’s 

KDM3A data. One could make a transgenic mouse with a conditional knock-in of 

KDM3A using a mammary specific promoter, such as WAP (Andres et al., 1988) 

in a mouse model of metastatic breast cancer (Fantozzi and Christofori, 2006). 

After the primary tumor has developed in the animals, we could add Cre, which 

would lead to expression of Kdm3a to determine if the ectopic expression of 

KDM3A would lead to decreased metastasis in this model. This experiment 

would constitute a “rescue” experiment that is missing from my study, as I used 
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RNAi experiments for the majority of the mechanistic studies in my investigation 

and used RNAi for all of the in vivo experiments.  

 

One of the classic controls for RNAi experiments is the rescue experiment, 

where the gene of interest is manipulated to be resistant to the shRNA or siRNA 

being used, and then the gene is ectopically expressed in the knockdown cell line 

(Jackson et al., 2003a). This is done to “rescue” the phenotype that is observed 

with the knockdown of the gene of interest and confirms that the RNAi results are 

most likely specific to the gene of interest. This control experiment is missing in 

both my KDM3A investigation and miR-203 investigation. Adding rescue 

experiments to all of the RNAi results in each study would strengthen the overall 

results and conclusions of each, especially in the in vivo studies of the KDM3A 

investigation. 

 

In Chapter III of this dissertation, many of the experiments I performed to 

support the hypothesis that KDM3A is novel anoikis effector genes involve 

depletion of KDM3A and other factors using shRNAs. While these experiments 

are standard in the field, they are not perfect because of the potential off target 

effects of shRNAs (Franceschini et al., 2014; Jackson et al., 2003b). In most 

experiments in both Chapter III and Chapter IV I tried to minimize the effect of 

off-target effects by using two shRNAs. Inconsistent results using two separate 

shRNAs for the same gene suggests that one of those shRNAs could be 
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targeting another gene that then affects the results of the assay. Our lab is 

especially careful with using two or more shRNAs when validating candidates 

from genome wide shRNA screens, where we rule out candidates if they only 

validate by one shRNA.  

  

There are two in vivo experiments in Chapter III in which I only used one 

shRNA (Figures 3-27 and 3-29). The results and conclusions from these 

experiments would have been stronger had I used two shRNAs to rule out off 

target effects. In the future, it should be a requirement for publication to use at 

least two shRNAs in each experiment. There is also one experiment in Chapter 

IV where I only used one shRNA (Figure 4.22) from which the conclusions would 

be strengthened by using at least one more shRNA against each of the four 

genes I tested. I would suggest that this should be done before the results of 

Chapter IV are published.  

 

Another limitation to my data is the lack of an integrin blocking experiment 

in the matrigel rescue experiments in Figure 3.7 and 4.10. For both experiments I 

used a growth factor reduced version of matrigel to limit the effect of growth 

factors in my results because I wanted to analyze the effect of integrin signaling 

alone and not growth factor signaling. However, there are likely residual growth 

factors in the matrigel (as it is labeled “reduced growth factors”, not “without 

growth factors”) so I should have included a control to demonstrate that the 
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results I observed were an effect of integrin signaling and not influenced by 

growth factor signaling. The addition of an integrin beta-1 blocking antibody to  

 

In my second investigation I used another unbiased genome wide 

approach, small RNA sequencing, to identify miR-203 as an anoikis effector 

miRNA in breast epithelial cells. My results show that miR-203 is significantly 

induced upon detachment from the ECM and the induction of miR-203 leads to 

degradation of a network of pro-survival target genes leading to anoikis. 

Furthermore, the loss of miR-203 expression in triple negative breast cancer and 

corresponding elevation of a subset of the pro-survival target genes likely 

contributes to the invasiveness of the triple negative subtype of breast cancer. 

Collectively, these results present a additional evidence toward the tumor and 

invasiveness-suppresive role of miR-203 and reveal a novel miRNA pathway 

involved in anoikis.  

 

Further studies should focus on the increased processing of miR-203 

upon detachment from the ECM. The majority of miRNA expression changes 

stem from the transcriptional control of the pri-miRNA however, I found that 

following detachment the levels of the precursor of miR-203 (pre-miR-203) 

remains constant whereas only the mature form is induced leading to the 

hypothesis that the loss of integrin signaling leads to the increased DICER 

processing of miR-203. Factors that regulate DICER processing and specifically 
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factors that control specific miRNA processing differences have been studied 

only in recent years. This leaves the opportunity of identifying a novel miRNA 

processing control mechanism, specifically for miR-203 processing after 

detachment.  

 

A limitation to the data in Chapter IV is that I only used crystal violet 

staining of colony forming assays to test our hypotheses about the effects of the 

knockdown of miR-203 target genes on cell survival (Figures 4.15, 4.16, 4.20, 

and 4.22).  While this assay does provide information about the effect of these 

knockdowns on cell survival, I am not able to specifically assess the effects. 

Colony forming assays can demonstrate differences in, but not distinguish 

between, cell survival, cell death, changes in proliferation, and cell senescence, 

all of which would alter the number of colonies in these assays. In order to 

definitively say that the knockdown of these pro-survival genes results in cell 

death, future experiments should monitor annexin-V levels by FACS analysis. 

Additionally, the crystal violet assays I have included are not quantitative as I 

performed them with the plan to only present the photo of the crystal violet 

stained cells. However, these assays can be done in a quantitative way by 

seeding very few cells and making sure that the assay is stained at a time point 

where the colonies in the control plates are easy to count. In the assays in my 

data the colonies in the control NS plates merged making it very difficult to count 

individual colonies.  
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Another aspect of miR-203 that deserves a great deal more research is 

the loss of miR-203 in triple negative breast cancers. This result was known from 

previous studies and I expanded on it by showing that 4 anoikis-related miR-203 

target genes are elevated in triple negative breast cancer, providing a link 

between anoikis resistance and an invasive form of breast cancer. The pro-

invasive and pro-oncogenic role of these target genes could each warrant 

additional study, which would give further insight into the miR-203 pathway in 

anoikis and invasive cancer. Secondly, miRNAs are being tested in pre-clinical 

studies and even some clinical trials as gene therapy (Reid et al., 2016). In vivo 

mouse model studies that use miR-203 expression to treat triple negative breast 

cancer would provide an answer as to whether miR-203 could be considered as 

a viable treatment for patients with triple negative breast cancer.  

 

Arguably the aspect of my second investigation that requires the most 

follow-up study is defining the role of the panel of 10 anoikis-related pro-survival 

target genes in normal attached cells (Figure 4.15). While a few of these genes 

have been implicated as pro-survival genes in previous studies (HBEGF and 

PRPS2), most of the genes have not been. My results suggest that these 10 

genes all play a role in cell survival and upon detachment these genes are 

repressed by miR-203, which contributes to anoikis. Investigating the specific 

pro-survival role of these 10 genes could each be its own investigation.  
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Research into the mechanism of anoikis resistance is important to fully 

understand metastasis, as there are two steps in the metastatic cascade where 

anoikis resistance in necessary. Metastatic cells resist anoikis first when tumor 

cells detach from the primary tumor and from their primary ECM and again when 

the tumor cell enters a secondary microenvironment and encounters an ECM 

with different composition and therefore different signaling molecules.  I have 

identified two novel pathways through which we have gained insight into anoikis 

resistance in breast cancer.  

 

In addition to KDM3A and miR-203, both of the genome wide screens I 

completed have lists of multiple potential anoikis effectors genes and miRNAS 

(Tables 3.1 and 4.2). Genome wide screens create huge datasets that leave you 

with a massive amount of leads to follow up on, these lists can act as a blueprint 

for further studies on anoikis and anoikis resistance in breast epithelial cells and 

could most likely continue to be studied for years to come. One thing that my 

studies have taught me is that the initial genome wide screen is the “easy” part of 

the experimental plan whereas deciding how to follow up on massive data sets 

can prove to be difficult. In both of my investigations I decided to follow and 

delineate the mechanism of one factor identified in each screen. On the other 

hand, other studies from the Green lab have taken a more network centered 

follow-up approach (Bhatnagar et al., 2014; Lin et al., 2014; Ma et al., 2014). 



 

 
 

156 

Either way, each genome wide study leaves a large amount of data that could 

potentially initiate a multitude of future investigations in the lab.   

 

Additionally, a systems biology approach that could incorporate the 

datasets from both of my investigations would likely give a clearer picture of the 

process of anoikis on a genome wide level. There do exist methods to integrate 

biological datasets that could be used to integrate the datasets I produced for my 

studies to define a biological network that is critical for anoikis in MCF10A cells 

(Gligorijević and Pržulj, 2015).  Another data integration approach is to input all of 

the genes and miRNAs from datasets in my dissertation into a Gene Ontology 

(GO, (Consortium, 2000)) or Ingenuity analysis (Raponi et al., 2004) to determine 

and common pathways or biological processes.  

