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Abstract 

Viral proteases have been shown to be effective targets of anti-viral therapies for 

human immunodeficiency virus (HIV) and hepatitis C virus (HCV). However, under the 

pressure of therapy including protease inhibitors, the virus evolves to select drug 

resistance mutations both in the protease and substrates. In my thesis study, I aimed to 

understand the mechanisms of how this protease−substrate co-evolution contributes to 

drug resistance. Currently, there are no approved drugs against dengue virus (DENV); I 

investigated substrate recognition by DENV protease and designed cyclic peptides as 

inhibitors targeting the prime site of dengue protease.  

First, I used X-ray crystallography and subsequent structural analysis to 

investigate the molecular basis of HIV-1 protease and p1-p6 substrate coevolution. I 

found that co-evolved p1-p6 substrates rescue the HIV-1 I50V protease’s binding activity 

by forming more van der Waals contacts and hydrogen bonds, and that co-evolution 

restores the dynamics at the active site for all three mutant substrates. 

Next, I used aprotinin as a platform to investigate DENV protease–substrate 

recognizing pattern, which revealed that the prime side residues significantly modulate 

substrate affinity to protease and the optimal interactions at each residue position. Based 

on these results, I designed cyclic peptide inhibitors that target the prime site pocket of 

DENV protease. Through optimizing the length and sequence, the best inhibitor achieved 

a 2.9 micromolar Ki value against DENV3 protease. Since dengue protease does not 

share substrate sequence with human serine proteases, these cyclic peptides can be used 

as scaffolds for inhibitor design with higher specificity. 
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1.1 Viral protease as drug target 

Viral proteases play an essential role in the maturation of the viral particles and 

have been shown to be effective targets of anti-viral therapies for human 

immunodeficiency virus (HIV) and hepatitis C virus (HCV). There are currently nine 

HIV-1 protease inhibitors (PIs) and five HCV protease inhibitors that are FDA-approved 

for clinical use, and all are competitive inhibitors binding at the active site. Currently, 

there is no approved drug against dengue virus; however, the lessons we learned from 

HIV-1 and HCV should be applicable to dengue virus inhibitor design. 

Under the selective pressure of PI-including therapy regimens, viral variants 

carrying mutations in the protease gene and occasionally in the cleavage sites on the 

polyprotein impair the inhibitor efficacy. While the protease inhibitors become weak 

binders, the substrates are still hydrolyzed, skewing the balance between inhibitor 

binding and substrate processing in favor of the latter and causing drug resistance. 

Therefore, understanding the mechanism of how drug resistant protease interacts with its 

substrates and inhibitors is crucial to understand how to avoid drug resistance. 
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1.2 Human immunodeficiency virus 

Acquired immunodeficiency syndrome (AIDS) is a global problem caused by the 

infection of Human Immunodeficiency Virus 1 (HIV-1) (Barre-Sinoussi et al., 1983), 

with an estimated 35 million people living with HIV/AIDS and 1.5 million people dying 

early because of AIDS-related illness (UNAIDS, 2016). HIV-1 primarily infects CD4+ T 

cells, macrophages and dendritic cells, and the progressive failure of cell-mediated 

immunity makes infected individuals susceptible to opportunistic infections and 

eventually causes death. 

Currently, Highly Active Antiretroviral Therapy (HAART) is the main 

therapeutic strategy against HIV-1 infection. HAART consists of at least three drugs 

from at least two classes: protease and reverse transcriptase inhibitors (Yeni et al., 2002). 

HAART was designed to reduce the likelihood of developing viral resistance, and has 

been shown to successfully decrease the mortality and morbidity rate of HIV-1 infected 

patients. However, drug resistance is still observed in patients under treatment and 

diminishing drug susceptibility. Further understanding at the molecular level of how 

resistance happens would be beneficial to the development of more efficient therapies. 
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1.2.1 HIV-1 viral proteins and viral lifecycle 

HIV-1 virus belongs to the family Retroviridae and genus Lentivirus, the virus 

has two copies of positive sense 9.2 kb RNA genome (Chiu et al., 1985). The gag gene 

encodes structural proteins (MA, CA, SP1, NC, SP2, p6), the env gene encodes envelope 

proteins (gp120, gp41), and the pol gene encodes the enzymes (reverse transcriptase, 

protease, integrase, Ribonuclease H) (Riemann and Kohler, 1988). Six additional 

proteins, Vif, Vpr, Nef, Tat, Rev and Vpu, are also encoded by the HIV-1 genome, and 

the first three proteins are found in the viral particle, but the functions of these proteins 

are not fully understood (Fig. 1.1). 

The life cycle of HIV-1 virus starts with the interaction between the viral 

envelope complex (gp160) and CD4 receptor of the target cell (Fig. 1.2). The gp160 

protein has transmembrane domain gp41 and surface domain gp120. The binding of 

gp120 to CD4 receptor requires the viral particle to interact with one of the co-receptors 

(CCR5 or CXCR4) at the same time (Clapham and Weiss, 1997). This binding 

interaction causes structural rearrangements that allow gp41 to penetrate the cell 

membrane and induces the fusion of viral and cell membranes (Gallo et al., 2001), 

followed by genome uncoating in the host cell cytoplasm.  

The reverse transcription of the viral RNA genome into double-stranded DNA is 

mediated by the viral reverse transcriptase. This viral DNA is then transported to the 

nucleus as a pre-integration complex including the integrase, which inserts the viral DNA 

into the host cell DNA (Broder et al., 1985). Once the viral DNA is inserted into the host 

genome, this DNA is called provirus, which can remain inactive for years (Koup, 2001).  
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The provirus uses host cell RNA polymerase to synthesize viral mRNA with the 

help of Tat, which is a viral transcriptional transactivator protein (Parada and Roeder, 

1996). Viral mRNAs are then exported to the cytoplasm where they are translated into 

viral Gag and GagPol polyproteins. Two copies of viral RNA genome are encapsidated 

and packaged with Gag proteins. Viral envelope protein is cleaved by host cell proteases 

into gp120 and gp41 during transport through the Golgi apparatus (Earl et al., 1991, Chan 

et al., 1997). These proteins are then incorporated into viral particles while interacting 

with matrix domain of Gag, which is responsible for plasma membrane targeting (Frankel 

and Young, 1998, Facke et al., 1993, Bryant and Ratner, 1990).  

Upon budding, the newly assembled viral RNA genome, structure proteins and 

enzymes emerge on the cell surface as an immature viral particle. The Gag and GagPol 

polyproteins are then processed by the viral protease into mature structure proteins and 

functional enzymes during this process (Kohl et al., 1988), leading to the maturation of 

viral particle and next round of infection. Since these cleavage steps are required for viral 

maturation, HIV-1 protease has been a promising target for drug development.  
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Figure 1.1.  HIV-1 Gag and GagPol polyproteins. 
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Figure 1.2.  HIV-1 life cycle. The steps of HIV-1 viral infection include: binding, fusion, 
reverse transcription, integration, transcription and translation, assembly, budding and 
maturation. 
 
Image courtesy: National Institute of Allergy and Infectious Diseases 
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1.2.2 HIV-1 protease and substrate recognition 

HIV-1 protease is an aspartyl protease with a conserved Asp-Thr-Gly triad as 

observed in other retroviral proteases (Seelmeier et al., 1988). HIV-1 protease has 99 

residues and functions as a homodimer (Fig. 1.3), and the triad from each monomer 

contributes to the formation of the active site (Navia et al., 1989). There are four main 

structural regions of HIV-1 protease, the active site (residues 23-28, 81-84), the dimer 

interface (1-10, 90-99), the flap region (40-60) and the core domain of each monomer 

(residues 11-22, 29-39, 61-80, 85-90). The flap regions of the protease control the entry 

of ligands and also participate in the substrate binding. HIV-1 protease has the conserved 

Asp-Thr-Gly triad as observed in other aspartic proteases. The triad from each monomer 

contributes to form the active site. Aspartic acid 25 is the catalytic residue, and the 

protease uses an activated water molecule to attack the carbonyl group of the substrate’s 

scissile bond (Navia et al., 1989).  

