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 Because the expression of adipogenic transcription factors increases 

dramatically even during the first day of differentiation, we asked whether TNMD 

silencing diminishes the early induction of these transcription factors as well as 

their target genes. Thus, a DNA microarray analysis was performed in SGBS 

cells that had been transfected with either scrambled or TNMD siRNA at day 1 of 

differentiation. The induction of many adipogenic genes was significantly 

diminished after TNMD depletion (Figure 2.7, a, b). Importantly, in the absence of 

TNMD, stimulation of both the early transcription factor CCAAT/enhancer-binding 

protein beta (C/EBPβ) as well as late transcription factors C/EBPα and PPARγ 

were diminished (Figure 2.8, a, b).  
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 The C-terminal domain of TNMD is similar to the secreted and functional 

portion of its homologous protein Chondromodulin 1 (CHM1) (275), and studies 

have suggested that the C-terminal domain of TNMD is functionally active (285). 

We sought to understand whether the effect of TNMD to regulate adipogenesis is 

cell autonomous. Thus, SGBS cells treated with siTNMD were mixed with non–

transfected cells in equal numbers to determine whether wild-type TNMD 

rescues the adipogenic defect in TNMD-silenced cells via a paracrine 

mechanism. After adipogenic stimulation, we observed that Oil Red -O staining 

was diminished by approximately 50% when control cells were co-cultured with 

transfected cells, suggesting that the adipogenic effect of TNMD is cell 

autonomous in vitro (Figure 2.9, a).  
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Figure 2.9 
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Figure 2.9: Co-culture of non-transfected SGBS preadipocytes with TNMD 
transfected cells. (a) SGBS preadipocytes were transfected with either 
Scrambled or siTNMD. 24 hours after transfection, cells were trypsinized and 
seeded in equal numbers from stated groups in a different well. 2 days after 
transfection, cells were stimulated with adipogenic cocktail. Adipogenesis was 
analyzed by Oil Red O staining and microscopy. The data are representative of 
two independent experiments. The scale bar represents 100um. 
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Increased eWAT expansion in Tnmd overexpressing mice 

 To gain a better understanding of the role of Tnmd in adipose tissue, we 

generated transgenic mice that overexpress mouse Tnmd under the adipose 

tissue-specific Adiponectin promoter (Figure 2.10, a). A transgenic line that 

exhibited significant overexpression of Tnmd in inguinal (iWAT), epididymal 

(eWAT) and brown adipose tissue (BAT) were utilized in these experiments. 

qRT-PCR and Western Blot analysis demonstrated that Tnmd expression was 

specific to adipose tissue in these mice (Figure 2.10, b,c).  

 Given that TNMD expression is increased during obesity in human 

adipose tissue (290), weight gain was assessed in the Tnmd transgenic mice, 

and no weight difference was observed compared with littermate controls after 

both chow and high fat diet (HFD) fed conditions (Figure 2.11, a). However, a 

significant increase in eWAT weight was observed in HFD-fed but not in chow-

fed transgenic animals (Figure 2.11, b). The transgenic mice also displayed a 

concomitant decrease in liver weight after HFD, suggesting that the Tnmd 

transgenic mice may have enhanced adipose tissue storage capacity, which may 

attenuate lipid deposition in non-adipose tissues. Transgenic mice also had 

significantly smaller brown adipose tissue when compared with controls. 

However, no significant difference was detected in inguinal and axillary white 

adipose tissue weights after either feeding regimens (Figure 2.11, b).  
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TNMD promotes healthy visceral adipose tissue expansion 

 Because Tnmd transgenic mice had larger eWAT (Figure 2.11, b) and 

because TNMD is required for adipogenesis (Figure 2.4), white adipose tissue 

cell size was assessed to understand whether the significant increase in eWAT 

weight in Tnmd transgenic mice was due to hypertrophy or hyperplasia. Though 

the eWAT pads were larger, no significant difference in adipocyte size was 

observed in eWAT or iWAT depots of HFD-fed Tnmd transgenic mice (Figure 

2.12, a,b), and this was also the case after a short term (4-week) HFD (Figure 

2.12, c,d,e). These results suggest that the increased eWAT weight (Figure 2.11, 

b) was caused by an increase in adipocyte number rather than hypertrophy.  

We thus investigated whether preadipocyte proliferation was affected in TNMD 

transgenic mice. Recently, Jeffery et al. demonstrated that there is a significant 

increase in preadipocyte proliferation during first week of HFD in visceral adipose 

tissue (220). To assess preadipocyte proliferation in vivo, we treated control and 

Tnmd transgenic mice with BrdU for one week in their drinking water and 

concurrently fed them HFD for 6 days (Figure 2.13, a). Preadipocytes were then 

isolated, seeded on coverslips and media selected for 24 hours followed by 

immunostaining for BrdU and Pref1 as a preadipocyte marker. Remarkably, a 

significant increase in BrdU incorporation was observed in preadipocytes that 

were isolated from the eWAT of Tnmd transgenic mice (Figure 2.13, b,c). These 

data suggest that TNMD promotes eWAT expansion by enhancing preadipocyte 

proliferation in response to HFD.  
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Figure 2.12: Assesment of iWAT and eWAT depots at 4 and 16 weeks of 
HFD in control and transgenic mice  
6 week-s old male control (Ctrl) and Tnmd transgenic (Tg) animals were fed HFD 
for either 4 or 6 weeks (a) Representative H&E images of eWAT and iWAT (n=5 
(control), n=9 (transgenic), Scale bars represent 100 µm). (b) Adipocyte size was 
analyzed using Adiposoft software. At least 4 different areas per mouse were 
analyzed, and the average adipocyte size in each group was calculated 
(mean±SEM; n=5 (control), n=9 (transgenic), Student’s t-test). (c) Epididymal 
and inguinal white adipose tissue weights measured after 4 weeks of HFD in 
control (Ctrl) and transgenic (Tg) animals and normalized to total body weights 
(mean±SEM; n=8 (control), n=5 (transgenic), Student’s t-test) (d) Histologic 
analysis of eWAT and liver of from transgenic (Tg) and control (Ctrl) mice after 4 
weeks. Scale bars represent 100 µm (e) Adipocyte size was analyzed and 
avarage average adipocyte size was calculated for each group (mean±SEM; n=8 
(control), n=5 (transgenic), Student’s t-test). 
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 Consistent with these results, mRNA levels encoding adipogenic and 

lipogenic genes Plin1, sterol regulatory element-binding protein 1c (Srebp1c), 

fatty acid synthase (Fasn) and ATP-citrate lyase (Acly) were significantly 

increased, and the protein levels of PPARγ, PLIN, FASN, ACLY were 1.5-1.9 fold 

increased in Tnmd transgenic mouse visceral adipose tissue (Figure 2.14, a-c). 

These observations suggest that overexpressing Tnmd in visceral adipose tissue 

increases its storage capacity by both increasing adipocyte number and 

upregulating lipogenesis. Although no difference in [14C]-Glucose incorporation 

into triglyceride was observed in adipose tissue explants that had been isolated 

from chow-fed control and TNMD transgenic animals (Figure 2.14, d), such 

assays performed in vitro are quite artificial and may not represent physiological 

conditions.   
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Figure 2.14: Increased lipogenic gene expression in Tnmd transgenic mice 
(a) Quantitative PCR (mean±SEM; n=9 (control), n=11 (transgenic) and (b,c) 
Western blot analysis of adipogenic and lipogenic genes in eWAT of HFD-fed 
male animals and quantification of blots (mean±SEM; n=5 (control), n=9 
(transgenic)  *p<0.05, **p<0.01 by Student’s t-test) (d) Ex vivo lipogenesis 
analysis in adipose depots in transgenic and control mice. Insulin stimulated 
[14C]-Glucose incorporation into triglyceride was measured in adipose tissue 
explants that had been isolated from 12 weeks chow fed mice (mean±SEM; n=4, 
Student’s t-test).  
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Tnmd mice displayed reduced inflammation and tissue fibrosis in eWAT 

 A previous report suggested that TNMD has antiangiogenic properties in 

cultured endothelial cells (285). However, TNMD knockout mice did not display 

any obvious vascular abnormalities (277). These previous studies suggested that 

TNMD might have effects on blood vessel density or extracellular matrix 

composition. Blood vessel morphology and density was assessed in HFD-fed 

control and TNMD transgenic mice; however, no differences were observed 

(Figure 2.15, a). Furthermore, endothelial cell marker gene expression was 

unaltered in TNMD transgenic adipose tissue as assessed by qRT-PCR (Figure 

2.15, b).  