 

Taken together, these two investigations have allowed me to gain an 

appreciation for the complexity of studying biological processes. In both of my 

research projects I studied the general process of anoikis and sought to identify 

novel anoikis pathways, in the first study I identified a novel anoikis effector gene, 

KDM3A, and in my second study I identified a novel anoikis effector miRNA, miR-

203. I have also shown that both KDM3A and miR-203 likely contribute to anoikis 

resistance in at least some breast cancers. In looking at the lists of genes and 

miRNAs that were generated from both of my projects, I conclude with the finding 

that anoikis, along with all other biological processes, is an extremely complex 
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process that cannot be defined from the mechanism of just one factor or 

pathway, however I propose that my investigations have moved the field one 

step forward towards the understanding of this complex process.  
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APPENDIX I 
 
List of predicted miR-203 target genes from Targetscan (www.targetscan.org) 
 

Target 
gene 

Representative 
transcript Gene name 

3-Sep NM_019106 septin 3 

AAK1 NM_014911 AP2 associated kinase 1 

ABCE1 NM_001040876 ATP-binding cassette, sub-family E (OABP), member 1 

ABL1 NM_005157 c-abl oncogene 1, non-receptor tyrosine kinase 

ABLIM3 NM_014945 actin binding LIM protein family, member 3 

ACADSB NM_001609 acyl-CoA dehydrogenase, short/branched chain 

ACO2 NM_001098 aconitase 2, mitochondrial 

ACSL1 NM_001995 acyl-CoA synthetase long-chain family member 1 

ACSL3 NM_004457 acyl-CoA synthetase long-chain family member 3 

ACSL6 NM_001009185 acyl-CoA synthetase long-chain family member 6 

ACTR10 NM_018477 actin-related protein 10 homolog (S. cerevisiae) 

ACVR2A NM_001616 activin A receptor, type IIA 

ACVR2B NM_001106 activin A receptor, type IIB 

ADAMTS15 NM_139055 ADAM metallopeptidase with thrombospondin type 1 motif, 15 

ADAMTS17 NM_139057 ADAM metallopeptidase with thrombospondin type 1 motif, 17 

ADAMTS5 NM_007038 ADAM metallopeptidase with thrombospondin type 1 motif, 5 

ADAMTS6 NM_197941 ADAM metallopeptidase with thrombospondin type 1 motif, 6 

ADAMTS8 NM_007037 ADAM metallopeptidase with thrombospondin type 1 motif, 8 

ADARB2 NM_018702 adenosine deaminase, RNA-specific, B2 

ADCY9 NM_001116 adenylate cyclase 9 

ADK NM_001123 adenosine kinase 

ADPGK NM_031284 ADP-dependent glucokinase 

ADRBK2 NM_005160 adrenergic, beta, receptor kinase 2 

AFAP1L2 NM_001001936 actin filament associated protein 1-like 2 

AFF2 NM_001169122 AF4/FMR2 family, member 2 

AFF4 NM_014423 AF4/FMR2 family, member 4 

AGPAT6 NM_178819 1-acylglycerol-3-phosphate O-acyltransferase 6  

AGPS NM_003659 alkylglycerone phosphate synthase 

AHR NM_001621 aryl hydrocarbon receptor 

AK4 NM_001005353 adenylate kinase 4 

AKAP13 NM_006738 A kinase (PRKA) anchor protein 13 

AKAP6 NM_004274 A kinase (PRKA) anchor protein 6 

http://www.targetscan.org/
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AKIRIN1 NM_001136275 akirin 1 

AKIRIN2 NM_018064 akirin 2 

AKT2 NM_001626 v-akt murine thymoma viral oncogene homolog 2 

ALG10B NM_001013620 
asparagine-linked glycosylation 10, alpha-1,2-
glucosyltransferase 

AMFR NM_001144 autocrine motility factor receptor 

AMOT NM_001113490 angiomotin 

AMOTL1 NM_130847 angiomotin like 1 

AMPD3 NM_000480 adenosine monophosphate deaminase 3 

ANGPTL1 NM_004673 angiopoietin-like 1 

ANKH NM_054027 ankylosis, progressive homolog (mouse) 

ANKRD13B NM_152345 ankyrin repeat domain 13B 

ANKRD13C NM_030816 ankyrin repeat domain 13C 

ANKRD17 NM_032217 ankyrin repeat domain 17 

ANKRD44 NM_001195144 ankyrin repeat domain 44 

ANKRD52 NM_173595 ankyrin repeat domain 52 

ANKRD7 NM_019644 ankyrin repeat domain 7 

ANO8 NM_020959 anoctamin 8 

ANP32A NM_006305 acidic (leucine-rich) nuclear phosphoprotein 32 family, member A 

ANP32E NM_001136478 acidic (leucine-rich) nuclear phosphoprotein 32 family, member E 

ANTXR2 NM_058172 anthrax toxin receptor 2 

ANXA4 NM_001153 annexin A4 

AP1S2 NM_003916 adaptor-related protein complex 1, sigma 2 subunit 

AP2B1 NM_001030006 adaptor-related protein complex 2, beta 1 subunit 

APBB2 NM_001166050 amyloid beta (A4) precursor protein-binding, family B, member 2 

APC NM_000038 adenomatous polyposis coli 

APLP1 NM_001024807 amyloid beta (A4) precursor-like protein 1 

APOOL NM_198450 apolipoprotein O-like 

APPL1 NM_012096 
adaptor protein, phosphotyrosine interaction, PH domain leucine 
zipper 1 

ARHGAP1 NM_004308 Rho GTPase activating protein 1 

ARHGAP32 NM_001142685 Rho GTPase activating protein 32 

ARHGAP42 NM_152432 Rho GTPase activating protein 42 

ARHGEF3 NM_001128615 Rho guanine nucleotide exchange factor (GEF) 3 

ARID1B NM_017519 AT rich interactive domain 1B (SWI1-like) 

ARID2 NM_152641 AT rich interactive domain 2 (ARID, RFX-like) 

ARID3B NM_006465 AT rich interactive domain 3B (BRIGHT-like) 

ARNTL NM_001030272 aryl hydrocarbon receptor nuclear translocator-like 

ARSB NM_000046 arylsulfatase B 

ASB4 NM_016116 ankyrin repeat and SOCS box containing 4 
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ASPH NM_001164750 aspartate beta-hydroxylase 

ASXL1 NM_015338 additional sex combs like 1 (Drosophila) 

ATG14 NM_014924 ATG14 autophagy related 14 homolog (S. cerevisiae) 

ATM NM_000051 ataxia telangiectasia mutated 

ATP10D NM_020453 ATPase, class V, type 10D 

ATP11B NM_014616 ATPase, class VI, type 11B 

ATP1B4 NM_001142447 ATPase, Na+/K+ transporting, beta 4 polypeptide 

ATP2B1 NM_001001323 ATPase, Ca++ transporting, plasma membrane 1 

ATP2C1 NM_001199179 ATPase, Ca++ transporting, type 2C, member 1 

ATP5G3 NM_001190329 
ATP synthase, H+ transporting, mitochondrial Fo complex, 
subunit C3 

B3GALNT2 NM_152490 beta-1,3-N-acetylgalactosaminyltransferase 2 

B3GNT5 NM_032047 
UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 
5 

BAGE2 NM_182482 B melanoma antigen family, member 2 

BAGE3 NM_182481 B melanoma antigen family, member 3 

BAHD1 NM_014952 bromo adjacent homology domain containing 1 

BANF1 NM_001143985 barrier to autointegration factor 1 

BCL11B NM_022898 B-cell CLL/lymphoma 11B (zinc finger protein) 

BCL2L2 NM_001199839 BCL2-like 2 

BCL7A NM_001024808 B-cell CLL/lymphoma 7A 

BEND4 NM_001159547 BEN domain containing 4 

BIRC5 NM_001012270 baculoviral IAP repeat containing 5 

BMI1 NM_005180 BMI1 polycomb ring finger oncogene 

BPTF NM_004459 bromodomain PHD finger transcription factor 

BSN NM_003458 bassoon (presynaptic cytomatrix protein) 

BTBD7 NM_001002860 BTB (POZ) domain containing 7 

C10orf46 NM_153810 chromosome 10 open reading frame 46 

C11orf68 NM_001135635 chromosome 11 open reading frame 68 

C11orf91 NM_001166692 chromosome 11 open reading frame 91 

C12orf4 NM_020374 chromosome 12 open reading frame 4 

C12orf75 NM_001145199 chromosome 12 open reading frame 75 

C13orf23 NM_025138 chromosome 13 open reading frame 23 

C14orf129 NM_016472 chromosome 14 open reading frame 129 

C14orf147 NM_138288 chromosome 14 open reading frame 147 

C14orf28 NM_001017923 chromosome 14 open reading frame 28 

C16orf45 NM_001142469 chromosome 16 open reading frame 45 

C18orf1 NM_001003674 chromosome 18 open reading frame 1 

C18orf34 NM_001105528 chromosome 18 open reading frame 34 

C1orf122 NM_001142726 chromosome 1 open reading frame 122 
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C1orf144 NM_001114600 chromosome 1 open reading frame 144 