HIV-1 protease cleaves at least ten cleavage sites at Gag and GagPol polyproteins 

and gives rise to the release of structure proteins, matrix (MA), capsid (CA), 

nucleocapsid (NC), p6; two spacer peptides p1 and p2; and the enzymes, protease (PR), 

reverse transcriptase (RT) and integrase (IN) (Kohl et al., 1988) (Fig. 1.1). 

HIV-1 protease’s substrate residues spanning from P4 to P4’ positions have been 

shown to be required for proper substrate recognition (Weber et al., 1989, Tozser et al., 

1991). However, the substrate sequences of different cleavages sites are very diverse 

(Table. 1.1). How the protease is able to recognize these variable sequences was revealed 

by crystal structures solved in the Schiffer lab. HIV-1 protease recognizes these 
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substrates through a three dimensional consensus volume occupied by different substrates 

when bound to the protease, spanning P4 to P4’ substrate positions, which was named the 

substrate envelope (Fig. 1.4) (Prabu-Jeyabalan et al., 2002). HIV-1 inhibitors protruding 

out the substrate envelope were found to be more susceptible to drug resistance mutations 

since protease residues that interact with protruding inhibitor atoms are more important 

for inhibitor binding than substrate binding (Fig. 1.4) (King et al., 2004, Prabu-Jeyabalan 

et al., 2006).  
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Figure 1.3.  Structure of HIV-1 protease in complex with substrate. The two 
monomers are shown in purple and green, and the substrate in magenta. Catalytic 
aspartates are shown as sticks. 
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Figure 1.4.  Substrate and Inhibitor Envelopes of HIV-1 Protease. (A) Substrate 
envelope in blue with superposed substrate peptides. (B) Top view of the substrate 
envelope and the active site of the protease. (C) Inhibitor envelope in red, calculated from 
the consensus volume occupied by five or more of the inhibitor complexes with active 
HIV-1 protease. (D) Top view of the inhibitor envelope and the active site of the 
protease. (E) Superposition of the substrate envelope and inhibitor envelope. Protease 
residues contacted by the inhibitor that mutate to cause drug resistance are labeled. 
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1.2.3 HIV-1 protease inhibitors as antivirals and drug resistance 

There are currently nine protease inhibitors (PIs) that are FDA-approved for 

clinical use: saquinavir (SQV), indinavir (IDV), ritonavir (RTV), nelfinavir (NFV), 

amprenavir (APV), lopinavir (LPV), atazanavir (ATV), tipranavir (TPV) and darunavir 

(DRV) (Vacca et al., 1994, Turner et al., 1998, Sham et al., 1998, Robinson et al., 2000, 

Patick et al., 1996, Partaledis et al., 1995, Kempf et al., 1995, Craig et al., 1991) (Fig. 

1.5). These drugs are included in highly active antiretroviral therapy (HAART) (Yeni et 

al., 2002), and all are competitive inhibitors binding at the active site. These inhibitors are 

all peptidomimetic inhibitors except TPV. 

HAART containing protease inhibitors have been shown to successfully decrease 

viral replication. However, drug resistance mutations decrease the efficacy of the 

antiviral therapy. Because of the high replication rate of the virus and lack of 

proofreading function of the viral reverse transcriptase, viral mutations are quickly 

selected under the drug pressure to confer protease inhibitor resistance(Kaplan et al., 

1993, Kaplan et al., 1994, Condra et al., 1995, Molla et al., 1996, Rhee et al., 2003, 

Shafer, 2006) . 

Major primary drug resistance mutations include D30N, V32I, M46I, G48V, 

I50V/L, V82A/F/I, I84V, which are commonly observed in patients failing antiviral 

treatment (Gulnik et al., 1995), and certain mutations are selected under specific drug 

treatment (Fig. 1.6) (Wensing et al., 2014). For example, I50V is commonly observed in 

patients failing therapy with PIs amprenavir and darunavir (Mahalingam et al., 1999, 

Colonno et al., 2004), and D30N is observed in patients failing nelfinavir treatment 
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(Patick et al., 1998). As primary protease mutations may decrease protease activity, 

secondary mutations are usually selected to partially rescue protease function, such as 

A71V mutation, which rescues I50V protease’s catalytic efficiency (Clemente et al., 

2003). The mechanisms of how these protease resistance mutations affect drug binding 

have been investigated before, e.g., I50V protease makes less vdW interactions with the 

sulfonyl moiety in APV/DRV compared to those in the WT complexes (Mittal et al., 

2013). Beside mutations of the viral protease, drug resistance mutations at the substrate 

cleavage sites were observed to co-exist with protease mutations, indicating protease–

substrate co-evolution [Kolli, 2009 #100]. 
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Figure 1.5.  Chemical structures of FDA approved HIV-1 protease inhibitors. 
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Figure 1.6.  HIV-1 protease mutations selected by different classes of protease 
inhibitors. 
 
Reprinted with permission from Wensing, A. M., Calvez, V., Gunthard, H. F., Johnson, 
V. A., Paredes, R., Pillay, D., Shafer, R. W. & Richman, D. D., 2014. 2014 Update of the 
drug resistance mutations in HIV-1. Top Antivir Med, 22, 642-50. Copyright 2014 IAS–
USA Drug Resistance Mutations Group. 
  



	 17	

1.2.4 HIV-1 protease-substrate co-evolution 

Several mutations in Gag cleavage sites co-evolve with primary protease 

mutations, and contribute to resistance. Based on the viral sequences retrieved from 

patients, mutations at the p1-p6 cleavage site are statistically associated with I50V or 

D30N/N88D protease mutation (Kolli et al., 2009, Kolli et al., 2006), and mutations 

within NC-p1 cleavage site correlate with V82A protease resistance mutation (Zhang et 

al., 1997, Maguire et al., 2002). 

These co-evolved substrates have been reported to rescue protease cleavage 

activity. In particular, for the I50V protease and p1-p6 substrate co-evolution, Gag L449F 

mutation rescues the protease activity by 10 fold, while P453L, despite being distal from 

the catalytic site, causes a 23-fold enhancement (Maguire et al., 2002). The molecular 

basis for the selection advantage of these correlated mutations and the mechanism by 

which the compensatory mutations restore substrate recognition in drug resistance was 

not clear.  

By studying the molecular mechanism of protease-substrate co-evolution, I aimed 

to understand how HIV-1 mutant protease is able to recognize and cleave its substrates 

while the inhibitor binding is impeded. The results help us re-evaluate the idea of 

substrate envelope and design inhibitors less likely to be susceptible to the selection of 

resistance mutations. This project will be discussed in Chapter II.   
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1.3 Dengue virus 

Dengue fever, caused by infection with dengue virus (DENV), is a worldwide 

infectious disease endemic in more than 110 countries. Approximately 390 million 

people are infected yearly, with 96 million of infected developing disease symptoms and 

about 20,000 annual deaths (WHO, 2009, Bhatt et al., 2013).  