 Interestingly, a previous report characterizing TNMD-null mice noted 

disorganized collagen fibrils (277); thus, we hypothesized that TNMD might be 

involved in ECM processing. Trichrome staining was performed in control and 

TNMD transgenic mice to investigate whether TNMD is involved in regulating 

extracellular matrix and tissue fibrosis in eWAT. Remarkably, whereas abundant 

blue collagen staining was observed in eWAT of control mice, collagen 

accumulation was clearly decreased in transgenic mice, even in the inflamed 

areas (Figure 2.15, c). Moreover, gene expression analysis of whole adipose 

tissue revealed that genes encoding ECM proteins such as Col1a1, Mmp12, 

Mmp14 as well as genes involved in TGFβ signaling were significantly decreased 

in transgenic eWAT compared to control animals suggesting that TNMD might be 

involved in regulating extracellular matrix composition (Figure 2.15, d). Therefore, 
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TNMD may promote healthy visceral adipose tissue expansion through a direct 

interaction with ECM proteins and regulation of ECM remodeling.  

 Many studies have demonstrated that inflammation, immune cell 

infiltration and expansion occur in visceral adipose tissue during obesity, which is 

associated with metabolic dysfunction and insulin resistance (64, 244, 245, 300, 

312, 328, 329). After prolonged HFD, immune cell infiltration was increased in 

eWAT of control mice, whereas transgenic mice displayed fewer crown-like 

structures by histological analysis (Figure 2.12, a; Figure 2.15, c). Furthermore, 

qRT-PCR results demonstrated that macrophage marker Cd68 and macrophage-

derived cytokines such as monocyte chemotactic protein 1 (Ccl2) were 

downregulated by 40% in transgenic mice (Figure 2.15, e). Thus, Tnmd 

overexpression also promotes adipose tissue integrity by preventing adipose 

tissue inflammation in obesity. 
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Figure 2.15: Decreased inflammation and collagen expression in eWAT of 
Tnmd transgenic mice 
(a) Isolectin staining and vessel density quantification in eWAT from control and 
transgenic animals fed with HFD for 8 weeks of HFD (mean±SEM; n=5 for both 
control and transgenics, *p<0.05, **p<0.01, by Student’s t-test.) Scale bars 
represent 100 µm. (b) Quantitative PCR for angiogenesis markers in eWAT from 
16 weeks HFD fed control and transgenic mice (mean±SEM; n=9 (control), n=11 
(transgenic), *p<0.05, **p<0.01, by Student’s t-test). (c) Representative images 
of Trichrome staining in eWAT from control (Ctrl) and transgenic (Tg) mice that 
had been fed HFD for 16 weeks. Scale bars represent 400 µm (left panel), 100 
µm (middle panel), 50 µm (right panel). (d) Quantitative PCR of ECM and TGFβ 
signaling genes in eWAT from HFD-fed animals (mean±SEM; n=9 (control), n=10 
(transgenic), *p<0.05, **p<0.01, by Student’s t-test). (e) qRT-PCR analysis of 
inflammatory genes in eWAT from HFD-fed animals (mean±SEM; n=9 (control), 
n=11 (transgenic), *p<0.05, **p<0.01, by Student’s t-test). 
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TNMD inhibited lipid deposition in liver and BAT 

 Consistent with our observation that the Tnmd transgenic mouse BAT 

depot was smaller, we observed fewer lipid droplets in histological samples of 

BAT histological sections (Figure 2.16, a). Importantly, brown adipocyte markers 

such as uncoupling protein 1 (Ucp1) and PR domain containing 16 (Prdm16) 

were significantly increased by nearly 2-fold in transgenic mouse BAT compared 

with that from controls upon HFD challenge (Figure 2.16, b). These results 

suggested that Tnmd overexpression in BAT may also promote BAT 

maintenance of mitochondrial fatty acid oxidation during HFD and contribute to 

overall beneficial metabolism. However, metabolic cage analysis in HFD-fed 

TNMD transgenic and control mice with similar food intake and physical activity 

revealed no significant differences in respiratory exchange ratio (RER) or VO2 

consumption (Figure 2.16, c-f).  
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Figure 2.16: Lipid deposition in BAT was decreased in transgenic mice 
a) Representative histological analysis of BAT from HFD-fed animals. Scale bars 
represent 100 µm. (b) Quantitative PCR analysis of Ucp1, Prdm16, Pparg2, 
C/ebpa and C/ebpb in BAT of HFD-fed animals (mean±SEM; n=9 (control), n=11 
(transgenic), *p<0.05, **p<0.01, ***p<0.001, by Student’s t-test). (c-f) Metabolic 
cage analysis was performed in male mice that had been fed with HFD for 12 
weeks. (c) Average food intake per mouse during the day (7am-7pm) and night 
(7pm-7am) over 3 days (mean±SEM; n=8 (control), n=5 (transgenic)). (d) 
Physical activity was calculated as average of total movements per mouse during 
the day (7am-7pm) and night (7pm-7am) over 3 days (mean±SEM; n=8 (control), 
n=5 (transgenic)). Average (e) VO2 consumption and (f) Respiratory Exchange 
Ratio during the day (7am-7pm) and night (7pm-7am) over 3 days (mean±SEM; 
n=8 (control), n=5 (transgenic)). 
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 A significant decrease in liver weight was also observed in Tnmd 

transgenic mice compared with their control littermates (Figure 2.11, b). 

Therefore, we assessed hepatic lipid content in HFD-fed mice by both 

histological and triglyceride (TG) analysis. Although hepatic TG content 

increased by 2-fold in control animals fed HFD, strikingly, Tnmd transgenic 

animals displayed no HFD-induced increase in hepatic TG content and instead 

displayed a 60% reduction compared with control HFD-fed littermates (Figure 

2.17, a,b). Consistent with the decreased lipid content of livers in the HFD-

challenged transgenic animals, hepatic genes involved in lipid droplet formation 

that are associated with fatty liver such as perilipin 2 (Plin2) and cell death-

inducing DFFA-like effector c (Cidec) were significantly downregulated in HFD-

fed Tnmd transgenic mice (Figure 2.17, c).  

 Assessment of serum metabolic parameters demonstrated that HFD-fed 

Tnmd transgenic animals had significantly less total plasma cholesterol levels. 