C1orf172 NM_152365 chromosome 1 open reading frame 172 

C1orf173 NM_001002912 chromosome 1 open reading frame 173 

C1orf210 NM_001164829 chromosome 1 open reading frame 210 

C20orf11 NM_017896 chromosome 20 open reading frame 11 

C20orf24 NM_001199534 chromosome 20 open reading frame 24 

C2orf80 NM_001099334 chromosome 2 open reading frame 80 

C3orf15 NM_033364 chromosome 3 open reading frame 15 

C3orf17 NM_015412 chromosome 3 open reading frame 17 

C3orf63 NM_001112736 chromosome 3 open reading frame 63 

C4orf33 NM_001099783 chromosome 4 open reading frame 33 

C5orf41 NM_153607 chromosome 5 open reading frame 41 

C6orf35 NM_018452 chromosome 6 open reading frame 35 

C7orf42 NM_017994 chromosome 7 open reading frame 42 

C8orf4 NM_020130 chromosome 8 open reading frame 4 

C8orf44-
SGK3 NM_001204173 C8orf44-SGK3 readthrough 

CAB39 NM_001130849 calcium binding protein 39 

CABP7 NM_182527 calcium binding protein 7 

CACNA1E NM_000721 calcium channel, voltage-dependent, R type, alpha 1E subunit 

CACNG7 NM_031896 calcium channel, voltage-dependent, gamma subunit 7 

CALML4 NM_001031733 calmodulin-like 4 

CAMTA1 NM_001195563 calmodulin binding transcription activator 1 

CAPN14 NM_001145122 calpain 14 

CAPRIN1 NM_005898 cell cycle associated protein 1 

CAPS NM_004058 calcyphosine 

CASC4 NM_138423 cancer susceptibility candidate 4 

CASK NM_001126054 
calcium/calmodulin-dependent serine protein kinase (MAGUK 
family) 

CAV1 NM_001172895 caveolin 1, caveolae protein, 22kDa 

CBL NM_005188 Cas-Br-M (murine) ecotropic retroviral transforming sequence 

CBX5 NM_001127321 chromobox homolog 5 

CCDC141 NM_173648 coiled-coil domain containing 141 

CCDC148 NM_138803 coiled-coil domain containing 148 

CCDC50 NM_174908 coiled-coil domain containing 50 

CCNG1 NM_004060 cyclin G1 

CCNG2 NM_004354 cyclin G2 

CCNY NM_145012 cyclin Y 

CDH10 NM_006727 cadherin 10, type 2 (T2-cadherin) 

CDH6 NM_004932 cadherin 6, type 2, K-cadherin (fetal kidney) 
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CDHR3 NM_152750 cadherin-related family member 3 

CDK13 NM_003718 cyclin-dependent kinase 13 

CDKL2 NM_003948 cyclin-dependent kinase-like 2 (CDC2-related kinase) 

CDV3 NM_001134422 CDV3 homolog (mouse) 

CEP68 NM_015147 centrosomal protein 68kDa 

CHD2 NM_001271 chromodomain helicase DNA binding protein 2 

CHD9 NM_025134 chromodomain helicase DNA binding protein 9 

CHORDC1 NM_001144073 cysteine and histidine-rich domain (CHORD) containing 1 

CHST7 NM_019886 carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 7 

CIT NM_001206999 citron (rho-interacting, serine/threonine kinase 21) 

CITED2 NM_001168388 Cbp/p300-interacting transactivator 2 

CKAP2 NM_001098525 cytoskeleton associated protein 2 

CLASP2 NM_001207044 cytoplasmic linker associated protein 2 

CLDN1 NM_021101 claudin 1 

CLEC12B NM_001129998 C-type lectin domain family 12, member B 

CLLU1 NM_001025233 chronic lymphocytic leukemia up-regulated 1 

CLOCK NM_004898 clock homolog (mouse) 

CLSTN3 NM_014718 calsyntenin 3 

CLTC NM_004859 clathrin, heavy chain (Hc) 

CNNM3 NM_017623 cyclin M3 

CNTFR NM_001207011 ciliary neurotrophic factor receptor 

COL17A1 NM_000494 collagen, type XVII, alpha 1 

COL4A4 NM_000092 collagen, type IV, alpha 4 

COMMD3-
BMI1 NM_001204062 COMMD3-BMI1 readthrough 

COPS7B NM_022730 
COP9 constitutive photomorphogenic homolog subunit 7B 
(Arabidopsis) 

CORO1C NM_014325 coronin, actin binding protein, 1C 

COX10 NM_001303 COX10 homolog, cytochrome c oxidase assembly protein 

COX15 NM_004376 COX15 homolog, cytochrome c oxidase assembly protein (yeast) 

CPEB4 NM_030627 cytoplasmic polyadenylation element binding protein 4 

CPNE8 NM_153634 copine VIII 

CREB1 NM_004379 cAMP responsive element binding protein 1 

CREB3 NM_006368 cAMP responsive element binding protein 3 

CREBZF NM_001039618 CREB/ATF bZIP transcription factor 

CRK NM_005206 v-crk sarcoma virus CT10 oncogene homolog (avian) 

CSN2 NM_001891 casein beta 

CSRNP2 NM_030809 cysteine-serine-rich nuclear protein 2 

CTDSPL2 NM_016396 CTD small phosphatase like 2 

CTSS NM_001199739 cathepsin S 
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CUL1 NM_003592 cullin 1 

CUL2 NM_001198777 cullin 2 

CXorf1 NM_004709 chromosome X open reading frame 1 

CXorf21 NM_025159 chromosome X open reading frame 21 

CXorf23 NM_198279 chromosome X open reading frame 23 

CXorf38 NM_144970 chromosome X open reading frame 38 

CYP8B1 NM_004391 cytochrome P450, family 8, subfamily B, polypeptide 1 

D4S234E NM_001040101 
DNA segment on chromosome 4 (unique) 234 expressed 
sequence 

DAB2 NM_001343 
disabled homolog 2, mitogen-responsive phosphoprotein 
(Drosophila) 

DAZAP2 NM_001136264 DAZ associated protein 2 

DCC NM_005215 deleted in colorectal carcinoma 

DCP1A NM_018403 DCP1 decapping enzyme homolog A (S. cerevisiae) 

DCP2 NM_001242377 DCP2 decapping enzyme homolog (S. cerevisiae) 

DCUN1D3 NM_173475 DCN1, defective in cullin neddylation 1, domain containing 3 

DCUN1D4 NM_001040402 DCN1, defective in cullin neddylation 1, domain containing 4 

DCUN1D5 NM_032299 DCN1, defective in cullin neddylation 1, domain containing 5  

DCX NM_000555 doublecortin 

DDX6 NM_004397 DEAD (Asp-Glu-Ala-Asp) box polypeptide 6 

DGCR2 NM_001173533 DiGeorge syndrome critical region gene 2 

DGKB NM_004080 diacylglycerol kinase, beta 90kDa 

DGKE NM_003647 diacylglycerol kinase, epsilon 64kDa 

DGKZ NM_001105540 diacylglycerol kinase, zeta 

DICER1 NM_001195573 dicer 1, ribonuclease type III 

DIO2 NM_000793 deiodinase, iodothyronine, type II 

DIXDC1 NM_001037954 DIX domain containing 1 

DLG5 NM_004747 discs, large homolog 5 (Drosophila) 

DLX5 NM_005221 distal-less homeobox 5 

DMRT2 NM_001130865 doublesex and mab-3 related transcription factor 2 

DNAJC14 NM_032364 DnaJ (Hsp40) homolog, subfamily C, member 14 

DNAJC21 NM_001012339 DnaJ (Hsp40) homolog, subfamily C, member 21 

DNAJC24 NM_181706 DnaJ (Hsp40) homolog, subfamily C, member 24 

DNAJC27 NM_001198559 DnaJ (Hsp40) homolog, subfamily C, member 27 

DNAL1 NM_001201366 dynein, axonemal, light chain 1 

DNM1L NM_005690 dynamin 1-like 

DNMT3B NM_001207055 DNA (cytosine-5-)-methyltransferase 3 beta 

DOCK10 NM_014689 dedicator of cytokinesis 10 

DPH3 NM_001047434 DPH3, KTI11 homolog (S. cerevisiae) 

DPY19L4 NM_181787 dpy-19-like 4 (C. elegans) 
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DR1 NM_001938 
down-regulator of transcription 1, TBP-binding (negative cofactor 
2) 

DUSP5 NM_004419 dual specificity phosphatase 5 

DUT NM_001025248 deoxyuridine triphosphatase 

DYRK1A NM_001396 dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A 

E2F3 NM_001949 E2F transcription factor 3 

EBF1 NM_024007 early B-cell factor 1 

EBF3 NM_001005463 early B-cell factor 3 

ECHDC2 NM_001198961 enoyl CoA hydratase domain containing 2 

EDA NM_001005609 ectodysplasin A 

EDNRA NM_001166055 endothelin receptor type A 

EGR3 NM_001199880 early growth response 3 

EHF NM_001206615 ets homologous factor 

EID2 NM_153232 EP300 interacting inhibitor of differentiation 2 

EIF4E NM_001130678 eukaryotic translation initiation factor 4E 

EIF5A2 NM_020390 eukaryotic translation initiation factor 5A2 

ELK4 NM_001973 ELK4, ETS-domain protein (SRF accessory protein 1) 