Mosquito Aedes aegypti is the major vector of dengue virus, and due to the 

narrow temperature tolerance of Aedes, DENV is transmitted predominantly in tropical 

and subtropical region. Eighty percent of dengue infections are asymptomatic, and for 

those who are symptomatic, symptoms range from undifferentiated fever to dengue 

hemorrhagic fever and dengue chock syndrome [WHO, 1997 #813] (or severe dengue for 

the last two) [WHO, 2009 #103], with severe symptoms including plasma leakage, 

haemoconcentration, abnormalities in homeostasis and shock.  

There are four serotypes of dengue virus (DENV 1-4), and each serotype shares 

65-70% sequence identity of the genome (Rico-Hesse, 1990). Ninety percent of dengue 

hemorrhagic fever cases were observed in patients with secondary infections of 

heterologous serotypes (Green and Rothman, 2006). 

 

  



	 19	

1.3.1 DENV lifecycle and viral proteins 

Dengue virus (DENV), a member of the family Flaviviridae (which includes 

other viruses like hepatitis C virus, yellow fever virus, Zika virus), is an enveloped virus 

with a positive single-strand 11,000 nucleotide RNA genome. Dengue RNA genome has 

one open reading frame that encodes a single polyprotein of three structural proteins (C, 

prM, and E) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, 

and NS5) (Chambers et al., 1990a).  The role of the structural proteins include: the C 

protein which is required for the formation of nucleocapsid, prM inhibits the pre-

maturation of viral particle, and E protein is required for the receptor binding and fusion 

activity (Zhang et al., 2004, Kuhn et al., 2002). The nonstructural proteins are mainly 

enzymes and include:  N terminus of NS3 protein is the protease domain and C terminus 

is the ATP-dependent helicase domain. NS2B is the cofactor of NS3 protease and is 

required for proper protease function (Yusof et al., 2000, Chambers et al., 1990a, Bera et 

al., 2007). NS5 has the functions of methyltransferase and RNA-dependent RNA 

polymerase, and NS4B has been shown to inhibit interferon signal transduction. The 

functions of NS1, NS2A, and NS4A are incompletely understood (Ross, 2010). Due to 

the known functions of NS3 and NS5, these two proteins have been targeted for inhibitor 

design (Lim et al., 2013).  

The structures of dengue viral particle (3J27) (Zhang et al., 2013), envelope 

protein E (1TG8) (Zhang et al., 2004), pre-membrane protein prM (3C5X, 3C6E) (Li et 

al., 2008), capsid protein C (1R6R) (Ma et al., 2004), NS3/2B protease (2FOM) (Erbel et 

al., 2006) (3L6P) (Chandramouli et al., 2010) (3U1I) (Noble et al., 2012), NS2B with full 
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length NS3 (2VBC) (Luo et al., 2008), NS3 helicase/NTPase (2BHR, 2BMF) (Xu et al., 

2005), methyltransferase (2P1D, 2P40) (Egloff et al., 2002, Egloff et al., 2007), and 

RNA-dependent RNA polymerase (2J7U, 2J7W) (Yap et al., 2007) have been 

determined. 

DENV enters the target cell through clathrin-mediated endocytosis, then the viral 

particle is delivered to Rab5-positive endosome, which will further mature to Rab7-

positive endosome (Fig. 1.7). Acidification of the endosome induces the fusion of viral 

and vesicular membranes, after which the nucleocapsid is released and uncoated (Clyde 

et al., 2006). Dengue RNA genome is translated into a single polyprotein on the 

endoplasmic reticulum membrane, where this polyprotein gets processed at the 

cytoplasmic side of ER membrane by dengue NS2B-NS3 protease and at the lumen side 

by the host cell peptidase (Chambers et al., 1990a), giving rise to functional viral 

proteins. 

Non-structural proteins initiate the synthesis of the RNA genome, and then the 

genome is packaged by C protein to form the nucleocapsid. The prM/E heterodimeric 

protein forms trimers in the lumen of ER membrane and encapsulates the nucleocapsid to 

form the immature viral particle. This immature viral particle then travels through the 

Golgi apparatus where the dropping of pH induces the dissociation of prM/E 

heterodimer, which allows human furin protease to cleave between M protein and pr 

peptide. This cleavage process allows the maturation of viral particle (Rodenhuis-Zybert 

et al., 2010). 
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Figure 1.7.  The life cycle of dengue virus. The steps of dengue viral infection include: 
attachment, endocytosis, uncoating, translation and processing, genome replication, 
assembly, budding and maturation. 
 

Reprinted with permission from Screaton, G., Mongkolsapaya, J., Yacoub, S. and 
Roberts, C., 2015. New insights into the immunopathology and control of dengue virus 
infection. Nature Reviews Immunology, 15(12), pp.745-759. Copyright 2015 Nature 
Publishing Group. 
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1.3.2 Therapeutic strategies against dengue virus 

The first dengue vaccine CYD-TDV (Dengvaxia) (Sanofi Pasteur) was approved 

in Mexico in December 2015. This vaccine is a formulation of four chimeric yellow fever 

17D vaccine viruses, which was designed to express the membrane and envelope proteins 

of all four serotypes of DENV (Simmons, 2015).  

Unlike HIV-1 and HCV, there is no approved drug (direct acting antiviral) against 

dengue virus. The main strategy to reduce the spread of dengue virus is vector control. 

Inhibitors targeting dengue protease, helicase, polymerase and methyl transferase have 

been investigated (Lim et al., 2013), but there are no drugs in development or clinical 

trials.  My research was focused on the dengue NS3/2B protease substrate recognition 

and inhibitor design. 
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1.3.3 Dengue NS3/2B protease and structural features 

Dengue NS2B-NS3 protease is a serine protease (Ser135 is the catalytic residue), 

which belongs to the chymotrypsin family with a classic Ser-His-Asp catalytic triad 

(His51-Asp75-Ser135) (Bera et al., 2007). The hydrophilic core of NS2B cofactor 

(cNS2B; amino acids 1394-1440) is required for the proper function of NS3 protease 

(NS3pro185; amino acids 1476-1660) and participates in substrate recognition (Yusof et 

al., 2000, Noble et al., 2012).  

Crystal structures of serotype 1 (PDB: 3L6P) (Chandramouli et al., 2010) and 

serotype 2 (PDB: 2FOM) (Erbel et al., 2006) dengue NS3/2B protease, and serotype 4 

NS2B with full length NS3 protein (PDB: 2VBC) (Luo et al., 2008) have been 

determined all in apo form. For serotype 3, there is one peptidomimetic inhibitor bound 

(PDB: 3U1I) and one aprotinin bound (PDB: 3U1J) NS3/2B protease complex structure 

(Noble et al., 2012). Apo NS3/2B protease adopts an opened conformation, which is the 

inactive form (Fig. 1.8). In the ligand-bound DENV3 NS3/2B protease structure (closed, 

active form), the co-factor 2B loops around the NS3 protease domain and participates in 

the formation of S2 and S3 pockets of the active site (Fig. 1.8). The NS3 protease domain 

adopts a chymotrypsin-like conformation with two β-barrels and the catalytic triad 

located in between. Asp129 in S1 pocket and Asp75 in S2 pocket may confer the 

protease’s preferences of basic residues at these two positions (Erbel et al., 2006). 
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Figure 1.8.  Crystal structure of dengue NS3/2B protease. (A) Apo-structure of 
DENV2 protease (PDB: 2FOM). (B) Peptidiomimetic inhibitor bound DENV3 protease 
structure (PDB: 3U1I). NS3 is in green, NS2B in cyan, catalytic triads in orange and 
ligand in magenta. 
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1.3.4 Dengue NS3/2B protease substrate specificity 

Dengue protease is responsible for processing eight of the thirteen polyprotein 

cleavage sites (C, NS2A, NS2A-NS2B, NS2B-NS3, NS3, NS3-NS4A, NS4A, NS4B-

NS5) (Falgout et al., 1991), and these cleavage steps are required for the maturation of 

the viral particle, making dengue NS2B-NS3 protease a promising target for drug 

development. 