However, no differences were detected in triglyceride levels on chow or HFD 

(Figure 2.17, d, e). Furthermore, serum free fatty acid levels were significantly 

reduced in chow-fed Tnmd transgenic animals (Figure 2.17, f). However, though 

serum fatty acid levels can be a reflection of adipose tissue lipolysis, ex vivo 

lipolysis was not affected basally or after isoproterenol stimulation in Tnmd 

transgenic mice compared with littermate controls (Figure 2.17, g). These data 

suggest that adipose tissue Tnmd overexpression may have a paracrine effect to 

regulate serum lipid concentrations. 
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Figure 2.17:  Peripheral lipid deposition was reduced in Tnmd transgenic 
mice. (a,b) Livers were isolated from animals fed chow or HFD for 16 weeks. (a) 
H&E staining of liver tissue. Scale bars represent 100 µm. (b) Triglyceride 
content was measured (n=6-8) (c) Gene expression in livers of HFD-fed animals 
(n=9-11) (d) Total cholesterol (n=9-12)  (e) Total triglyceride (n=7-12) and (f) 
Free fatty acid levels (n=7-11, mean±SEM; *p<0.05, **p<0.01, ***p<0.001, by 
Student’s t-test) were assessed in plasma samples from control (Ctrl) and 
transgenic (Tg) animals after 16 weeks of chow (dashed columns) or HFD (solid 
columns). (g) Ex vivo lipolysis in adipose tissue explants from 6-8 week-s old 
mice were fed with a chow diet for 12 weeks. Adipose tissue explants were 
isolated, and lipolysis was stimulated with 10µM isopreterenol for 2 hours 
(mean±SEM; n=6-7, Student’s t-test). 
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Improved insulin signaling in Tnmd-overexpressing mice 

 Because Tnmd transgenic mice displayed decreased adipose tissue 

inflammation and less liver triglyceride content, we hypothesized that these 

animals might demonstrate improved insulin sensitivity. Although Tnmd 

transgenic mice displayed unaltered glucose tolerance in an i.p. glucose 

tolerance test on chow or HFD (Figure 2.18, a), they were remarkably more 

insulin responsive than their control littermates on both chow and HFD during an 

insulin tolerance test (Figure 2.18, b). These data suggest that adipose-specific 

overexpression of TNMD improves systemic insulin sensitivity.  

 In order to determine whether insulin sensitivity signaling was also 

enhanced in insulin-responsive tissues in Tnmd transgenic mice at the molecular 

level in insulin-responsive tissues, HFD-fed control and Tnmd transgenic mice 

were injected with either insulin or PBS. Then 15 minutes later, muscle, liver and 

eWAT were isolated from animals, and analyzed for phospho-Akt levels were 

analyzed as an indicator of insulin signaling. Akt phosphorylation at both S473 

and T308 sites as detected by specific anti-phosphoserine and anti-

phosphothreonine antibodies was significantly increased in Tnmd transgenic 

mouse eWAT compared with littermate controls. Moreover, a trend towards an 

increased Akt phosphorylation at these sites was also observed in both liver and 

muscle, suggesting that in addition to improving adipose tissue insulin sensitivity, 

adipose TMND might also improve insulin responsiveness in other peripheral 

tissues (Figure 2.18, c, d).  
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Figure 2.18: TNMD increased Akt phosphorylation in eWAT and improved 
systemic insulin sensitivity. 
(a) Glucose tolerance and (b) insulin tolerance tests were performed in male 
control (Ctrl) or transgenic (Tg) mice after 12 weeks of chow or HFD 
(mean±SEM; Chow n=12 (control), n=10 (transgenic), HFD, n=11 (control), n=13 
(transgenic), *p<0.05, **p<0.01, ***p<0.001, by Student’s t-test) (c,d) Male 
control (Ctrl) and transgenic (Tg) mice that were fed with HFD for 12 weeks. Mice 
were fasted for 4 hours and tissues were harvested 15 minutes after PBS or 
insulin injection. (c) Western blot analysis and relative protein expression levels 
for p-Akt (S473), p-Akt (T308) and Total Akt in eWAT, liver, and muscle tissue 
lysates. (d) Densitometry analysis of (c) (mean±SEM; n=4 (control and 
transgenic, PBS), n=5 (control, insulin), n=7 (transgenic, insulin), *p<0.05, 
**p<0.01, ***p<0.001, by Student’s t-test).  
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 To further assess what tissues contributed to the enhanced insulin 

sensitivity in Tnmd transgenic mice, hyperinsulinemic-euglycemic clamps were 

performed. The clamp data demonstrated that although glucose levels during the 

clamp were similar, Tnmd transgenic animals had higher insulin sensitivity 

compared with control littermates as assessed by glucose infusion rate (Figure 

2.19, a, b). This difference could be attributed to improved hepatic insulin 

sensitivity because Tnmd transgenic animals displayed decreased hepatic 

glucose production (Figure 2.19, c), whereas no differences were observed in 

tissue-specific glucose uptake (Figure 2.19, d, f). Collectively, these data suggest 

that Tnmd overexpression in murine adipose tissue improves systemic insulin 

sensitivity. 
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Discussion 

 

 Identification of factors that modulate pathological consequences of 

obesity is a vital step towards development of novel therapeutic approaches to 

treatment of insulin resistance and other aspects of metabolic syndrome. In this 

study, we demonstrated that insulin resistant obese individuals have increased 

TNMD expression compared with insulin sensitive controls in the omental 

adipose depot, even when matched for BMI (Figure 2.1). Previous studies 

demonstrated that TNMD is highly expressed in human adipose tissue and its 

expression is further increased in obese conditions (290). Furthermore, genetic 

studies that investigated an association between SNPs and various metabolic 

markers suggested a potential role for this gene in adipose tissue in disease 

(296). Though no difference in TNMD expression was observed in insulin 

resistant versus insulin sensitive patients in subcutaneous adipose tissue depots, 

previous studies that analyzed subcutaneous adipose tissue biopsies 

demonstrated a correlation of TNMD expression, fasting serum insulin levels and 

HOMA-IR in obese patients (290, 318). TNMD expression is predominantly in 

adipocytes compared to the SVF (Figure 2.2), suggesting that the expression 

differences observed in insulin sensitive versus insulin resistant individuals 

mainly result from expression changes in primary adipocytes.  

 A key finding in this study is that TNMD is required for differentiation of 

human SGBS and mouse 3T3-L1 preadipocytes (Figure. 2.4, Figure 2.5). 
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Because TNMD expression is readily stimulated after adipogenic induction and 

continues to increase during differentiation in human cells, we supposed 

hypothesized that the absence of TNMD in preadipocytes would impair early 

differentiation. Consistent with this notion, when TNMD expression was silenced, 

expression of transcription factors involved in adipogenesis such as C/EBPA and 

PPARG was were decreased at early time points of differentiation (Figure 2.8), 

and adipogenesis was impaired. While the exact function of TNMD in this 

process is unclear, TNMD is hereby identified as a novel required factor in early 

stages of adipocyte differentiation. TNMD expression is actually decreased two 

days after induction of 3T3-L1 cell adipogenesis. Therefore, unlike the case in 

human cells, its expression is actually higher in mouse preadipocytes when 

compared to mature adipocytes. However, silencing of TNMD prior to induction 

was sufficient to inhibit the adipogenesis of these mouse preadipocytes, 

indicating that TNMD is required for the initiation of adipogenesis in both species.  

Because it appeared TNMD had a potential role in human cells and 

human patients but was expressed at low levels in mouse adipose tissue, we 

sought to address the role of TNMD in adipose tissue by generating a mouse 

model with higher increased adipose tissue specific Tnmd expression. Such 

adipose-specific Tnmd expression in transgenic mice increased adipogenic and 

lipogenic gene as well as protein expression in eWAT upon high fat diet feeding. 

Notably, PPARγ, one of the major regulators of glucose metabolism and 

adipocyte function (197, 206, 330), was significantly upregulated in the eWAT of 
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HFD-fed Tnmd transgenic mice compared with their control littermates (Figure 

2.14). Because activation of PPARγ has many beneficial effects on adipose 

tissue including improving lipid metabolism and decreasing serum FFAs (331-

333), it can be inferred that TNMD strongly influences adipogenesis through by 

regulating PPARγ expression in vivo. Consistent with these findings in vivo, 

silencing TNMD significantly reduced adipocyte differentiation and adipogenic 

gene expression including PPARG in human and mouse preadipocytes in vitro. 