ELL2 NM_012081 elongation factor, RNA polymerase II, 2 

ELMOD1 NM_001130037 ELMO/CED-12 domain containing 1 

ELMOD2 NM_153702 ELMO/CED-12 domain containing 2 

ELOVL6 NM_001130721 ELOVL fatty acid elongase 6 

EN2 NM_001427 engrailed homeobox 2 

ENAH NM_001008493 enabled homolog (Drosophila) 

EPC2 NM_015630 enhancer of polycomb homolog 2 (Drosophila) 

EPHA3 NM_005233 EPH receptor A3 

ERLIN2 NM_001003790 ER lipid raft associated 2 

ESR1 NM_000125 estrogen receptor 1 

ETS2 NM_005239 v-ets erythroblastosis virus E26 oncogene homolog 2 (avian) 

ETV1 NM_001163147 ets variant 1 

EVI2B NM_006495 ecotropic viral integration site 2B 

EYA4 NM_004100 eyes absent homolog 4 (Drosophila) 

FAM104A NM_001098832 family with sequence similarity 104, member A 

FAM114A1 NM_138389 family with sequence similarity 114, member A1 

FAM116A NM_152678 family with sequence similarity 116, member A 

FAM117B NM_173511 family with sequence similarity 117, member B 

FAM120C NM_017848 family with sequence similarity 120C 

FAM126A NM_032581 family with sequence similarity 126, member A 

FAM126B NM_173822 family with sequence similarity 126, member B 

FAM135B NM_015912 family with sequence similarity 135, member B 

FAM13A NM_001015045 family with sequence similarity 13, member A 
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FAM155A NM_001080396 family with sequence similarity 155, member A 

FAM170B NM_001164484 family with sequence similarity 170, member B 

FAM198B NM_001031700 family with sequence similarity 198, member B 

FAM55C NM_001134456 family with sequence similarity 55, member C 

FAM84A NM_145175 family with sequence similarity 84, member A 

FAM8A1 NM_016255 family with sequence similarity 8, member A1 

FASTKD2 NM_001136193 FAST kinase domains 2 

FAT3 NM_001008781 FAT tumor suppressor homolog 3 (Drosophila) 

FBXL19 NM_001099784 F-box and leucine-rich repeat protein 19 

FBXL20 NM_001184906 F-box and leucine-rich repeat protein 20 

FBXO11 NM_001190274 F-box protein 11 

FBXO28 NM_001136115 F-box protein 28 

FBXO44 NM_001014765 F-box protein 44 

FBXO45 NM_001105573 F-box protein 45 

FGD4 NM_139241 FYVE, RhoGEF and PH domain containing 4 

FGF2 NM_002006 fibroblast growth factor 2 (basic) 

FGF5 NM_004464 fibroblast growth factor 5 

FGL2 NM_006682 fibrinogen-like 2 

FJX1 NM_014344 four jointed box 1 (Drosophila) 

FKBP5 NM_001145775 FK506 binding protein 5 

FKBP7 NM_001135212 FK506 binding protein 7 

FLRT2 NM_013231 fibronectin leucine rich transmembrane protein 2 

FMOD NM_002023 fibromodulin 

FOSL2 NM_005253 FOS-like antigen 2 

FOXJ3 NM_001198850 forkhead box J3 

FOXK1 NM_001037165 forkhead box K1 

FOXK2 NM_004514 forkhead box K2 

FOXP1 NM_032682 forkhead box P1 

FOXP2 NM_001172766 forkhead box P2 

FUBP3 NM_003934 far upstream element (FUSE) binding protein 3 

G6PC2 NM_001081686 glucose-6-phosphatase, catalytic, 2 

GABARAPL
1 NM_031412 GABA(A) receptor-associated protein like 1 

GABBR2 NM_005458 gamma-aminobutyric acid (GABA) B receptor, 2 

GABRA1 NM_000806 gamma-aminobutyric acid (GABA) A receptor, alpha 1 

GABRA5 NM_000810 gamma-aminobutyric acid (GABA) A receptor, alpha 5 

GABRB2 NM_000813 gamma-aminobutyric acid (GABA) A receptor, beta 2 

GALNT10 NM_198321 
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase 10  

GALNT7 NM_017423 
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase 7 
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GATC NM_176818 
glutamyl-tRNA(Gln) amidotransferase, subunit C homolog 
(bacterial) 

GDA NM_001242506 guanine deaminase 

GDAP1 NM_001040875 ganglioside-induced differentiation-associated protein 1 

GEMIN8 NM_001042479 gem (nuclear organelle) associated protein 8 

GINS4 NM_032336 GINS complex subunit 4 (Sld5 homolog) 

GJB6 NM_001110219 gap junction protein, beta 6, 30kDa 

GLCCI1 NM_138426 glucocorticoid induced transcript 1 

GLI3 NM_000168 GLI family zinc finger 3 

GLS NM_014905 glutaminase 

GLTP NM_016433 glycolipid transfer protein 

GMFB NM_004124 glia maturation factor, beta 

GNG2 NM_053064 guanine nucleotide binding protein (G protein), gamma 2 

GNG4 NM_001098721 guanine nucleotide binding protein (G protein), gamma 4 

GOSR1 NM_001007024 golgi SNAP receptor complex member 1 

GP5 NM_004488 glycoprotein V (platelet) 

GPATCH1 NM_018025 G patch domain containing 1 

GPBP1L1 NM_021639 GC-rich promoter binding protein 1-like 1 

GPHN NM_001024218 gephyrin 

GPKOW NM_015698 G patch domain and KOW motifs 

GPR155 NM_001033045 G protein-coupled receptor 155 

GPR180 NM_180989 G protein-coupled receptor 180 

GPR26 NM_153442 G protein-coupled receptor 26 

GPR85 NM_001146265 G protein-coupled receptor 85 

GRHL3 NM_001195010 grainyhead-like 3 (Drosophila) 

GRPR NM_005314 gastrin-releasing peptide receptor 

GRSF1 NM_001098477 G-rich RNA sequence binding factor 1 

GTF3C3 NM_012086 general transcription factor IIIC, polypeptide 3, 102kDa 

GXYLT1 NM_001099650 glucoside xylosyltransferase 1 

GYS1 NM_001161587 glycogen synthase 1 (muscle) 

HADHB NM_000183 
hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase beta 
subunit 

HBEGF NM_001945 heparin-binding EGF-like growth factor 

HBP1 NM_012257 HMG-box transcription factor 1 

HCAR2 NM_177551 hydroxycarboxylic acid receptor 2 

HCAR3 NM_006018 hydroxycarboxylic acid receptor 3 

HCCS NM_001122608 holocytochrome c synthase 

HDX NM_001177478 highly divergent homeobox 

HERC2 NM_004667 hect domain and RLD 2 

HERPUD2 NM_022373 HERPUD family member 2 
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HLA-DOA NM_002119 major histocompatibility complex, class II, DO alpha 

HMGN2 NM_005517 high mobility group nucleosomal binding domain 2 

HNRNPA2
B1 NM_002137 heterogeneous nuclear ribonucleoprotein A2/B1 

HNRNPL NM_001005335 heterogeneous nuclear ribonucleoprotein L 

HNRNPR NM_001102397 heterogeneous nuclear ribonucleoprotein R 

HNRNPUL2 NM_001079559 heterogeneous nuclear ribonucleoprotein U-like 2 

HOMER1 NM_004272 homer homolog 1 (Drosophila) 

HOOK3 NM_032410 hook homolog 3 (Drosophila) 

HPS3 NM_032383 Hermansky-Pudlak syndrome 3 

HRASLS5 NM_001146728 HRAS-like suppressor family, member 5 

HS6ST3 NM_153456 heparan sulfate 6-O-sulfotransferase 3 

HSPB8 NM_014365 heat shock 22kDa protein 8 

HSPC159 NM_014181 galectin-related protein 

HTR2A NM_000621 5-hydroxytryptamine (serotonin) receptor 2A 

HTR2C NM_000868 5-hydroxytryptamine (serotonin) receptor 2C 

ID4 NM_001546 
inhibitor of DNA binding 4, dominant negative helix-loop-helix 
protein 

IFNA2 NM_000605 interferon, alpha 2 

IGF2R NM_000876 insulin-like growth factor 2 receptor 

IGFBP5 NM_000599 insulin-like growth factor binding protein 5 

IL15 NM_000585 interleukin 15 

IL24 NM_001185156 interleukin 24 

ILDR2 NM_199351 immunoglobulin-like domain containing receptor 2 

IMPA1 NM_001144878 inositol(myo)-1(or 4)-monophosphatase 1 

IMPACT NM_018439 Impact homolog (mouse) 

INA NM_032727 internexin neuronal intermediate filament protein, alpha 

INO80D NM_017759 INO80 complex subunit D 

INSIG1 NM_005542 insulin induced gene 1 

INTS6 NM_001039938 integrator complex subunit 6 

IPO7 NM_006391 importin 7 

IRS2 NM_003749 insulin receptor substrate 2 

ITGA2 NM_002203 integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor) 