Previously, two basic residues at P2 and P1 sites and a small and polar residue at 

P1’ site were found as optimal for substrate recognition and processing across all four 

serotypes (Chambers et al., 1990b). However, there are non-basic residues at P2 position 

and residues at P5 to P3 and P’ sites are quite diverse (Fig. 1.9) (Strain name: DENV1: 

Nauru/West Pac/1974, DENV2: Australia TSV01/1993, DENV3: Singapore 8120/1995, 

DENV4: Taiwan 2K0713/2000). How dengue protease is able to recognize these diverse 

substrates is not fully understood.  Meanwhile, dengue protease has similar substrate 

sequence preferences as human serine proteases (Furin RXRR, thrombin P1 R, trypsin P1 

R), making the design of dengue protease inhibitor more challenging. In contrast, dengue 

protease does not have similar P’ site substrate sequence preferences with other serine 

proteases. Thus revealing P’ site protease–substrate interactions would facilitate the 

design of more specific P’ site inhibitors. 

Linear peptides corresponding to dengue NS3/2B protease cleavage sites have 

been used to investigate the residue preference at each position, however, the results were 

quite different depending on experimental approaches. For example, acidic residues (Asp, 

Glu) were found to be favorable at P2’ position when screened with peptides nKRR-
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XOXX (O is fixed amino acid and X stands for amino acid mixtures while cysteine is 

excluded and methionine is replace by isostere norleucine) (Li et al., 2005a), but Glu was 

found to be the least favorable when screened with peptides GLKRGOAK (O is fixed P2’ 

amino acid) (Shiryaev et al., 2007). This discrepancy suggests that background sequence 

plays a key role in determining the contribution of a specific residue: using amino acid 

mixtures as a background can mask the effect of specific residues at a given position, 

such as due to intra-molecular interactions, while using a fixed background sequence may 

miss extra interdependencies.. Further, these tested sequences may not exist in nature. 

Linear substrate peptides spanning P4 to P4’ have been used to investigate substrate 

cleavage (Chanprapaph et al., 2005). However, with diverse residues at P site (both basic 

and non-basic P2 residues, distinct P3 and P4 residues), to distinguish the contributions 

of P or P’ sites is difficult. 

General serine protease inhibitor aprotinin, which was used in cardiac surgery to 

reduce bleeding (Mahdy and Webster, 2004), is a potent inhibitor against DENV2 

protease (26 nanomolar Ki) (Mueller et al., 2007). Unlike P site inhibitors, aprotinin 

occupies the dengue protease active site from P3 to P4’ positions (Noble et al., 2012). 

Based on the published aprotinin–dengue protease complex structure (3U1J), the P’ site 

substrate’s binding mode in the protease active site was revealed, making this structure a 

useful tool to investigate the P’ site inhibitors. 

I took advantage of the high-affinity binding and structural availability of 

aprotinin (3U1J) and screened the binding loop with corresponding P1 to P4’ substrate 

sequences (the sequences are conserved among DENV3 genotypes: China/80-2/1980, 
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Philippines/H87/1956, Singapore/8120/1995, SriLanka/1266/2000 and 

Martinique/1243/1999) to investigate how diverse P’ site substrate sequences affect 

binding interactions with the protease. This project will be discussed in Chapter III. 
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Figure 1.9.  Dengue NS3/2B protease cleavage site sequences. Residues are colored 
based on the properties of side chains. 
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1.3.5 Inhibitors targeting dengue NS3/2B protease 

Peptidomimetic dengue protease inhibitors have been designed mainly based on P 

site substrate sequences, which usually have basic P2 and P1 residues (Yin et al., 2006a, 

Yin et al., 2006b, Nitsche et al., 2011, Nitsche et al., 2012, Bastos Lima et al., 2015) 

(Table 1.2). These inhibitors were improved to nanomolar level binding affinity 

according to a recently published study (Behnam et al., 2015). Since dengue protease has 

similar substrate sequence preferences as human serine proteases do (furin RXRR, 

thrombin P1 R, trypsin P1 R), these inhibitors may not be specific to dengue protease. 

Therefore, further optimization of these inhibitors is required. 

Besides peptide mimicking strategy, small molecule library screening has been 

applied to targeting dengue NS3/2B protease, and several hits with micromolar affinity 

were found (Ganesh et al., 2005, Cregar-Hernandez et al., 2011, Boonyasuppayakorn et 

al., 2014, Yang et al., 2014). Due to the difficulty of getting complex crystal structures of 

these inhibitors with dengue protease, how these molecules bind to the protease is not 

clear.  

Fragment based drug design was also applied to investigate dengue NS3/2B 

protease inhibitors, and compounds with micromolar potencies were discovered 

(Knehans et al., 2011). These compounds resemble dengue protease substrates’ basic P2 

and P1 residues, therefore, further optimization is required to increase the specificity of 

these compounds against dengue protease. 
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Other than competitive dengue protease inhibitors, allosteric inhibitors were 

shown to be able to affect the proper structural arrangement of co-factor NS2B (Yildiz et 

al., 2013), which is required for the function of NS3 domain (Yusof et al., 2000). 

Overall, further optimizations are required to increase P site inhibitors’ specificity 

to dengue protease. Since dengue protease does not share similar P’ site substrate 

sequence preferences with other serine proteases, targeting S’ pocket is a strategy to 

design more specific dengue protease inhibitors. I have designed cyclic peptides as 

dengue NS3/2B protease inhibitors based on the favorable interactions I identified at this 

pocket, and this project will be discussed in Chapter IV. 
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Table 1.2.  Selected peptidiomimetic dengue NS3/2B protease inhibitors. 
 

 

Reprinted with permission from Nitsche, C., Holloway, S., Schirmeister, T. and Klein, 
C.D., 2014. Biochemistry and medicinal chemistry of the dengue virus protease. 
Chemical reviews, 114(22), pp.11348-11381. Copyright 2014 American Chemical 
Society.   
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1.4 Thesis scope 

This thesis attempts to fill the gaps in molecular level understanding of how drug 

resistance happens in viral proteases and how protease−substrate recognition can be 

applied to drug design, more specifically how HIV-1 protease−substrate co-evolution 

contributes to drug resistance, how dengue protease recognizes diverse P’ substrate 

sequences, and how this knowledge can be used in inhibitor design targeting dengue 

protease.  

First, I demonstrate that co-evolved p1-p6 substrates rescue the HIV-1 I50V 

protease’s binding activity by forming more vdW contacts and hydrogen bonds, and that 

co-evolution restores the dynamics at the active site for all three mutant substrates 

(Chapter II). 

To apply the principles and strategies we learned from HIV-1 structural studies to 

dengue protease, I elucidated the dengue protease’s P’ site substrate recognition patterns 

and designed inhibitors based on the favorable interactions at this pocket. First, I used 

aprotinin as a platform to investigate protease–substrate interactions. I presented that P’ 

side residues significantly modulate substrate affinity to protease, and the contributions 

by distinct substrate residues to binding (Chapter III). Next, I investigate P’ site inhibitors 

derived from aprotinin binding loop, through optimizing the length and sequence of the 

peptides; the tightest cyclic peptide reached low micromolar potency against DENV3 

protease (Chapter IV). 