Many recent studies have described that the ECM has a critical function to 

regulate adipose tissue homeostasis in obesity (226, 229, 233, 334, 335), and 

exogenous signals regulated by ECM proteins are involved in determining the 

fate of mesenchymal progenitor cells. For example, ECM stiffness and 

composition regulates Wnt and TGFβ signaling, which has an inhibitory or, in 

some cases, a stimulatory role in adipogenesis (114). Adipose tissue ECM also 

provides a suitable environment for changes in cell shape during adipogenesis 

and cell expansion (336-339). In this study, we noted a reduction inreduced 

collagen staining in Tnmd transgenic adipose tissue, and collagen and matrix 

metalloproteinase gene expression was also significantly reduced in Tnmd 

overexpressing adipose tissue (Figure 2.15). These results suggest that TNMD 

may promote beneficial adipogenesis at least in part by modulating properties of 

the ECM in adipose tissue. 

In addition to enhancing insulin signaling in eWAT, beneficial effects of 

TMND in liver was also observed, which enhanced systemic insulin sensitivity 
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(Figure 2.18, 2.19). Tnmd transgenic mice had reduced hepatic lipid deposition 

and were more responsive to insulin even in lean, chow-fed conditions. 

Furthermore, hepatic glucose production was reduced in TNMD transgenic 

animals (Figure 2.17). However, it is not established whether these peripheral 

effects are due to the improved lipid sequestration and decreased inflammation 

in eWAT. Future studies will investigate the mechanisms by which adipose 

TNMD function might cause beneficial signaling to other tissues.   

Tnmd transgenic mice had smaller BAT with fewer lipid droplets after HFD 

(Figure 2.16). Furthermore, thermogenic genes Ucp1, Prdm16 and Pparg were 

upregulated in transgenic animals compared with their littermate controls (Figure 

2.16, b). PRDM16 and PPARγ are not only involved in BAT differentiation but 

also in BAT maintenance along with UCP1 (98, 340). However, though TNMD 

was overexpressed in BAT in this model, the thermogenic capacity of the animals 

as assessed by RER remained unchanged (Figure 2.16). Future studies will 

utilize thermoneutral or cold challenge conditions to assess whether TNMD has a 

role in regulation of BAT energy expenditure. 

TNMD expression was higher in the human insulin resistant cohort in our 

study, yet paradoxically mice overexpressing Tnmd in adipose tissue displayed 

improved insulin sensitivity (Figure 2.18, 2.19). In humans, omental fat from 

insulin resistant subjects displays more inflammation and larger adipocytes 

compared with BMI-matched insulin sensitive subjects (300). It is possible that 

the increased inflammation in these insulin resistant subjects arises from 
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enhanced adipocyte death in the insulin resistant omental fat. Indeed, a 

correlation between cell death, insulin resistance, and adipocyte size has 

previously been reported (341). Thus, we speculate that TNMD might be 

increased in insulin resistant omental fat to increase adipocyte replenishment in 

these conditions (212, 325). Indeed, increased preadipocyte proliferation was 

observed in TNMD transgenic animals (Figure, 2.13), which could promote 

healthy tissue expansion. It is also possible that either the omental fat 

microenvironment or endocrine signals associated with the insulin resistant state 

can contribute to TNMD overexpression, perhaps as a compensatory mechanism 

to promote adipogenesis and increase insulin responsiveness. Finally, most of 

the insulin resistant human subjects in our cohort had been treated for different 

amounts of time with various medications including thiazolidinediones before 

bariatric surgery and tissue collection. Thus, we cannot rule out the possibility 

that TNMD expression was increased in insulin resistant subjects as a result of 

these medications. 

In summary, our study reveals that the gene TNMD, which is highly 

expressed in human adipose tissue, encodes a protective adipose tissue factor 

that promotes preadipocyte proliferation, adipogenesis, adipose tissue health, 

and insulin responsiveness in vivo. The data presented herein support the 

hypothesis that TNMD contributes to beneficial visceral adipose tissue expansion 

that protects against metabolic dysfunction. Because adipose TNMD expression 
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improves insulin sensitivity systemically, it may have potential as a therapeutic 

target to protect metabolic homeostasis in obesity. 
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CHAPTER III 

CONCLUDING REMARKS AND FUTURE DIRECTIONS 
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The consequences of obesity related to adipose tissue dysfunction include 

insulin resistance and impaired glucose homeostasis. Therefore, identifying novel 

mechanisms that regulate adipose tissue function in the context of obesity is 

crucial to further our understanding of the pathogenesis of metabolic diseases. 

The work presented here suggests that TNMD enhances adipose tissue function. 

In a genome wide microarray study, TNMD was elevated in omental adipose 

tissue of insulin resistant patients compared with insulin sensitive subjects of 

similar BMI (Figure 2.1 a, c-e). Furthermore, previous studies demonstrated that 

TNMD expression is very high in human adipose depots and further increases 

upon obesity (290). Therefore, I aimed to address two following three questions:  

1. Is TNMD required for adipocyte differentiation? 

2. Does TNMD promote adipose tissue expansion and enhance adipose 

tissue function in vivo? 

 To address the first question, I utilized both human (SGBS) and mouse 

(3T3-L1) cells. Using siRNA-mediated knockdown, I demonstrated that TNMD is 

required for adipocyte differentiation in both human and mouse cells as assessed 

by multiple biochemical methods. My results indicated that TNMD is also 

necessary for the induction of adipogenic gene expression during adipogenesis 

(Figure 2.4, 2.5). Gene chip analysis and qRT-PCR validation studies revealed 

that TNMD depletion attenuated adipogenic transcription factor and target gene 

induction in the first day of differentiation (Figure 2.7, 2.8).  
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To address the second question, I generated a transgenic mouse model 

that expresses a C-terminal FLAG tag on TNMD specifically in adipose tissue 

using the adiponectin promoter. Specific and significant expression of TNMD was 

determined in both white and brown adipose depots (Figure 2.10). For metabolic 

characterization, I fed transgenic and control mice either chow (normal) or HFD 

and measured weight gain over time. No difference in body weight was observed 

between transgenic and control littermates (Figure 2.11). However, eWAT weight 

was significantly increased in the transgenic animals fed with HFD (Figure 2.12). 

I then assessed whether the increase in eWAT weight was mediated by 

adipocyte hyperplasia or hypertrophy by measuring cell size. No cell size 

difference was observed in WAT depots isolated from transgenic and control 

animals (Figure 2.12). These data suggested that eWAT expansion driven by 

TNMD overexpression occurs via hyperplasia but not hypertrophy. Lipogenic 

gene expression was consistently increased in the eWAT of transgenic animals 

suggesting an increased capacity for fat sequestration (Figure 2.13). 

Furthermore, histology analysis indicated a decrease in immune cell content 

within eWAT of transgenic mice compared with control animals (Figure 2. 12). 

Consistent with these results, using trichrome staining, reduced collagen 

accumulation was also observed in the eWAT of transgenic mice (Figure 2.15). 

By measuring triglyceride levels and analyzing histology samples, I also 

assessed lipid deposition in peripheral tissues such as liver observed reduced 

hepatic steatosis in TNMD transgenic animals compared with controls (Figure 
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2.17). These results suggested that increased capacity of eWAT for lipid storage 

prevented free fatty acid deposition in non-adipose tissues. Systemic insulin 

resistance was also improved in the TNMD overexpressing mice (Figure 2. 18, 

2.19).  

In conclusion, the data in this thesis suggests a role for TNMD in 

adipocyte differentiation and healthy adipose tissue expansion during obesity. 