ITGAV NM_001144999 integrin, alpha V 

ITPR2 NM_002223 inositol 1,4,5-trisphosphate receptor, type 2 

IVNS1ABP NM_006469 influenza virus NS1A binding protein 

JMY NM_152405 junction mediating and regulatory protein, p53 cofactor 

JOSD1 NM_014876 Josephin domain containing 1 

KAT6A NM_001099412 K(lysine) acetyltransferase 6A 

KAZN NM_001017999 kazrin, periplakin interacting protein 
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KCMF1 NM_020122 potassium channel modulatory factor 1 

KCNC1 NM_004976 
potassium voltage-gated channel, Shaw-related subfamily, 
member 1 

KCNE2 NM_172201 potassium voltage-gated channel, Isk-related family, member 2 

KCNJ15 NM_002243 potassium inwardly-rectifying channel, subfamily J, member 15 

KCNK10 NM_021161 potassium channel, subfamily K, member 10 

KCNN3 NM_001204087 potassium calcium-activated channel, subfamily N, member 3 

KCNQ5 NM_001160130 potassium voltage-gated channel, KQT-like subfamily, member 5 

KCTD16 NM_020768 potassium channel tetramerisation domain containing 16 

KCTD9 NM_017634 potassium channel tetramerisation domain containing 9 

KHDRBS1 NM_006559 
KH domain containing, RNA binding, signal transduction 
associated 1 

KIAA0240 NM_015349 KIAA0240 

KIAA0247 NM_014734 KIAA0247 

KIAA0664 NM_015229 KIAA0664 

KIAA0930 NM_001009880 KIAA0930 

KIAA1009 NM_014895 KIAA1009 

KIAA1147 NM_001080392 KIAA1147 

KIAA1211 NM_020722 KIAA1211 

KIAA1244 NM_020340 KIAA1244 

KIAA1429 NM_015496 KIAA1429 

KIAA1804 NM_032435 mixed lineage kinase 4 

KIAA1919 NM_153369 KIAA1919 

KIF2A NM_001098511 kinesin heavy chain member 2A 

KIRREL2 NM_032123 kin of IRRE like 2 (Drosophila) 

KLHL15 NM_030624 kelch-like 15 (Drosophila) 

KPNB1 NM_002265 karyopherin (importin) beta 1 

KRT1 NM_006121 keratin 1 

KRT35 NM_002280 keratin 35 

KRT85 NM_002283 keratin 85 

KYNU NM_001032998 kynureninase 

LAMC1 NM_002293 laminin, gamma 1 (formerly LAMB2) 

LAMP2 NM_013995 lysosomal-associated membrane protein 2 

LARP1B NM_018078 La ribonucleoprotein domain family, member 1B 

LASP1 NM_006148 LIM and SH3 protein 1 

LCOR NM_001170765 ligand dependent nuclear receptor corepressor 

LCORL NM_001166139 ligand dependent nuclear receptor corepressor-like 

LIFR NM_001127671 leukemia inhibitory factor receptor alpha 

LIMCH1 NM_001112717 LIM and calponin homology domains 1 

LIN28B NM_001004317 lin-28 homolog B (C. elegans) 
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LIN7C NM_018362 lin-7 homolog C (C. elegans) 

LMO4 NM_006769 LIM domain only 4 

LNX2 NM_153371 ligand of numb-protein X 2 

LOC100507
421 NM_001195278 transmembrane protein 178-like 

LOX NM_001178102 lysyl oxidase 

LPHN1 NM_001008701 latrophilin 1 

LPIN1 NM_145693 lipin 1 

LPO NM_001160102 lactoperoxidase 

LPP NM_001167671 LIM domain containing preferred translocation partner in lipoma 

LRAT NM_004744 
lecithin retinol acyltransferase(phosphatidylcholine-retinol O-
acyltransferase) 

LRRTM2 NM_015564 leucine rich repeat transmembrane neuronal 2 

LUZP2 NM_001009909 leucine zipper protein 2 

MAFB NM_005461 v-maf musculoaponeurotic fibrosarcoma oncogene homolog B 

MAGI1 NM_004742 membrane associated guanylate kinase, 1 

MAN1A2 NM_006699 mannosidase, alpha, class 1A, member 2 

MAP3K1 NM_005921 mitogen-activated protein kinase kinase kinase 1 

MAP3K13 NM_001242314 mitogen-activated protein kinase kinase kinase 13 

MAP3K2 NM_006609 mitogen-activated protein kinase kinase kinase 2 

MAPK10 NM_002753 mitogen-activated protein kinase 10 

MAPK1IP1
L NM_144578 mitogen-activated protein kinase 1 interacting protein 1-like 

MAPK9 NM_002752 mitogen-activated protein kinase 9 

MAPRE1 NM_012325 microtubule-associated protein, RP/EB family, member 1 

MAST4 NM_001164664 microtubule associated serine/threonine kinase family member 4 

MATR3 NM_001194954 matrin 3 

MBD6 NM_052897 methyl-CpG binding domain protein 6 

MBNL1 NM_021038 muscleblind-like (Drosophila) 

MBNL3 NM_001170701 muscleblind-like 3 (Drosophila) 

MCCC2 NM_022132 methylcrotonoyl-CoA carboxylase 2 (beta) 

MCTP2 NM_001159643 multiple C2 domains, transmembrane 2 

MED14 NM_004229 mediator complex subunit 14 

MEF2C NM_001131005 myocyte enhancer factor 2C 

MEGF11 NM_032445 multiple EGF-like-domains 11 

METTL8 NM_024770 methyltransferase like 8 

MEX3C NM_016626 mex-3 homolog C (C. elegans) 

MGAT3 NM_001098270 
mannosyl (beta-1,4-)-glycoprotein beta-1,4-N-
acetylglucosaminyltransferase 

MIDN NM_177401 midnolin 

MINA NM_001042533 MYC induced nuclear antigen 
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MKL2 NM_014048 MKL/myocardin-like 2 

MKLN1 NM_001145354 muskelin 1, intracellular mediator containing kelch motifs 

MLANA NM_005511 melan-A 

MLLT4 NM_001040000 myeloid/lymphoid or mixed-lineage leukemia ); translocated to, 4 

MMAB NM_052845 methylmalonic aciduria (cobalamin deficiency) cblB type 

MMP24 NM_006690 matrix metallopeptidase 24 (membrane-inserted) 

MON2 NM_015026 MON2 homolog (S. cerevisiae) 

MORF4L1 NM_006791 mortality factor 4 like 1 

MORF4L2 NM_001142418 mortality factor 4 like 2 

MPP3 NM_001932 
membrane protein, palmitoylated 3 (MAGUK p55 subfamily 
member 3) 

MRVI1 NM_001098579 murine retrovirus integration site 1 homolog 

MSL1 NM_001012241 male-specific lethal 1 homolog (Drosophila) 

MSR1 NM_002445 macrophage scavenger receptor 1 

MYEF2 NM_016132 myelin expression factor 2 

MYLK4 NM_001012418 myosin light chain kinase family, member 4 

MYO5A NM_000259 myosin VA (heavy chain 12, myoxin) 

MYOZ2 NM_016599 myozenin 2 

N4BP3 NM_015111 NEDD4 binding protein 3 

NAA30 NM_001011713 N(alpha)-acetyltransferase 30, NatC catalytic subunit 

NAA50 NM_025146 N(alpha)-acetyltransferase 50, NatE catalytic subunit 

NAP1L4 NM_005969 nucleosome assembly protein 1-like 4 

NBEA NM_001204197 neurobeachin 

NCALD NM_001040624 neurocalcin delta 

NCL NM_005381 nucleolin 

NDRG3 NM_022477 NDRG family member 3 

NDST3 NM_004784 N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3 

NEDD4L NM_001144964 
neural precursor cell expressed, developmentally down-
regulated 4-like 

NEDD9 NM_001142393 
neural precursor cell expressed, developmentally down-
regulated 9 

NEGR1 NM_173808 neuronal growth regulator 1 

NEMF NM_004713 nuclear export mediator factor 

NFIB NM_001190737 nuclear factor I/B 

NFIL3 NM_005384 nuclear factor, interleukin 3 regulated 

NFYA NM_002505 nuclear transcription factor Y, alpha 

NIPSNAP3
B NM_018376 nipsnap homolog 3B (C. elegans) 

NKD1 NM_033119 naked cuticle homolog 1 (Drosophila) 

NLK NM_016231 nemo-like kinase 

NMNAT2 NM_015039 nicotinamide nucleotide adenylyltransferase 2 
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NOVA1 NM_002515 neuro-oncological ventral antigen 1 

NPAS4 NM_178864 neuronal PAS domain protein 4 

NPR3 NM_000908 natriuretic peptide receptor C/guanylate cyclase C 

NPRL2 NM_006545 nitrogen permease regulator-like 2 (S. cerevisiae) 