How protease’s substrate recognition pattern and molecular dynamics simulations 

can benefit drug design will be discussed in chapter V. Also, how to improve dengue 
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protease inhibitor and the implications for evolving virus based on dengue research will 

be covered in this chapter.  
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Chapter II 

Structural Basis and Distal Effects of Gag Substrate Co-

evolution in Drug Resistance to HIV-1 Protease 
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2.1 Abstract 

Drug resistance mutations in response to HIV-1 protease inhibitors are selected 

not only in the drug target but elsewhere in the viral genome, especially at the protease 

cleavage sites in the Gag polyprotein. To understand the molecular basis of this protease–

substrate coevolution, we solved the crystal structures of drug resistant I50V/A71V HIV-

1 protease with p1-p6 substrates bearing coevolved mutations. Analyses of the protease–

substrate interactions reveal that compensatory co-evolved mutations in the substrate do 

not restore interactions lost due to protease mutations, but instead establish novel 

interactions that are not restricted to the site of mutation. Mutation of a substrate residue 

has distal effects on other residues’ interactions as well, including through the induction 

of a conformational change in the protease. Additionally, molecular dynamics 

simulations suggest that restoration of active site dynamics is an additional constraint in 

the selection of coevolved mutations. Hence, protease–substrate co-evolution permits 

mutational, structural, and dynamic changes via molecular mechanisms that involve distal 

effects contributing to drug resistance. 
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2.2 Introduction  

Resistant pathogens evolve under the selective pressure of drug therapies, 

commonly by acquiring mutations in the drug target (Yun et al., 2008, Janne et al., 2009, 

Ali et al., 2010, Theuretzbacher and Mouton, 2011). Most of these mutations cluster 

around the drug binding site and alter key interactions between the drug and its target. 

Strikingly, mutations in other off-target proteins have also been reported to contribute to 

drug resistance (Kern et al., 2000, Kolli et al., 2006, Dam et al., 2009, Li and Nikaido, 

2009) where the mechanism of resistance is not as straightforward to rationalize. In the 

case of HIV-1, mutations both in the target protease gene and elsewhere in Gag confer 

resistance to protease inhibitors (PIs). There are currently nine protease inhibitors (PIs) 

that are FDA-approved for clinical use including in highly active antiretroviral therapy 

(HAART) (Debouck, 1992), and all are competitive inhibitors binding at the active site.  

HIV-1 protease is a key antiviral drug target due to its essential function of 

processing Gag and Gag-Pol viral polyproteins in viral maturation (Chou et al., 1996, 

Pettit et al., 1998, Sadler and Stein, 2002). Under the selective pressure of PI-including 

therapy regimens, viral variants carrying mutations in the protease gene and occasionally 

in the cleavage sites on the Gag polyprotein are populated impairing the inhibitor 

efficacy. While the PIs become weaker binders of these resistant protease variants, the 

substrates are still hydrolyzed (Kantor et al., 2002, Rhee et al., 2003), skewing the 

balance between inhibitor binding and substrate processing in favor of the latter. Earlier 

work from our group revealed the molecular determinants of this fine balance and 

formulated the substrate envelope hypothesis to effectively explain the molecular 
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mechanism of resistance due to primary active site mutations (King et al., 2004). Among 

primary protease mutations, I50V is commonly observed in patients failing therapy with 

PIs APV and DRV (Partaledis et al., 1995, Van Marck H, 2007, Vermeiren et al., 2007). 

Residue 50 is located at the flap tip of the flexible loop (50s loop) that controls the access 

of substrates and competitive inhibitors to the protease active site. In addition to 

conferring resistance to PIs, I50V mutation also impairs substrate processing (Maguire et 

al., 2002). The loss of catalytic efficiency with I50V is compensated by secondary 

mutations, in particular A71V (Nijhuis et al., 1999), which is observed in more than 50% 

of patient sequences bearing I50V (Rhee et al., 2003). 

Several mutations in Gag cleavage sites co-evolve with primary protease 

mutations, and contribute to resistance (Doyon et al., 1996, Zhang et al., 1997, Mammano 

et al., 1998, Bally et al., 2000, Feher et al., 2002, Kolli et al., 2006, Dam et al., 2009). 

Particularly, mutations in the p1-p6 cleavage site are statistically associated with I50V 

protease mutation in the viral sequences retrieved from patients (Fig. 2.1) (Kolli et al., 

2009). Based on catalytic efficiency (kcat/Km), Gag L449F mutation rescues the protease 

activity by 10 fold, while P453L, despite being distal from the catalytic site, causes a 23-

fold enhancement (Maguire et al., 2002). However, the molecular basis for the selection 

advantage of these correlated mutations and the mechanism by which the compensatory 

mutations restore substrate recognition in drug resistance is not clear. In this study, we 

report the structural basis for the co-evolution of I50V/A71V protease with the p1-p6 

substrate. Through a series of co-crystal structures the Gag mutations L449F and P453L 

were shown to enhance van der Waals (vdW) interactions between the substrate and 
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mutant protease, while R452S results in an additional hydrogen bond. Unexpectedly, the 

P453L substrate mutation causes a conformational change in the protease flap loop, 

revealing the molecular mechanism by which this distal substrate mutation is able to 

enhance substrate–protease interactions. In addition, molecular dynamics simulations 

suggest that co-evolution restores the dynamics at the active site, a key aspect of substrate 

recognition and turnover that is largely uncharacterized. 
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Figure 2.1.  HIV-1 protease and p1-p6 cleavage site co-evolution with I50V primary 
drug resistance mutation. (A) p1-p6 cleavage site sequence and the most common co-
evolution mutations at P1', P4', and P5' sites. Gag numbering 449 corresponds to P1' site. 
(B) Residues 50 and 71 are indicated as spheres on the homodimeric HIV-1 protease 
structure; two protease monomers and the bound substrate are colored light purple, green, 
and red, respectively. (C) Frequency of mutations in the p1-p6 cleavage site without 
(dark blue) and with (gray) any mutations at position 50 of the protease. The difference is 
statistically significant for LP1', RP4', and PP5'. (D) Side chains of the substrate residues 
LP1', RP4', and PP5' and the protease residue I50 are shown as sticks. Monomers of HIV-
1 protease are represented as light purple and green surfaces and the substrate is depicted 
as a red ribbon.  
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2.3 Results 

To understand how HIV-1 protease–substrate co-evolution alters binding 

interactions, a series of co-crystal structures of WT and I50V/A71V protease with p1-p6 

substrate variant peptides (WT, L449F, R452S, P453L) were determined. All structures 

were solved to resolution 1.50–2.14 Å (Table 2.1). In addition to an overall structural 

comparison, the alterations in co-evolved substrates’ fit within the substrate envelope, 

and details of molecular interactions between the protease and substrate were analyzed. 

Finally, MD simulations were carried out to reveal any dynamic changes in co-evolved 

complexes relative to WT. 

 

2.3.1 The overall structure and substrate envelope is conserved in co-evolved 

complexes 

The overall backbone conformation of substrate–protease complexes is conserved 

in all co-evolved structures. When the structures are superposed onto the WTWT complex 

(based on the structurally conserved regions, residues 24-26 and 85-90) (Ozen et al., 

2011), the RMSD of Cα atoms are within 0.48 Å. Minor structural changes in some co-

evolved structures are located mainly at crystal contact surfaces (Fig. 2.2). One notable 

exception is in the I50VPP5’L structure, where a peptide bond flips to change the flap loop 

conformation relative to the WT structure in one monomer. Similar to the protease, all 

substrate residues from P4 to P4' overlap well, with the exception of P4' arginine having 

an altered orientation in WTWT complex (Fig. 2.3). The distal P5 and P5' residues are 
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more flexible, P5 is often disordered, while P5’ has altered conformations in both LP1'F 

and PP5'L substrates as detailed below. 