Furthermore, these results provide a novel model where eWAT is expanded, yet 

systemic insulin responsiveness is improved, which supports the notion that 

adipose tissue health matters more than adipose tissue mass in the context of 

obesity.  
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Figure 3.1 

 

 

Figure 3.1: A model of TNMD action in adipose tissue 
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TNMD as a novel regulator of adipogenesis and beneficial adipose tissue 

expansion 

 To identify novel molecules that are involved in promoting insulin 

resistance or conversely maintaining insulin sensitivity in obese subjects, our 

laboratory performed a microarray analysis using whole adipose tissue samples 

isolated from subcutaneous and visceral adipose depots of morbidly obese 

patients who underwent bariatric surgery. Using the same approach, our 

laboratory previously showed that the inflammatory gene signature, especially 

inflammatory chemokines such as CCL2, CCL3 and CCL4 were significantly 

increased in omental but not subcutaneous fat of insulin resistant patients 

compared with insulin sensitive subjects. These data demonstrated that 

independent of BMI, macrophage infiltration and chemokine secretion is 

associated with insulin resistance in humans (300). In the same study, many 

genes were differentially expressed between insulin resistant and insulin 

sensitive patients. Here, I focused on TNMD because 1) it was significantly 

upregulated in insulin resistant omental adipose tissue, which was verified by 

qRT-PCR and Western Blot analysis (Figure 2.1), and 2) TNMD expression was 

limited almost exclusively to primary adipocytes in human adipose tissue (Figure 

2.2). Adipose tissue immune cell content rapidly increases during obesity and is 

involved in the pathogenesis of insulin resistance (223, 244). Therefore, it was 

important to rule out that the increase in TMND expression that was observed in 

whole adipose tissue samples was not due to an increase in the immune cell 
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population. The predominant expression of TNMD in primary adipocytes 

suggested that TNMD is concentrated in this cell type. Further experiments are 

needed to compare TNMD expression in isolated primary adipocytes from insulin 

resistant and insulin sensitive subjects.  

Surprisingly, no difference in TNMD expression between insulin resistant 

and insulin sensitive subjects was observed in subcutaneous adipose tissue, 

which could be attributed to differences in gene expression among white adipose 

depots (89).  Interestingly, TNMD is responsive to glucocorticoid treatment in 

vitro (342). Even though systemic cortisol levels do not change in obese 

subjects, increased cortisone levels have been demonstrated in obese visceral 

adipose tissue. 1-beta hydroxysteroid dehydrogenase 1 (HSD1), a reductase 

enzyme that generates cortisol in vivo, has higher activity in stromal cells isolated 

from omental adipose tissue compared with those isolated from subcutaneous 

depots (94). Cortisol levels or HSD1 activity in omental fat of human subjects 

from both groups has not been measured. It would be interesting to assess 

whether TNMD expression is upregulated by changes in local glucocorticoid 

levels in omental adipose depots of insulin sensitive vs. insulin resistant patients.  

Because the SVF includes adipocyte precursors, the very low expression 

of TMND in this fraction and comparatively high expression in primary adipocytes 

suggested that TNMD is responsive to adipogenic differentiation. To address this 

question, I utilized SGBS preadipocytes as a relevant human cell culture model. 

Indeed, TNMD was stimulated several hundred fold upon differentiation. 



111

Adipogenic differentiation was confirmed by assessing the expression of 

adipogenesis markers such as ADIPOQ and PPARG (Figure 2.3, a). Validation 

of these results using other human adipocyte cell culture models such as human 

adipose derived stromal cells (hADSCs) could be performed in the future.  

TNMD is induced very early in the adipocyte differentiation program and 

has a similar expression pattern to C/EBPα (Figure 2.3, b). TNMD expression 

started to increase 18 hours after induction and continued to increase throughout 

adipogenesis in human cells. These results suggest 1) TNMD is an adipogenic 

gene that is involved in adipocyte differentiation and has a function in mature 

adipocytes, 2) TNMD expression is regulated by adipogenic transcription factors 

C/EBPα and PPARγ or 3) TNMD acts upstream of adipogenic transcription 

factors. To test the first hypothesis, TNMD was silenced in preadipocytes two 

days prior to adipogenic induction, and silencing TNMD significantly attenuated 

adipogenesis in SGBS cells (Figure 2.4). Because TNMD is upregulated by 

differentiation, diminished adipogenesis itself could also contribute to low TNMD 

expression compared with control cells transfected with scrambled RNA (Figure 

2.4, e). Thus, these results suggest that TNMD induction is required for 

adipogenesis and adipogenic gene expression. Mouse adipocyte cell line 3T3-

L1s are by far the most common cell line used to study adipogenesis and 

adipocyte biology (138). TNMD, however, demonstrated a different expression 

profile in these cells. As opposed to human SGBS preadipocytes, TNMD 

expression decreased after the second day of differentiation in 3T3-L1s (data not 
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shown). However, TNMD knockdown diminished differentiation in 3T3-L1 cells as 

well. This difference between human and mouse adipocytes in terms of TNMD 

expression during differentiation is interesting and suggests that even at low 

levels of expression, its effects are significant. Further studies will address how 

TNMD is regulated in different species. Such different expression patterns 

between mouse and human raised an issue about potential off-target effects of 

siRNA-mediated knockdown. Rescue experiments using expression vectors with 

mutated siRNA target sites would further support our findings. Alternatively, 

different oligos targeting TNMD gene could be used to rule out the possibility of 

off-target phenotype. However, overexpressing genes by transfection is 

technically challenging in SGBS and 3T3-L1 cells yet overexpression via lentiviral 

or adenoviral infection could create artificial results due to unnecessarily high 

expression of the target gene or off target effects of the virus.  

Even though in vitro results strongly suggest that TNMD is required for 

adipogenic differentiation, mechanistic details on how TNMD regulates 

adipogenesis and adipogenic gene expression are still unclear. Hence, the 

molecular pathways that are altered upon TNMD knockdown were investigated in 

unstimulated and stimulated cells using microarray analysis. These experiments 

further supported the finding that silencing TNMD attenuated stimulation of 

adipogenic genes (Figure 2.7, a). The microarray data for some transcription 

factors such as C/EBPα were verified at both mRNA and protein levels. These 

findings suggest that TNMD might be an upstream regulator of this transcription 
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factor. However, experiments to address whether the reduction in C/EBPα 

expression is the result or the cause of diminished adipogenesis could be 

performed in the future.  

Next, I asked whether the phenotype observed upon TNMD depletion is 

cell autonomous or non-cell autonomous because TNMD has been predicted to 

be a plasma membrane protein with a large extracellular portion (275, 285). 

Considering that cell-cell contact is required for adipogenic differentiation (114), I 

hypothesized that TNMD might be involved in the interaction of adjacent cells. 

TNMD also has a putative cleavage site, and studies suggested that the cleaved 

C-terminal portion is active (285). Interestingly, I also demonstrated that when 

overexpressed in SGBS preadipocytes, TNMD is cleaved and the C-terminal 

peptide is released into culture media (Figure AI-1). Conceivably this peptide 

might act on neighboring cells such as adipocytes precursors, or could reach 

other tissues through circulation. To address these questions, I co-cultured non-

transfected cells and siTNMD transfected cells together to observe the 

consequence on adipogenesis. In this experiment, co-culturing non-transfected 

and TNMD silenced cells resulted in an approximate 50% reduction in Oil Red O 

staining, which suggested a cell autonomous role for TNMD in adipogenesis. 

Even though these data do not rule out the possibility that TNMD is cleaved and 

secreted, it provides evidence that the secreted product, at least at endogenous 

levels, is not sufficient to rescue reduced adipogenesis in the absence of TNMD. 