NR1D2 NM_001145425 nuclear receptor subfamily 1, group D, member 2 

NR2C2 NM_003298 nuclear receptor subfamily 2, group C, member 2 

NR5A2 NM_003822 nuclear receptor subfamily 5, group A, member 2 

NRBP2 NM_178564 nuclear receptor binding protein 2 

NRG1 NM_001159995 neuregulin 1 

NRG2 NM_001184935 neuregulin 2 

NSL1 NM_001042549 NSL1, MIND kinetochore complex component, homolog 

NSUN7 NM_024677 NOP2/Sun domain family, member 7 

NUAK1 NM_014840 NUAK family, SNF1-like kinase, 1 

NUDT21 NM_007006 nudix (nucleoside diphosphate linked moiety X)-type motif 21 

NUFIP2 NM_020772 nuclear fragile X mental retardation protein interacting protein 2 

NUMBL NM_004756 numb homolog (Drosophila)-like 

NXPH3 NM_007225 neurexophilin 3 

OBFC1 NM_024928 oligonucleotide/oligosaccharide-binding fold containing 1 

OCLN NM_001205254 occludin 

OLFM1 NM_006334 olfactomedin 1 

OLIG3 NM_175747 oligodendrocyte transcription factor 3 

OPA1 NM_015560 optic atrophy 1 (autosomal dominant) 

OR2L13 NM_175911 olfactory receptor, family 2, subfamily L, member 13 

OR9Q1 NM_001005212 olfactory receptor, family 9, subfamily Q, member 1 

ORC2 NM_006190 origin recognition complex, subunit 2 

OSBPL1A NM_001242508 oxysterol binding protein-like 1A 

OSBPL8 NM_001003712 oxysterol binding protein-like 8 

OVOL1 NM_004561 ovo-like 1(Drosophila) 

PACS2 NM_001100913 phosphofurin acidic cluster sorting protein 2 

PADI2 NM_007365 peptidyl arginine deiminase, type II 

PAFAH1B2 NM_002572 platelet-activating factor acetylhydrolase 1b, catalytic subunit 2 

PAIP2B NM_020459 poly(A) binding protein interacting protein 2B 

PALM2 NM_001037293 paralemmin 2 

PAPD5 NM_001040284 PAP associated domain containing 5 

PAPSS2 NM_001015880 3'-phosphoadenosine 5'-phosphosulfate synthase 2 

PAQR3 NM_001040202 progestin and adipoQ receptor family member III 

PARM1 NM_015393 prostate androgen-regulated mucin-like protein 1 

PARP11 NM_020367 poly (ADP-ribose) polymerase family, member 11 

PARP16 NM_017851 poly (ADP-ribose) polymerase family, member 16 
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PARP8 NM_001178055 poly (ADP-ribose) polymerase family, member 8 

PBRM1 NM_018165 polybromo 1 

PCBP2 NM_001098620 poly(rC) binding protein 2 

PCDH10 NM_032961 protocadherin 10 

PCDH19 NM_001105243 protocadherin 19 

PCLO NM_014510 piccolo (presynaptic cytomatrix protein) 

PCSK1 NM_000439 proprotein convertase subtilisin/kexin type 1 

PCSK2 NM_001201528 proprotein convertase subtilisin/kexin type 2 

PDAP1 NM_014891 PDGFA associated protein 1 

PDE3B NM_000922 phosphodiesterase 3B, cGMP-inhibited 

PDE4D NM_001104631 phosphodiesterase 4D, cAMP-specific 

PDE6D NM_002601 phosphodiesterase 6D, cGMP-specific, rod, delta 

PDE6H NM_006205 phosphodiesterase 6H, cGMP-specific, cone, gamma 

PDGFD NM_025208 platelet derived growth factor D 

PDGFRA NM_006206 platelet-derived growth factor receptor, alpha polypeptide 

PDHA1 NM_000284 pyruvate dehydrogenase (lipoamide) alpha 1 

PDK3 NM_001142386 pyruvate dehydrogenase kinase, isozyme 3 

PDPN NM_001006624 podoplanin 

PDSS2 NM_020381 prenyl (decaprenyl) diphosphate synthase, subunit 2 

PEX3 NM_003630 peroxisomal biogenesis factor 3 

PHACTR4 NM_001048183 phosphatase and actin regulator 4 

PHC3 NM_024947 polyhomeotic homolog 3 (Drosophila) 

PHF12 NM_001033561 PHD finger protein 12 

PHF19 NM_015651 PHD finger protein 19 

PHKA1 NM_001122670 phosphorylase kinase, alpha 1 (muscle) 

PHLDA1 NM_007350 pleckstrin homology-like domain, family A, member 1 

PHLDA3 NM_012396 pleckstrin homology-like domain, family A, member 3 

PHLDB1 NM_001144758 pleckstrin homology-like domain, family B, member 1 

PIK3CA NM_006218 phosphoinositide-3-kinase, catalytic, alpha polypeptide 

PIK3CD NM_005026 phosphoinositide-3-kinase, catalytic, delta polypeptide 

PIM3 NM_001001852 pim-3 oncogene 

PITPNB NM_012399 phosphatidylinositol transfer protein, beta 

PKD2 NM_000297 polycystic kidney disease 2 (autosomal dominant) 

PLAA NM_001031689 phospholipase A2-activating protein 

PLAGL2 NM_002657 pleiomorphic adenoma gene-like 2 

PLD1 NM_001130081 phospholipase D1, phosphatidylcholine-specific 

PLD2 NM_002663 phospholipase D2 

PLEKHG3 NM_015549 pleckstrin homology domain containing, family G  member 3 

PNMA1 NM_006029 paraneoplastic antigen MA1 
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PPAP2B NM_003713 phosphatidic acid phosphatase type 2B 

PPM1A NM_021003 protein phosphatase, Mg2+/Mn2+ dependent, 1A 

PPM1D NM_003620 protein phosphatase, Mg2+/Mn2+ dependent, 1D 

PPM1E NM_014906 protein phosphatase, Mg2+/Mn2+ dependent, 1E 

PPP1CB NM_002709 protein phosphatase 1, catalytic subunit, beta isozyme 

PPP1R12A NM_001143885 protein phosphatase 1, regulatory (inhibitor) subunit 12A 

PPTC7 NM_139283 PTC7 protein phosphatase homolog (S. cerevisiae) 

PRELP NM_002725 proline/arginine-rich end leucine-rich repeat protein 

PRICKLE2 NM_198859 prickle homolog 2 (Drosophila) 

PRKAB1 NM_006253 protein kinase, AMP-activated, beta 1 non-catalytic subunit 

PRKAB2 NM_005399 protein kinase, AMP-activated, beta 2 non-catalytic subunit 

PRKAG2 NM_001040633 protein kinase, AMP-activated, gamma 2 non-catalytic subunit 

PRKCA NM_002737 protein kinase C, alpha 

PRKCB NM_002738 protein kinase C, beta 

PRKCI NM_002740 protein kinase C, iota 

PRKX NM_005044 protein kinase, X-linked 

PRPF19 NM_014502 PRP19/PSO4 pre-mRNA processing factor 19 homolog  

PRPS2 NM_001039091 phosphoribosyl pyrophosphate synthetase 2 

PRUNE2 NM_015225 prune homolog 2 (Drosophila) 

PSMA4 NM_001102667 proteasome (prosome, macropain) subunit, alpha type, 4 

PTCH1 NM_000264 patched 1 

PTGS1 NM_000962 prostaglandin-endoperoxide synthase 1  

PTP4A1 NM_003463 protein tyrosine phosphatase type IVA, member 1 

PTPN1 NM_002827 protein tyrosine phosphatase, non-receptor type 1 

PTPN3 NM_001145368 protein tyrosine phosphatase, non-receptor type 3 

PTPRB NM_001109754 protein tyrosine phosphatase, receptor type, B 

PURB NM_033224 purine-rich element binding protein B 

PXDN NM_012293 peroxidasin homolog (Drosophila) 

PXN NM_001080855 paxillin 

RAB10 NM_016131 RAB10, member RAS oncogene family 

RAB15 NM_198686 RAB15, member RAS onocogene family 

RAB22A NM_020673 RAB22A, member RAS oncogene family 

RAB27B NM_004163 RAB27B, member RAS oncogene family 

RAB31 NM_006868 RAB31, member RAS oncogene family 

RAB3B NM_002867 RAB3B, member RAS oncogene family 

RALB NM_002881 v-ral simian leukemia viral oncogene homolog B 

RAP1A NM_001010935 RAP1A, member of RAS oncogene family 

RAP2A NM_021033 RAP2A, member of RAS oncogene family 

RAPGEF1 NM_005312 Rap guanine nucleotide exchange factor (GEF) 1 
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RAPH1 NM_213589 
Ras association (RalGDS/AF-6) and pleckstrin homology 
domains 1 

RASAL2 NM_004841 RAS protein activator like 2 

RASGRF1 NM_001145648 Ras protein-specific guanine nucleotide-releasing factor 1 

RAVER2 NM_018211 ribonucleoprotein, PTB-binding 2 

RBBP5 NM_001193272 retinoblastoma binding protein 5 

RBM20 NM_001134363 RNA binding motif protein 20 

RBM25 NM_021239 RNA binding motif protein 25 

RBM44 NM_001080504 RNA binding motif protein 44 

RBM47 NM_001098634 RNA binding motif protein 47 

RBMS1 NM_002897 RNA binding motif, single stranded interacting protein 1 

RCN2 NM_002902 reticulocalbin 2, EF-hand calcium binding domain 

RERG NM_001190726 RAS-like, estrogen-regulated, growth inhibitor 

RFX7 NM_022841 regulatory factor X, 7 

RGS5 NM_001195303 regulator of G-protein signaling 5 

RGS7 NM_002924 regulator of G-protein signaling 7 

RHOQ NM_012249 ras homolog gene family, member Q 

RIOK3 NM_003831 RIO kinase 3 (yeast) 