The protease and substrate mutations were evaluated for their effect on the 

substrate’s fit to the substrate envelope, which is key to recognition by the protease (Fig. 

2.4A,B). The substrate volume within the envelope, Vin, is the largest in the WTWT 

complex, indicating that the WT substrate fills the substrate envelope better than the other 

substrate variants. The I50V/A71V protease mutations worsen the fit of the WT substrate 

within the substrate envelope resulting in a 53 Å3 (5.0%) reduction in Vin. The LP1'F 

substrate partially restores this loss in Vin and the coevolved substrate better fills the 

substrate envelope by 25 Å3 (2.5%). Overall, the co-evolved substrates maintain a 

comparable fit within the substrate envelope regardless of whether the protease carries 

the I50V/A71V mutations or not, supporting that substrate envelope is the recognition 

motif, and coevolved mutations at the cleavage site do not drastically alter the fit within 

the substrate envelope.  
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Table 2.1.  Crystallographic statistics for HIV-1 protease with p1-p6 substrate co-
crystal structures. 
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Figure 2.2.  Distance-difference maps showing the effect of protease-substrate co-
evolution on internal Ca-Ca distances with respect to the wild-type complex. 
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Figure 2.3.  Superposed HIV-1 protease substrate conformations. (A) Superposed 
substrate conformations from eight protease-substrate co-crystal structures. (B) Pairwise 
superposed substrates bound to wild-type and I50V/A71V protease variants.   
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2.3.2 Substrate mutations have distal effects and enhance packing at the active site 

To investigate the alterations in substrate packing at the active site, the vdW 

interactions were quantified between the protease and substrate. The changes in substrate 

packing relative to WTWT structure are displayed in Fig. 2.4C, where negative values 

indicate enhanced packing. The LP1’F substrate has more vdW contacts with I50V/A71V 

protease compared to those in either I50V/A71VWT or WTLP1’F. This is also the case for 

the PP5’L substrate, where the co-evolved I50V/A71VPP5’L complex makes more vdW 

contacts than either the I50V/A71VWT or WTPP5’L complexes. Hence, the co-evolution of 

HIV-1 protease and p1-p6 substrate may rescue the loss of binding interactions caused by 

mutations on either protease or substrate alone. The enhanced interactions of 

I50V/A71VLP1’F was partially due to the LP1'F mutation (Fig. 2.4D), that has more 

interactions with residues that surround the S1' pocket Arg8, Leu23, Pro81 and Val82 

compared to I50V/A71VWT, and more interaction with Val82 compared to WTLP1’F (Fig. 

2.5). In addition, the LP1'F mutation causes a distal change at the substrate P5' proline 

(Fig. 2.4D,E and Fig. 2.6A) that is in an alternative position in the WT complex (Fig. 

2.3). This change increases the P5' proline’s vdW contacts, specifically with Lys45' and 

Met46' instead of Phe53'. Hence, the effect of LP1'F mutation is not localized solely to 

the site of mutation. This alteration of the structure and vdW contacts of residues at a 

distal position illustrates the adaptability and interdependency of interactions when HIV-

1 protease recognizes substrates. 

The RP4’S substrate has more overall vdW contacts in the co-evolved 

I50V/A71VRP4’S complex relative to WTRP4’S but less than the WT substrate in 
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I50V/A71VWT. Since P4’ serine is a smaller residue compared to arginine, the mutated 

serine makes less vdW contacts when bound to either WT or I50V/A71V protease 

compared to arginine with the corresponding protease (Fig. 2.4C). However, the mutation 

at P4' residue actually influences the interactions at other positions: P3' Ser and P2' Gln 

has enhanced vdW contacts in I50V/A71VRP4’S compared to either I50V/A71VWT or 

WTRP4’S. Specifically, P3' Ser makes more contacts with Asp 29' compared to 

I50V/A71VWT, while P2' Gln–Asp30' and P3’ Ser–Arg8/Ile47' interactions are enhanced 

compared to WTRP4’S (Fig. 2.5). As with the LP1'F mutation, the RP4'S mutation impacts 

the interactions of other substrate residues with the protease. 

The PP5'L mutation increases the P5' residue’s interactions with I50V/A71V 

protease as the leucine packs closer to the 50s loop in one monomer, while influencing 

the residues closer in the active site, P2 Asn and P1 Leu, to also form more extensive 

contacts. In addition, the co-evolved structure makes more contacts at P1' residue 

compared to WTPP5’L. Interestingly, the major structural change due to this substrate 

mutation is observed within the protease (Fig. 2.6B). The peptide bond between Gly51 

and Gly52 in the I50V/A71VPP5’L structure is flipped compared to the other structures, 

and this flipped peptide bond pushes the 50s loop towards the substrate, causing 

increased vdW contacts between protease residues Gly48, Gly49, Ile50, Phe53 and the 

substrate. Hence, the co-evolved site not only impacts its own fit within protease active 

site, but also alters the interactions of distal residues in the substrate by stabilizing 

alternative conformations of the protease. 
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In conclusion, the detailed analysis of vdW contacts between the protease and 

substrates show interdependent distal effects in binding interactions where the alterations 

are not localized at the mutated residue itself, but also occur at other residues. These 

distal alterations are caused by structural changes in the protease, the substrate, or both. 
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2.3.3 The RP4'S substrate has less packing interactions but an additional hydrogen 

bond 

The intramolecular hydrogen bonds between the protease and the substrates are 

conserved across all complexes, with two exceptions (Fig. 2.7, Table 2.2): First, the P4' 

arginine in the WTWT structure orients in the opposite direction compared to the other 

complexes making a hydrogen bond with the side chain of Asp30’ instead of Asp29'. 

Second, the RP4'S substrate forms an additional hydrogen bond with both WT and 

I50V/A71V protease through the P4' serine side chain (Fig. 2.7). This extra hydrogen 

bond may compensate for the loss of vdW contacts due to the smaller size of serine in 

these two complexes.  
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Figure 2.7.  The hydrogen bonds between p1-p6 substrate (orange) and HIV-1 
protease (cyan and magenta monomers), including those mediated by a conserved 
water molecule (red sphere). Bonds shared in all substrate variants are in black, while 
the additional hydrogen bond formed by RP4'S variant is indicated in red.  
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Table 2.2. Hydrogen bonds between the p1-p6 substrate and HIV-1 protease in 
cocrystal structures. Bonds with acceptor–donor distances less and more than 3 Å are 
indicated by red and yellow, respectively. Distances greater than 3.8 Å are not considered 
bonded but listed for comparison, in green.  
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2.3.4 Active site dynamics is restored by coevolution 

Resistance mutations, in addition to altering the molecular interactions, affect the 

conformational dynamics at the active site. Specifically, the distance between the two 80s 

loops, which reflect the overall size of the protease active site, varies between protease–

substrate complexes during the MD simulations. In crystal structures, the 80-80’ distance 

is similar in all the structures and varies between 17.1 and 18.0 Å (Fig. 2.8). In the 

dynamic conformational ensemble of the WTWT structure, the distance between these two 

loops is around 17.5 Å, and expands to 19–19.5 Å with mutations in either the protease or 

substrate. Strikingly, in all three cases, co-evolution brings this distance back to 17.5–

18.0 Å, which is similar to the WT inter-loop distance (Fig. 2.8). Hence, mutation of 

either the protease or the substrate alone disturbs the dynamics of the protease active site, 

while co-evolution of both restores the active site dynamics and possibly the protease 

activity. 
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Figure 2.8.  The distance (in Å) distribution between T80–T80' across the active site 
during MD simulations of substrate–protease complexes. (A) Mutations in only 
protease or only substrate increase the distance sampled (lighter shades) while 
coevolution of both together (darker shades) brings the distance back to that in the WT–
WT complex (black). (B) The T80–T80' distance across the active site depicted on the 
protease with a view from the top of the flaps. The colors are the same as in Figure 2.1. 
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2.4 Discussion 