Further studies using conditioned media from TNMD overexpressing cells could 



114

also be performed to assess whether TNMD acts in a cell autonomous manner to 

promote adipogenesis.  

Because TNMD expression increased remarkably during differentiation, I 

hypothesized that TNMD may have additional effects on adipocyte biology. 

Future studies using human in vitro adipocyte models are needed to address 

whether TNMD functions in the metabolic processes such as lipogenesis, 

lipolysis or glucose uptake and if so, what is the mechanism whereby TNMD 

regulates these processes.  

Adipose tissue is a complex organ in which adipocytes interact with other 

cells types in addition to the extracellular matrix (24, 223). I aimed to address my 

metabolic questions in the context of whole adipose tissue. Therefore, an in vivo 

model was developed. Expression of Tnmd in mouse adipose depots is low or 

below detection (290). Therefore, an adipocyte-specific adiponectin promoter-

driven Tnmd overexpression model was generated. qRT-PCR and Western Blot 

analysis of TNMD confirmed very low or undetectable levels of TNMD in mouse 

adipose depots (Figure 2.10, data not shown). Moreover, Tnmd transgenic mice 

displayed a significant and specific expression of Tnmd in eWAT, iWAT and BAT 

(Figure 2.10). Surprisingly, Tnmd overexpression in adipose tissue did not affect 

total body weight gain (Figure 2.11, a). However, individual adipose depots from 

animals that were fed HFD revealed that TNMD overexpression caused a 

significant increase eWAT but not subcutaneous depot expansion (Figure 2. 11, 

b). These results raised two questions: 1) Did eWAT in transgenic animals 
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expand via hypertrophy or hyperplasia? and 2) Does TNMD control adipose 

tissue expansion? To pinpoint the mechanism of adipose tissue expansion, cell 

size was measured in histology sections, and the average cell size from both 

adipose depots (eWAT and iWAT) was unchanged (Figure 2.12, a). These 

results suggested that adipocyte number was increased in HFD-fed transgenic 

animals. Thus, earlier time points were investigated during HFD feeding to 

observe the formation of new and smaller adipocytes. Adipose depot weight and 

adipocyte size was assessed in animals fed HFD for only 4 weeks, and no 

difference in either adipose depot weights or adipocyte size was observed. 

These data suggest that hyperplasia occurs at the late time points of the HFD 

challenge. This conclusion is consistent with two models that have been recently 

published. In the first model, Scherer and colleagues demonstrated that eWAT 

expands by both hypertrophy and hyperplasia in mice, the latter of which occurs 

after 8 weeks of HFD feeding (133). In the second model, preadipocyte 

proliferation was increased in the first week of HFD, but newly differentiated 

adipocytes could not be detected for 8 weeks (220). It is unclear when 

preadipocytes complete differentiation and start expanding in size during diet 

induced obesity; addressing this question will be highly informative.  

Reduced tenocyte proliferation has been reported in Tnmd null mice (277). 

Therefore, I hypothesized that TNMD might also promote preadipocyte 

proliferation, and in vivo BrdU incorporation into preadipocytes isolated from 

Tnmd overexpressing mice was indeed increased (Figure 2.13). These results 
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suggested that enhanced preadipocyte proliferation in TNMD transgenic animals 

resulted in hyperplastic eWAT. One could argue that the adiponectin promoter 

would drive Tnmd expression in mature adipocytes rather than precursors; thus, 

effects in preadipocyte proliferation cannot be explained by Tnmd 

overexpression. Although cell culture experiments suggested that the effects of 

TNMD were cell autonomous, it remains to be tested whether TNMD increased in 

vivo preadipocyte proliferation in a cell autonomous manner. Another important 

question is whether TNMD promotes in vivo differentiation of preadipocytes that 

reside in the eWAT. Future studies using in vivo tracer models can address this 

question. Alternatively, tracing BrdU labeled adipocytes would be informative to 

determine whether labeled preadipocytes actually make new adipocytes in the 

later time points of HFD challenge.  

Adipose tissue de novo lipid synthesis is reduced in obesity (45). To 

investigate whether adipogenic and lipogenic gene expression were increased in 

eWAT of Tnmd transgenic animals, I performed qRT-PCR and Western Blot 

analysis, and the expression of lipogenic genes such as Srebp1c, Fasn and Acly 

was significantly increased in transgenic animals compared to control littermates 

(Figure 2. 14, a). Consistent with our in vitro adipogenesis experiments, PPARγ 

was also elevated in the eWAT of transgenic animals (Figure 2.14, b,c). These 

data suggest that TNMD enhances lipid synthesis in eWAT, thereby promoting 

efficient lipid sequestration in this depot during obesity. However, it should be 

taken into consideration that adipocyte-specific gene expression in whole 
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adipose tissue samples could appear to decrease when the number of other cell 

types elevates. Therefore, increased immune cell infiltration in the control eWAT 

might contribute to the apparent decrease in adipocyte-specific gene expression 

in whole adipose tissue. This possibility could be ruled out by assessing gene 

expression profiles in isolated SVF and primary adipocytes. Even though no 

difference in tissue weight or cell size was observed, it would be informative to 

determine whether de novo lipogenesis is improved in subcutaneous adipose 

depots. Ex vivo lipogenesis assays using eWAT and iWAT isolated from chow 

fed animals did not reveal any difference in lipogenesis between the transgenic 

and control mice. However, there were some potential pitfalls with this 

experiment. First, ex vivo conditions do not always fully represent the in vivo 

tissue environment and could create artificial results. Second, chow animals were 

used for this experiment, and differences might only be observed in animals 

challenged with HFD.  

TNMD may have anti-angiogenic effects (283, 285). One could expect that 

overexpression of a putative anti-angiogenic protein can blunt vessel 

dissemination during adipose tissue expansion. Therefore, the role of TNMD in 

adipose tissue angiogenesis was elucidated by isolectin staining of the 

vasculature and vessel density quantification. Consistent with previous results 

reported in Tnmd knockout mice, there was no effect of adipose-specific Tnmd 

overexpression on the adipose tissue vasculature (Figure 2.15) (277). These 
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results suggest that TNMD promotes eWAT expansion independent from 

modulating the tissue vasculature.   

TNMD has been extensively studied in the context of tendon tissue. 

Studies show that TNMD knockout affects collagen matrix formation and 

structure (277). Because the ECM can affect adipocyte differentiation, 

metabolism and expansion (223, 336, 337), I investigated the expression of ECM 

components by qRT-PCR and structure by Masson’s Trichrome staining in 

adipose tissue and demonstrated that collagen accumulation was reduced in 

Tnmd overexpressing mice. Trichrome staining does not distinguish types of 

collagen; therefore, it would be useful to determine which types of collagen are 

differentially expressed in the control and TNMD transgenic adipose tissue, as 

collagen VI has adverse metabolic effects in adipose tissue (233, 335). Gene 

expression analysis partly confirmed reduced collagen expression in the eWAT 

of transgenic animals. Interestingly, the expressions of some matrix 

metalloproteinases (MMPs) were also downregulated in the transgenic animals 

(Figure 2.15, d). This result was rather contradictory to the reduction in collagen 

expression because tissue MMP depletion is often characterized by collagen 

accumulation (159). The decrease in MMP12 (macrophage metalloelastase) 

could be attributed to a reduction in macrophage content in Tnmd overexpressing 

eWAT (Figure 2.12, a Figure 2.15, e). However, MMP activity inhibitors (TIMP) 

expression levels need to be analyzed. Interestingly, TGFβ, SMAD2 and SMAD3 

mRNA levels were also reduced in the transgenic animals. Although the in vivo 
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and in vitro effects of TGFβ on adipogenesis and adipose tissue formation is 

somewhat contradictory (114), it could be interesting to explore whether TNMD 

promotes hyperplasia in adipose tissue via modulating TGFβ signaling. 