RLIM NM_016120 ring finger protein, LIM domain interacting 

RMND5A NM_022780 required for meiotic nuclear division 5 homolog A (S. cerevisiae) 

RNASE4 NM_002937 ribonuclease, RNase A family, 4 

RNF144A NM_014746 ring finger protein 144A 

RNF38 NM_022781 ring finger protein 38 

ROBO2 NM_001128929 roundabout, axon guidance receptor, homolog 2 (Drosophila) 

RPGRIP1L NM_001127897 RPGRIP1-like 

RPL23A NM_000984 ribosomal protein L23a 

RPRD2 NM_015203 regulation of nuclear pre-mRNA domain containing 2 

RS1 NM_000330 retinoschisin 1 

RSBN1 NM_018364 round spermatid basic protein 1 

RSPO1 NM_001038633 R-spondin 1 

RTCD1 NM_001130841 RNA terminal phosphate cyclase domain 1 

RTKN2 NM_145307 rhotekin 2 

RUNX1T1 NM_001198625 runt-related transcription factor 1; translocated to, 1  

RUNX2 NM_001015051 runt-related transcription factor 2 

RWDD4 NM_152682 RWD domain containing 4 

SAMD5 NM_001030060 sterile alpha motif domain containing 5 

SAV1 NM_021818 salvador homolog 1 (Drosophila) 

SBF2 NM_030962 SET binding factor 2 

SCAF11 NM_004719 SR-related CTD-associated factor 11 

SCARA5 NM_173833 scavenger receptor class A, member 5 (putative) 
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SCARB2 NM_001204255 scavenger receptor class B, member 2 

SCCPDH NM_016002 saccharopine dehydrogenase (putative) 

SCEL NM_001160706 sciellin 

SCFD1 NM_016106 sec1 family domain containing 1 

SCGB2A1 NM_002407 secretoglobin, family 2A, member 1 

SCN1A NM_001165963 sodium channel, voltage-gated, type I, alpha subunit 

SCN9A NM_002977 sodium channel, voltage-gated, type IX, alpha subunit 

SDK1 NM_152744 sidekick homolog 1, cell adhesion molecule (chicken) 

SEC62 NM_003262 SEC62 homolog (S. cerevisiae) 

SEL1L NM_005065 sel-1 suppressor of lin-12-like (C. elegans) 

SELT NM_016275 selenoprotein T 

SEMA3A NM_006080 sema domain,  secreted, (semaphorin) 3A 

SEMA5A NM_003966 sema domain, (semaphorin) 5A 

SEMA6A NM_020796 sema domain,  (semaphorin) 6A 

SENP5 NM_152699 SUMO1/sentrin specific peptidase 5 

SEPN1 NM_020451 selenoprotein N, 1 

SESTD1 NM_178123 SEC14 and spectrin domains 1 

SETBP1 NM_015559 SET binding protein 1 

SETD7 NM_030648 SET domain containing (lysine methyltransferase) 7 

SFI1 NM_001007467 Sfi1 homolog, spindle assembly associated (yeast) 

SFRP1 NM_003012 secreted frizzled-related protein 1 

SGK3 NM_001033578 serum/glucocorticoid regulated kinase family, member 3 

SGK494 NM_001174103 uncharacterized serine/threonine-protein kinase SgK494 

SGMS2 NM_001136257 sphingomyelin synthase 2 

SGTB NM_019072 
small glutamine-rich tetratricopeptide repeat (TPR)-containing, 
beta 

SH3BGR NM_001001713 SH3 domain binding glutamic acid-rich protein 

SH3BGRL2 NM_031469 SH3 domain binding glutamic acid-rich protein like 2 

SHMT1 NM_004169 serine hydroxymethyltransferase 1 (soluble) 

SIK1 NM_173354 salt-inducible kinase 1 

SIK2 NM_015191 salt-inducible kinase 2 

SIX3 NM_005413 SIX homeobox 3 

SLC10A2 NM_000452 solute carrier family 10  member 2 

SLC12A2 NM_001046 solute carrier family 12 member 2 

SLC12A5 NM_001134771 solute carrier family 12 member 5 

SLC16A2 NM_006517 solute carrier family 16, member 2 

SLC22A23 NM_015482 solute carrier family 22, member 23 

SLC24A1 NM_004727 solute carrier family 24, member 1 

SLC24A2 NM_001193288 solute carrier family 24, member 2 

SLC25A23 NM_024103 solute carrier family25, member 23 
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SLC25A36 NM_001104647 solute carrier family 25, member 36 

SLC26A9 NM_052934 solute carrier family 26, member 9 

SLC28A3 NM_001199633 solute carrier family 28 (sodium-coupled nucleoside transporter) 

SLC2A13 NM_052885 
solute carrier family 2 (facilitated glucose transporter), member 
13 

SLC2A3 NM_006931 solute carrier family 2 (facilitated glucose transporter), member 3 

SLC30A6 NM_001193513 solute carrier family 30 (zinc transporter), member 6 

SLC30A7 NM_001144884 solute carrier family 30 (zinc transporter), member 7 

SLC39A1 NM_014437 solute carrier family 39 (zinc transporter), member 1 

SLC39A9 NM_018375 solute carrier family 39 (zinc transporter), member 9 

SLC4A4 NM_001098484 
solute carrier family 4, sodium bicarbonate cotransporter, 
member 4 

SLC5A12 NM_178498 
solute carrier family 5 (sodium/glucose cotransporter), member 
12 

SLC7A14 NM_020949 solute carrier family 7 (orphan transporter), member 14 

SLCO3A1 NM_013272 solute carrier organic anion transporter family, member 3A1 

SLMAP NM_007159 sarcolemma associated protein 

SLMO2 NM_016045 slowmo homolog 2 (Drosophila) 

SMAD3 NM_001145102 SMAD family member 3 

SMAD9 NM_001127217 SMAD family member 9 

SMU1 NM_018225 smu-1 suppressor of mec-8 and unc-52 homolog (C. elegans) 

SMURF1 NM_001199847 SMAD specific E3 ubiquitin protein ligase 1 

SNAI2 NM_003068 snail homolog 2 (Drosophila) 

SNAP91 NM_001242792 synaptosomal-associated protein, 91kDa homolog (mouse) 

SNN NM_003498 stannin 

SNRPD1 NM_006938 small nuclear ribonucleoprotein D1 polypeptide 16kDa 

SNX13 NM_015132 sorting nexin 13 

SNX24 NM_014035 sorting nexin 24 

SOCS3 NM_003955 suppressor of cytokine signaling 3 

SOCS6 NM_004232 suppressor of cytokine signaling 6 

SOCS7 NM_014598 suppressor of cytokine signaling 7 

SON NM_138927 SON DNA binding protein 

SOX13 NM_005686 SRY (sex determining region Y)-box 13 

SP1 NM_003109 Sp1 transcription factor 

SP4 NM_003112 Sp4 transcription factor 

SPARC NM_003118 secreted protein, acidic, cysteine-rich (osteonectin) 

SPATA13 NM_001166271 spermatogenesis associated 13 

SPATA5 NM_145207 spermatogenesis associated 5 

SPEN NM_015001 spen homolog, transcriptional regulator (Drosophila) 

SPOPL NM_001001664 speckle-type POZ protein-like 

SPTBN1 NM_003128 spectrin, beta, non-erythrocytic 1 
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SPTY2D1 NM_194285 SPT2, Suppressor of Ty, domain containing 1 (S. cerevisiae) 

SRA1 NM_001035235 steroid receptor RNA activator 1 

SRC NM_005417 v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog 

SRD5A2 NM_000348 steroid-5-alpha-reductase, alpha polypeptide 2  

SRSF1 NM_001078166 serine/arginine-rich splicing factor 1 

SRSF10 NM_001191005 serine/arginine-rich splicing factor 10 

SRSF12 NM_080743 serine/arginine-rich splicing factor 12 

SRSF3 NM_003017 serine/arginine-rich splicing factor 3 

SS18L1 NM_198935 synovial sarcoma translocation gene on chromosome 18-like 1 

SSBP3 NM_001009955 single stranded DNA binding protein 3 

ST8SIA4 NM_005668 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 

STAC2 NM_198993 SH3 and cysteine rich domain 2 

STAG3L4 NM_022906 stromal antigen 3-like 4 

STEAP1 NM_012449 six transmembrane epithelial antigen of the prostate 1 

STON1 NM_001198595 stonin 1 

STRBP NM_001171137 spermatid perinuclear RNA binding protein 

STRN NM_003162 striatin, calmodulin binding protein 

STX16 NM_001001433 syntaxin 16 

STXBP5L NM_014980 syntaxin binding protein 5-like 

SUDS3 NM_022491 suppressor of defective silencing 3 homolog (S. cerevisiae) 