HIV-1 I50V/A71V protease is commonly observed in patients failing therapy 

with APV and DRV, and substrate mutations in Gag cleavage sites coevolve with these 

primary protease mutations to contribute to inhibitor resistance. Gag L449F mutation 

rescues the protease activity by 10 fold, while P453L, although located distal from the 

catalytic site, causes a 23-fold enhancement (Maguire et al., 2002). The mutated 

substrates are cleaved more efficiently than the wild-type substrate by I50V/A71V 

protease (Maguire et al., 2002). Interestingly, WT protease also processes the wild-type 

substrate less efficiently than the mutant substrates. This sub-optimal cleavage efficiency 

at p1-p6 site should be critical for temporal regulation of Gag processing preventing 

premature viral maturation (Pettit et al., 1998, Pettit et al., 2005). Under drug pressure, 

the resistance mutations I50V/A71V are populated, and the impaired protease activity on 

the wild-type Gag may interfere with the ordered processing of Gag. Co-evolution of 

substrates possibly restores proper Gag processing by getting more efficiently cleaved by 

the protease. 

The molecular basis of such protease–substrate co-evolution was investigated in 

this study by solving the crystal structures of the complexes of WT and I50V/A71V 

protease with p1-p6 substrate variants combined with molecular dynamics simulations. 

While all complexes have similar overall backbone structures, vdW contacts and 

hydrogen bonds between the protease and substrate are altered. Coevolved complex 

structures display enhanced overall substrate interactions, due to either more vdW 
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contacts or hydrogen bonds, compared to complexes with mutations in either the protease 

or the substrate alone.  

Coevolving mutations in the substrate are not selected to restore the specific 

interactions lost due to drug resistance mutations but instead enhance substrate–protease 

interactions through a variety of molecular mechanisms. P1' and P5' mutations enhance 

substrate packing at the active site, while P4' contributed an additional hydrogen bond 

with the protease. A similar compensation of interactions is observed in substrate 

coevolution with nelfinavir resistant D30N/N88D protease, where lost interactions were 

compensated for by new interactions particularly at the site of substrate coevolution 

mutation (Ozen et al., 2012, Kolli et al., 2014). 

In I50V/A71V protease co-evolution, the effects of substrate mutations are not 

local, but propagate to distal parts of both the substrate and the protease. The mutated P4' 

serine affects the interactions at other positions, particularly at P3' Ser and P2' Gln, which 

has enhanced vdW contacts in I50V/A71VRP4’S compared to I50V/A71VWT and WTRP4’S. 

Substrate positions P1' and P5' mutually influence each other’s interactions with the 

protease. Mutation at either residues results in enhancement of vdW contacts at both 

sites: In the presence of LP1'F mutation the P5' residue, and in the presence of PP5'L 

mutation P1' residue packing is altered. Apart from these synergistic effects within the 

substrate, the P5' mutation in the substrate stabilized an unexpected structural change 

within the protease. The protease structure accommodated this mutation flipping the 

peptide bond between Gly51 and Gly52 in one of the flaps. This backbone flip brings the 

flap closer to the substrate and increases vdW contacts at P2, P1 and P1' positions. Hence, 
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HIV-1 protease adopts a conformational change to favor the substrate’s binding in the co-

evolved complex. This ability of mutations to have distal effects explains why a co-

evolution mutation at P5' position, which is away from the core region of the substrate at 

the active site, may be selected and how this distal mutation is able to alter substrate–

protease interactions. 

HIV-1 protease is a highly dynamic protein, and conformational dynamics 

especially around the active site is crucial to substrate binding and enzymatic activity 

(Ishima et al., 1999, Freedberg et al., 2002, Perryman et al., 2004, Foulkes-Murzycki et 

al., 2007, Mittal et al., 2012). Although crystal structures provide key insights, alteration 

of dynamic behavior, not captured by static structures, is emerging as an additional 

contribution to mechanisms of drug resistance (Cai et al., 2012, de Vera et al., 2013). We 

found that drug resistance mutations in the protease or in the native substrate disturbed 

the active site dynamics, which was restored in all co-evolved complexes bearing 

complementary mutations in both the protease and the substrate. These results suggest 

that, in addition to the specific three-dimensional shape adopted and shared by all 

substrates when bound to HIV-1 protease, as defined by the substrate envelope, a 

conserved dynamic behavior around the active site may be an additional substrate 

recognition and selection constraint. This dynamic constraint may contribute to the 

selection of these specific substrate co-evolution mutations in response to the disturbed 

dynamics in mutated drug resistant protease. 

Previously, we showed that I50V/A71V protease has decreased vdW interactions 

with the protease inhibitors APV and DRV compared to WT (0.61 and 1.98 kcal/mol 
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respectively), mainly due to the loss of a methyl group interacting with the sulfonyl 

moiety in APV/DRV (Mittal et al., 2013). The coevolved I50V/A71VLP1’F and 

I50V/A71VPP5’L structures have more vdW contacts, and I50V/A71VRP4’S more hydrogen 

bonds compared to WTWT complex. Unlike substrates, the inhibitors cannot adapt to 

conformational changes in the drug resistant protease, such as the peptide bond flip in the 

flap of I50V/A71VPP5’L protease. Hence, the structural adaptability of the protease–

substrate system allows drug resistance to evolve by selecting mutations in the protease 

that decrease inhibitor affinity, and additional compensatory mutations in the substrate to 

enhance any inadvertently lost substrate interactions through various molecular 

mechanisms, including propagating distal effects. 

Co-evolution cause distal changes both in the substrate and the protease, and 

adaptability of the complex permits mutational, structural, and dynamic plasticity to 

confer drug resistance. Therefore, the resistance mechanism is an interdependent process 

whereby multiple residues act in concert on both sides. The molecular rationale, reported 

here, for the distal effects of mutations in the non-target polyprotein under HIV-1 PI 

treatment should provide insights into allosteric events in a wider range of co-evolving 

systems where function is maintained by complex interdependent protein interactions. 
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2.5 Conclusion 

In summary, different co-evolutions adopt varying ways to rescue the interactions. 

Gag mutations L449F and P453L enhance van der Waals (vdW) interactions between the 

substrate and mutant I50A/A71V protease, and R452S results in an additional hydrogen 

bond. The distal effect of protease-substrate co-evolution between P1’ and P5’ positions 

enhance substrate–protease interactions.  In addition, the active site dynamics is restored 

by coevolution, a key aspect of substrate recognition and turnover that is largely 

uncharacterized.   
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2.6 Materials and Methods 

2.6.1 Nomenclature 

HIV-1 protease (WT or I50V/A71V) complexes with different p1-p6 substrate 

variants (WT, L449F (LP1’F), R452S (RP4’S) and P453L (PP5’L)) are distinguished 

with subscripts. For example, WT protease in complex with LP1’F p1-p6 substrate is 

denoted by WTLP1’F and I50V/A71V protease in complex with WT p1-p6 substrate is 

denoted by I50V/A71VWT. HIV-1 protease functions as a homodimer, and residues in 

monomer A are simply indicated by residue number while residues in monomer B are 

marked with residue number with an apostrophe. For example, arginine 8 in monomer A 

is Arg8, and valine 50 in monomer B is Val50’. 

 

2.6.2 Substrate peptides 

Substrate peptides of the p1-p6 processing site within the Gag polyprotein (amino 

acids 444–453) and its variants were purchased from Quality Controlled Biochemicals. 