As mentioned above, Tnmd overexpression also resulted in reduced 

immune cell infiltration and crown like structure formation in adipose tissue. 

mRNA levels of proinflammatory molecules such as Ccl2 were also diminished 

(Figure 2.12). There is a vicious cycle in obese adipose tissue whereby cellular 

stress in adipocytes causes pro-inflammatory cytokine secretion, which can 

attract macrophages, in turn furthering adipose tissue inflammation (262). Thus, 

it would be interesting to address whether TNMD lessens cellular stress by 

improving the tissue environment in favor of healthier expansion, or alternatively 

whether TNMD regulates inflammatory pathways and decreases inflammation in 

obese adipose tissue.  

Tnmd was also overexpressed in BAT of transgenic mice (Figure 2. 10). 

Reduced lipid deposition was observed as assessed by histology, consistent with 

reduced BAT weight in the transgenic animals. Furthermore, Ucp1 expression 

increased in the Tnmd overexpressing mice. However, metabolic cage studies 

detected no difference in respiratory exchange rate or oxygen consumption. 

Though BAT seemed to have higher activity in transgenic animals, it did not 

contribute to systemic energy expenditure at room temperature. Performing the 

metabolic experiments in thermoneutral conditions in which cold stress is 
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eliminated for mice could give a better insight into whether BAT is involved in the 

systemic metabolic actions of TNMD.  

It was also important to explore whether apparent healthy expansion of 

visceral adipose tissue resulted in an inhibition of peripheral lipid deposition. 

Histological examination and reduced triglyceride content clearly demonstrated 

that hepatic steatosis was prevented in the transgenic animals, which was 

consistent with reduced whole liver weight. These data suggest that better 

sequestration of the lipids in eWAT protected the liver from TG accumulation, 

even in very obese conditions. Genes controlling de novo lipogenesis and lipid 

storage were measured in this tissue. Hepatic glucose production in the 

transgenic animals was also attenuated in the basal state (Figure 2.19, c). 

Therefore, it would be interesting to investigate whether gluconeogenesis was 

altered in the transgenic animals.  

 Next, I addressed systemic metabolic health in Tnmd transgenic mice. 

Even though no difference was observed between genotypes in a GTT, Tnmd 

overexpressing mice were more insulin sensitive as assessed by ITT (Figure 

2.18).  Furthermore, increased insulin-stimulated AKT phosphorylation was 

observed in eWAT (Figure 2.18, c, d). Healthier adipose tissue expansion is 

associated with improved systemic insulin responsiveness, and the ITT 

consistently demonstrated a profound metabolic difference between control and 

transgenic animals. Insulin-dependent, tissue-specific glucose uptake in was 

assessed during a hyperinsulinemic-euglycemic clamp study. In this study, a 
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trend to increased glucose uptake in BAT and skeletal muscle was observed in 

TNMD transgenic mice compared with controls. Interestingly, the liver was more 

insulin sensitive in Tnmd transgenic mice than controls, and lower hepatic 

glucose production was also observed in basal conditions. Furthermore, there 

was a significant increase in the glucose infusion rate during the clamp in 

transgenic mice compared to control littermates (Figure 2.19). Therefore, 

improved insulin signaling in the eWAT of Tnmd transgenic animals is a reflection 

of healthier adipose tissue, and the clamp study demonstrates that the liver is 

also a contributing factor. Inter communication between eWAT and liver should 

also be considered.  

In conclusion, the data in this thesis provide evidence for a beneficial role 

of TNMD in adipocyte differentiation and adipose tissue function. This work also 

advances understanding of adipose tissue expansion during obesity. Visceral 

adipose tissue has long been associated with metabolic diseases (88, 266, 304). 

Here, selective visceral adipose depot expansion was actually beneficial because 

adipocyte number and fat sequestration was maximized while cellular stress was 

abated. Thus, TNMD could be an important therapeutic target to promote the 

healthy visceral adipose tissue expansion during obesity, and more importantly, 

to reverse adipocyte dysfunction in the disease state.  
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Future Directions 

TNMD has been widely used as a differentiation marker for tenocytes 

(273, 277, 286). However, TNMD’s function has not been fully understood. 

Defining the intracellular localization of TNMD might give insight into this 

protein’s function. Based on sequence TNMD is predicted to be a type II 

transmembrane protein (275, 343). However, contradictory results on the 

intracellular localization of TNMD have been reported. It has been detected in 

various locations in the cell such as plasma membrane, golgi and nuclear 

envelope. Even though endogenous protein has been detected in some of these 

studies, proper controls including TNMD null cells have not been used (286, 

288). Moreover, many of these studies utilized an overexpression approach, 

which can give rise to artificial results. Therefore, careful analysis of intracellular 

localization of TNMD in adipocytes with a specific antibody that can detect the 

endogenous protein will be useful in terms of understanding its possible 

functions. Moreover, fractionation studies using human adipose tissue where 

TNMD is expressed at high levels will be helpful to assess localization.  

Future work identifying the molecular mechanisms by which TNMD 

achieves its metabolic effects systemically and locally will be of great importance. 

Unbiased techniques such as RNAseq or proteomics in combination with genetic 

studies including mutation analyses targeting SNPs in the human TNMD gene 

that are associated with metabolic parameters (potentially using CRISPR 

technology) will be very informative.  
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  Even though in vitro adipogenesis has been very well studied using cell 

culture systems, in vivo mechanisms that are implicated in adipogenesis are 

incompletely understood (114). We were able to demonstrate that TNMD 

contributes to hyperplastic adipose tissue expansion through promoting 

preadipocyte proliferation in the first week of HFD. However, the question 

whether TNMD also stimulated adipogenesis in the visceral adipose depot is yet 

to be addressed. Crossing Tnmd transgenic mice with tamoxifen inducible 

Adiponectin-CreER mT/mG (220) reporter line or doxycycline inducible Cre-LacZ 

reporter line (133) could be the proper approach to address this question. 

Furthermore, administering the potentially secreted portion of TNMD to these 

reporter lines will be helpful to determine the effect of TNMD on adipogenesis in 

vivo. In both cases, observing new adipocyte formation at greater levels in 

transgenic or TNMD administered animals would further prove that TNMD 

promotes hyperplastic adipose tissue expansion in vivo.  

 The most significant future work on TNMD in terms of impact on the field 

might be to determine whether it is a novel adipokine, a secreted factor that acts 

locally or systemically to affect adipose or other tissue function. Important 

remaining questions related to this include assessing whether TNMD is in fact 

secreted, and whether the putative secreted peptide functions locally or 

circulates systemically. If the peptide circulates, does it function as an endocrine 

factor that regulates peripheral tissue function? These questions could be 

answered using parabiosis experiments in which the circulation of a wild type 
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mouse is attached to a Tnmd transgenic mouse. If TNMD acts as a secreted 

factor or alternatively stimulates the secretion of other factors from eWAT, 

metabolic improvements should also be observed in the wild type animals in 

obese conditions. If no effect is observed in parabiosis experiments, the data 

would suggest that TNMD might act in a paracrine fashion. Even though TNMD 

is likely to be cleaved from its putative furin site, identifying the exact sequence of 

this secreted portion will be important in terms of producing the recombinant 

peptide and assessing its physiological effects. Alternatively, generating a 

transgenic mice with non-cleavable furin site or taking a loss-of-function 

approach by using neutralizing antibodies will give better insight into the possible 

role of TNMD as a beneficial adipokine.   
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APPENDIX I 
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Introduction, Results and Discussion 

 

 Adipose tissue is one of the biggest endocrine organs in the body (62). 