SV2B NM_001167580 synaptic vesicle glycoprotein 2B 

SYNC NM_001161708 syncoilin, intermediate filament protein 

SYNCRIP NM_001159673 synaptotagmin binding, cytoplasmic RNA interacting protein 

SYNJ1 NM_001160302 synaptojanin 1 

TADA1 NM_053053 transcriptional adaptor 1 

TADA2B NM_152293 transcriptional adaptor 2B 

TAF9B NM_015975 
TAF9B RNA polymerase II, TATA box binding protein (TBP)-
associated factor 

TARDBP NM_007375 TAR DNA binding protein 

TBC1D15 NM_001146213 TBC1 domain family, member 15 

TBC1D9B NM_015043 TBC1 domain family, member 9B (with GRAM domain) 

TBK1 NM_013254 TANK-binding kinase 1 

TBX3 NM_005996 T-box 3 

TCF12 NM_003205 transcription factor 12 

TCF24 NM_001193502 transcription factor 24 

TCF4 NM_001083962 transcription factor 4 

TDRD6 NM_001010870 tudor domain containing 6 

TEDDM1 NM_172000 transmembrane epididymal protein 1 

TESK1 NM_006285 testis-specific kinase 1 

TFAP2B NM_003221 transcription factor AP-2 beta (activating enhancer binding 
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protein 2 beta) 

TFDP2 NM_001178138 transcription factor Dp-2 (E2F dimerization partner 2) 

TGFB2 NM_001135599 transforming growth factor, beta 2 

TGIF2-
C20ORF24 NM_001199535 TGIF2-C20orf24 readthrough 

THRB NM_000461 thyroid hormone receptor, beta  

THSD7A NM_015204 thrombospondin, type I, domain containing 7A 

TLK2 NM_001112707 tousled-like kinase 2 

TLL2 NM_012465 tolloid-like 2 

TMED10 NM_006827 transmembrane emp24-like trafficking protein 10 (yeast) 

TMEM132A NM_017870 transmembrane protein 132A 

TMEM136 NM_001198670 transmembrane protein 136 

TMEM182 NM_144632 transmembrane protein 182 

TMEM237 NM_001044385 transmembrane protein 237 

TMEM33 NM_018126 transmembrane protein 33 

TMOD2 NM_001142885 tropomodulin 2 (neuronal) 

TNFRSF8 NM_001243 tumor necrosis factor receptor superfamily, member 8 

TNFSF15 NM_001204344 tumor necrosis factor (ligand) superfamily, member 15 

TNN NM_022093 tenascin N 

TNPO1 NM_002270 transportin 1 

TNRC6B NM_001024843 trinucleotide repeat containing 6B 

TNRC6C NM_001142640 trinucleotide repeat containing 6C 

TOR1AIP2 NM_001199260 torsin A interacting protein 2 

TOX3 NM_001080430 TOX high mobility group box family member 3 

TP63 NM_001114978 tumor protein p63 

TRA2B NM_004593 transformer 2 beta homolog (Drosophila) 

TRAM2 NM_012288 translocation associated membrane protein 2 

TRAPPC6B NM_001079537 trafficking protein particle complex 6B 

TRERF1 NM_033502 transcriptional regulating factor 1 

TRIM2 NM_001130067 tripartite motif containing 2 

TRIM71 NM_001039111 tripartite motif containing 71 

TRMT1L NM_001202423 TRM1 tRNA methyltransferase 1-like 

TRPS1 NM_014112 trichorhinophalangeal syndrome I 

TRPV3 NM_145068 
transient receptor potential cation channel, subfamily V, member 
3 

TRPV4 NM_001177428 
transient receptor potential cation channel, subfamily V, member 
4 

TSHZ2 NM_001193421 teashirt zinc finger homeobox 2 

TTC39A NM_001080494 tetratricopeptide repeat domain 39A 

TUSC2 NM_007275 tumor suppressor candidate 2 

TWF1 NM_001242397 twinfilin, actin-binding protein, homolog 1 (Drosophila) 
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TXLNG NM_001168683 taxilin gamma 

TXNDC16 NM_001160047 thioredoxin domain containing 16 

U2SURP NM_001080415 U2 snRNP-associated SURP domain containing 

UBASH3B NM_032873 ubiquitin associated and SH3 domain containing B 

UBE2I NM_003345 ubiquitin-conjugating enzyme E2I 

UBE2K NM_001111112 ubiquitin-conjugating enzyme E2K 

UBP1 NM_001128160 upstream binding protein 1 (LBP-1a) 

UBR1 NM_174916 ubiquitin protein ligase E3 component n-recognin 1 

UCHL5 NM_001199261 ubiquitin carboxyl-terminal hydrolase L5 

UHRF1BP1 NM_017754 UHRF1 binding protein 1 

UPF2 NM_015542 UPF2 regulator of nonsense transcripts homolog (yeast) 

USP15 NM_006313 ubiquitin specific peptidase 15 

VAMP1 NM_014231 vesicle-associated membrane protein 1 (synaptobrevin 1) 

VAPA NM_003574 
VAMP (vesicle-associated membrane protein)-associated protein 
A 

VASH2 NM_001136474 vasohibin 2 

VAV3 NM_001079874 vav 3 guanine nucleotide exchange factor 

VCPIP1 NM_025054 
valosin containing protein (p97)/p47 complex interacting protein 
1 

VEGFA NM_001025366 vascular endothelial growth factor A 

VGLL4 NM_001128219 vestigial like 4 (Drosophila) 

VPS37A NM_001145152 vacuolar protein sorting 37 homolog A (S. cerevisiae) 

VSNL1 NM_003385 visinin-like 1 

VTI1A NM_145206 vesicle transport through interaction with t-SNAREs homolog 1A 

VWA3B NM_144992 von Willebrand factor A domain containing 3B 

WAC NM_016628 WW domain containing adaptor with coiled-coil 

WDFY3 NM_014991 WD repeat and FYVE domain containing 3 

WDR3 NM_006784 WD repeat domain 3 

WDR37 NM_014023 WD repeat domain 37 

WDR52 NM_001164496 WD repeat domain 52 

WRNIP1 NM_020135 Werner helicase interacting protein 1 

WTAP NM_152857 Wilms tumor 1 associated protein 

WWC3 NM_015691 WWC family member 3 

XKR6 NM_173683 XK, Kell blood group complex subunit-related family, member 6 

XPO4 NM_022459 exportin 4 

XYLT1 NM_022166 xylosyltransferase I 

YPEL4 NM_145008 yippee-like 4 (Drosophila) 

YWHAQ NM_006826 
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
protein 

ZAK NM_133646 sterile alpha motif and leucine zipper containing kinase AZK 

ZBTB44 NM_014155 zinc finger and BTB domain containing 44 
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ZBTB46 NM_025224 zinc finger and BTB domain containing 46 

ZBTB7B NM_015872 zinc finger and BTB domain containing 7B 

ZC3H12D NM_207360 zinc finger CCCH-type containing 12D 

ZC3H13 NM_015070 zinc finger CCCH-type containing 13 

ZC4H2 NM_001178032 zinc finger, C4H2 domain containing 

ZCCHC14 NM_015144 zinc finger, CCHC domain containing 14 

ZDHHC15 NM_001146257 zinc finger, DHHC-type containing 15 

ZDHHC20 NM_153251 zinc finger, DHHC-type containing 20 

ZEB1 NM_001128128 zinc finger E-box binding homeobox 1 

ZFHX3 NM_001164766 zinc finger homeobox 3 

ZFHX4 NM_024721 zinc finger homeobox 4 

ZFP1 NM_153688 zinc finger protein 1 homolog (mouse) 

ZFP106 NM_022473 zinc finger protein 106 homolog (mouse) 

ZMIZ1 NM_020338 zinc finger, MIZ-type containing 1 

ZMYM2 NM_001190964 zinc finger, MYM-type 2 

ZMYM4 NM_005095 zinc finger, MYM-type 4 

ZMYND11 NM_001202464 zinc finger, MYND-type containing 11 

ZNF148 NM_021964 zinc finger protein 148 

ZNF236 NM_007345 zinc finger protein 236 

ZNF275 NM_001080485 zinc finger protein 275 

ZNF281 NM_012482 zinc finger protein 281 

ZNF292 NM_015021 zinc finger protein 292 

ZNF532 NM_018181 zinc finger protein 532 

ZNF592 NM_014630 zinc finger protein 592 

ZNF608 NM_020747 zinc finger protein 608 

ZNF652 NM_001145365 zinc finger protein 652 

ZNF654 NM_018293 zinc finger protein 654 

ZNF704 NM_001033723 zinc finger protein 704 

ZNF831 NM_178457 zinc finger protein 831 

ZNHIT6 NM_001170670 zinc finger, HIT-type containing 6 

ZNRF3 NM_001206998 zinc and ring finger 3 

ZRANB2 NM_005455 zinc finger, RAN-binding domain containing 2 

ZSWIM4 NM_023072 zinc finger, SWIM-type containing 4 

ZXDB NM_007157 zinc finger, X-linked, duplicated B 
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