Many studies have demonstrated that peptide hormones secreted from 

adipocytes have various biological effects (262).  Adipose driven cytokines-also 

known as adipokines- regulate not only adipose tissue function but also 

metabolic homeostasis in the peripheral tissues such as muscle and liver (344). 

Moreover, ECM proteins that are processed and released from adipocytes into 

the adipose tissue microenvironment can play roles in the adipocyte expansion 

and preadipocyte proliferation (345). Full characterization of adipocyte secretome 

and ECM composition is unlikely complete. Therefore, identifying novel 

adipokines or ECM-related proteins that are implicated in the adipose tissue’s 

metabolic function is of great importance.  

 Recent studies suggested a metabolic role for TNMD (290, 296, 318). We 

also identified it as a novel regulator of adipogenesis and visceral adipose tissue 

expansion in diet induced obesity. TNMD promoted preadipocyte proliferation 

and hyperplastic adipose tissue expansion upon high fat diet feeding and mice 

overexpressing TNMD selectively in the adipose tissue demonstrated improved 

systemic insulin sensitivity in obese conditions (Chapter II). Studies also 

suggested a role for TNMD in the tendon tissue as TNMD null mice 

demonstrated disorganized collagen fibrils in the tendon tissue (277). We also 

demonstrated a reduced collagen accumulation in Tnmd overexpressing adipose 



127

tissue (Chapter II). In the light of these findings, we sought to address two 

important questions:  

1) Is TNMD processed and secreted into local environment or blood 

circulation?   

2) Does TNMD interact with ECM components?  

 In order to address the first question, we overexpressed TNMD with N-

terminal 3HA and C-terminal Flag tag using an adenoviral construct. We used 

3HA expressing empty virus infected and non-infected cells as controls. Cells 

were incubated in a serum free media supplemented with 33 uM biotin, 17 uM 

pantothenic acid for 48 hours after the infection (Figure A.1, a). Overexpression 

of full length TNMD was confirmed in lysates using an antibody against a peptide 

in the extracellular domain of TNMD (Figure A.1, b). We also analyzed the 

concentrated media by Western Blot. Surprisingly, we detected a band around 15 

kDa in the media isolated from TNMD overexpressing cells but not from control 

cells. These results suggest that TNMD might be cleaved by endopeptidases and 

secreted into extracellular environment (Figure A.1, c). Interestingly, we also 

observed a similar size band in the lysates and this band was slightly smaller 

than the one in the media, which suggest that TNMD might be processed inside 

the cell and secreted through canonical secretion pathway. Moreover, we were 

able to detect the cleaved product with Flag antibody, whereas no band was 

detected using HA antibody. These results provided evidence that C-terminal 

domain of TNMD is secreted into media.  
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 We have demonstrated that TNMD overexpression in the adipose tissue 

altered the collagen accumulation and the expression of ECM proteins at the 

mRNA level.  A role for tenomodulin in modulating ECM interactions was also 

suggested by proteomics data obtained in SGBS cells. We overexpressed TNMD 

using an adenoviral vector expressing TNMD with HA (N-terminus) and Flag (C-

terminus) tags and immunoprecipitated TNMD-associated proteins to identify 

potential binding partners. In proteomics analysis, we found several proteins that 

are either located in adipose tissue ECM or involved in processing ECM proteins 

(Table A.1). Even though validation studies are needed, these results suggest 

that TNMD may contribute to healthy visceral adipose tissue expansion through 

direct interaction with extracellular matrix proteins or function as an extracellular 

matrix protein that generates a local environment to favor adipocyte expansion 

and preadipocyte proliferation.  
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Table A.1 

Protein Name Gene 
Symbol 

Spectral Counts 

Ad-HA-Control Ad-3HA-TNMD–Flag 

TGFβ-induced protein ig-h3 TGFBI 2 29 
Thrombospondin 1 THBS1 3 17 

Periostin POSTN 0 12 
Metalloproteinase inhibitor 3 TIMP3 2 10 

Ugl-Y3 (Fibronectin Precursor) FN1 3 10 
Plasminogen activator inhibitor 1 SERPINE1 0 8 

Protein-lysine 6-oxidase LOX 0 8 
Glypican 1 GPC1 0 6 
Galectin 7 LGALS7 2 6 

Connective tissue growth factor CTGF 0 5 
Tenascin C TNC 0 4 

Emilin 1 EMILIN1 0 4 
Collagen alpha-2 (VI) chain COL6A2 0 3 
Matrix metalloproteinase 14 MMP14 0 2 
Galectin-3-binding protein LGALS3BP 0 2 

Metalloproteinase inhibitor 1 TIMP1 0 2 
 

Table A.1: ECM proteins or ECM-protein processing enzymes interacting 
with TNMD 
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 Whether TNMD is circulated in the body is yet to be addressed. We are 

currently analyzing serum samples obtained from Tnmd overexpressing mice. 

Detecting TNMD in the serum and addressing the question whether TNMD that 

potentially secreted from visceral adipose tissue acts on liver will provide an 

insight into our understanding of how TNMD regulates systemic lipid and glucose 

metabolism. Moreover, characterizing the secreted portion of TNMD will be very 

informative for design and production of a recombinant peptide to test the 

physiological function of secreted TNMD. Given that overexpressing TNMD in 

adipocytes improved systemic insulin resistance in obese mice and that secreted 

portion potentially posses a physiological function, TNMD could be considered as 

a novel therapeutic target.  

 

Experimental Procedures 

 

Cell Culture  

 Simpson Golabi Behmel Syndrome (SGBS) cells were cultured in 

DMEM/F12 media supplemented with 10% fetal bovine serum, 33 uM biotin, 17 

uM pantothenic acid, 100 units ml-1 penicillin and 0.1 mg ml-1 streptomycin. Cells 

were seeded in 15 cm dishes and infected with Ad-3HA-TNMD-Flag or Ad-3HA-

Control virus. Infection media was changed after overnight incubation. Cells were 

washed and incubated in serum free media supplemented with 33 uM biotin, 17 

uM pantothenic acid, 100 units ml-1 penicillin and 0.1 mg ml-1 streptomycin for 48 
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hours. Media was collected and centrifuged for 5 min at 1500 rpm. Supernatant 

was concentrated in protein concentrators with 2000 Da molecular weight cut off 

(Vivaspin 2, Sartorius).  

 

Western Blotting 

 Cell lysates were prepared using RIPA buffer (150 mM NaCl, 50 mM Tris 

pH 7.4, 1% sodium deoxycholate, 1% NP-40, 0.2 % SDS, 50 mM EDTA) 

containing 1X HALT protease and phosphatase inhibitors (Thermo Scientific). 

Total protein was separated on 15% SDS-PAGE gels and transferred to 

nitrocellulose membranes. Membranes were blocked with 5% milk solution in 

TBS-T and immunoblotted with an antibody generated against 

NGIEFDPMLDERGYC peptide from C-terminus of TNMD (Rockland, 1:5000), 

HA (Cell Signaling, 1:1000), FLAG (Cell Signaling, 1:1000) and actin (Sigma, 

1:5000) antibodies.  

 

Immunoprecipitation and Proteomics Analysis 

 SGBS cells were infected with Ad-3HA-TNMD-Flag or Ad-3HA-Control 

virus. After 48 hours, cells were lysed with lysis buffer (1% NP40, 50 mM Tris pH 

7.4, 150 mM NaCl, 5 mM EDTA, 1X HALT protease and phosphatase inhibitors). 

1 mg total lysate from each sample was incubated overnight with HA antibody 

(Cell Signaling, 3724) at 40C, which was followed by incubation with Protein A for 

an additional hour. Samples were loaded on SDS-PAGE (Biorad Mini-Protean 
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TGX 4-20%). Proteomics analysis was performed by UMass Medical School 

Proteomics and Mass Spectrometry Core Facility.  
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