The substrate sequences of WT and co-evolved substrates are: (1) p1-p6WT –

RPGNFLQSRP (2) p1-p6LP1’F – RPGNFFQSRP (3) p1-p6RP4’S –RPGNFLQSSP and (4) 

p1-p6PP5’L – RPGNFLQSRL. 

 

2.6.3 Protease gene construction 

Synthetic protease gene was constructed using codon optimization for protein 

expression in Escherichia coli, and Q7K mutation was introduced to prevent 

autoproteolysis (Rose et al., 1993). For protease-substrate co-crystallization purposes, the 
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D25N mutation was introduced to prevent substrate cleavage; this mutation has 

negligible impact on protease structure (Sayer et al., 2008). I50V/A71V protease 

mutations were introduced sequentially by using the QuikChange site-directed 

mutagenesis kit (Stratagene). 

 

2.6.4 Protein expression, purification and crystallization 

The gene encoding HIV protease was sub-cloned into the heat-inducible pXC35 

expression vector (ATCC), and transformed into E. coli TAP-106 cells. Protein 

expression and purification were performed as previously described (King et al., 2002). 

Protease purified from size exclusion column (equilibrated with gel filtration buffer 

containing 0.05 M sodium acetate at pH 5.5, 5% ethylene glycol, 10% glycerol, and 5 

mM DTT) was concentrated to 2 mg/mL using an Amicon Ultra-15 10-kDa device 

(Millipore) for crystallization. The concentrated samples were incubated with 10 molar 

excess of substrates overnight at 4 °C. Concentrated protein solution was then mixed with 

either precipitant solution (126 mM sodium phosphate buffer (pH 6.2), 63 mM sodium 

citrate, and 20% to 32% ammonium sulfate, or 0.1 M citrate phosphate (pH 5.5), 0.5-3.0 

M ammonium sulphate) at a 1:1 ratio in 24-well VDX hanging-drop trays at room 

temperature. Diffractionquality crystals were obtained within a week. 

 

2.6.5 Data collection and structure solution 

Diffraction-quality crystals were flash-frozen in liquid nitrogen for storage. 

Constant cryostream was applied when mounting the crystal, and X-ray diffraction data 
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were collected at Advanced Photon Source LS-CAT 21-ID-F or at our in-house 

Rigaku_Saturn 944 X-ray system. The substrate complexes’ diffraction intensities were 

indexed, integrated, and scaled using the program HKL2000 (Zbyszek Otwinowski, 

1997). Number of molecules in the asymmetric unit was determined by Matthews 

coefficient calculation. The structure solutions were generated using simple isomorphous 

molecular replacement with PHASER (McCoy et al., 2007). WT protease–DRV co-

crystal structure was used as the starting model (1T3R). Initial refinement was carried out 

in the absence of modeled substrate, which was subsequently built in during later stages 

of refinement. Upon obtaining the correct molecular replacement solutions, ARP/wARP 

or Phenix (Adams et al., 2010) was applied to improve the phases by building solvent 

molecules (Morris et al., 2002a). Crystallographic refinement was carried out using the 

CCP4 program suite or PHENIX with iterative rounds of TLS and restrained refinement 

until convergence was achieved (Collaborative Computational Project, 1994). MolProbity 

(Davis et al., 2007) was applied to evaluate the final structures prior to deposition in the 

Protein Data Bank. Five percent of the data was reserved for the free R-value calculation 

to limit the possibility of model bias throughout the refinement process (Brunger, 1992). 

Interactive model building and electron density viewing were carried out with COOT 

(Emsley and Cowtan, 2004). 
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2.6.6 Structural analysis 

Hydrogen bonds were determined using Maestro (Suite 2012: Maestro, version 

9.3, Schrödinger). A hydrogen bond was defined by a distance between the donor and 

acceptor of less than 3.5 Å and a donor–hydrogen–acceptor angle of greater than 120°. 

The vdW contacts between the protease and substrate were estimated using a 

simplified Lennard-Jones potential V(r) = 4ε [(σ/r)12 – (σ/r)6], with the well depth (ε) and 

hard sphere diameter (σ) for each protease–substrate atom pair. V(r) for all protease–

substrate atom pairs was computed within 6 Å, and when the distance between 

nonbonded pairs was less than ε, V(r) was considered equal to –ε. The rationale for this 

modification to the original 6-12 Lennard-Jones potential was previously described in 

detail (27). Using this simplified potential for each nonbonded pair, ΣV(r) was then 

computed for the protease–substrate complex. 

The HIV-1 protease substrate envelope was defined using a three-dimensional 

grid, and the fit of a substrate within this substrate envelope for a given cocrystal 

structure was evaluated by Vin and Vout (volumes of the substrate within and outside the 

substrate envelope, respectively), as previously described in detail (27). Only the P4 to 

P4' residues of the substrates were modeled in the substrate envelope, since the substrate 

residues beyond these positions do not share a significant consensus volume. 

 

2.6.7 Molecular dynamics simulations 

The crystal structures were prepared for simulations by keeping the 

crystallographic waters within 4.0 Å of any protease or substrate atom but removing the 
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buffer salts from the coordinate file. The structures were further processed with the 

Protein Preparation Tool from Schrodinger by adding hydrogen atoms, building side 

chains with missing atoms, and determining the optimal protonation states for the 

ionizable side chains. The hydrogen bonding network of the initial structures was 

optimized by flipping the terminal chi angle of Asn, Gln, and His residues and sampling 

hydroxyl/thiol polar hydrogens with the exhaustive/water orientational sampling options. 

Before solvation, the structures were minimized in vacuum with restraints on heavy 

atoms using the Impact refinement module with the OPLS2005 force field until the root-

mean-square deviation (RMSD) reached 0.3 Å allowing the hydrogens to be freely 

minimized while relaxing the strained bonds, angles and potential clashes. The prepared 

systems were solvated in a truncated octahedron solvent box with the SPC water model 

extending 10 Å beyond the protein in all directions, using the System Builder utility. The 

overall charge was neutralized 

by adding the necessary number of counter ions (Na+ or Cl–). 

Desmond was used in all simulations with OPLS2005 force field. Each system 

was first relaxed using a protocol consisting of an initial minimization restraining the 

solute heavy atoms with a force constant of 1000 kcal mol-1
 Å-2

 for 10 steps with steepest 

descent and with LBFSG method up to 2000 total steps with a convergence criterion of 

50.0 kcal mol-1
 Å-2. The system was further minimized by restraining only the backbone 

and allowing the free motion of the side chains. At this stage, the restraint on the 

backbone was gradually reduced from 1000 to 1.0 kcal mol-1
 Å-2

 in 5000 steps (250 

steepest descent plus 4750 LBFSG) for each value of force constant (1000, 500, 250, 100, 
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50, 10, 1.0 kcal mol-1
 Å-2) and finally an unrestrained energy minimization was 

performed. 

After energy minimization, each system was equilibrated by running a series of 

short MD steps. First, a 10 ps MD simulation at 10 K was performed with a 50 kcal mol-1
 

Å-2
 restraint on solute heavy atoms and using Berendsen thermostat in the NVT 

ensemble. MD steps were integrated using a two time-step algorithm, with 1 fs steps for 

bonded and shortrange interactions within the 9 Å cutoff and 3 fs for long-range 

electrostatic interactions, which were treated with the smooth particle-mesh Ewald (PME) 

method. Time steps were kept shorter at this first MD stage to reduce numerical issues 

associated with large initial forces before the system equilibrates. This was followed by 

another restrained MD simulation for 10 ps at 10 K with a 2 fs inner and 6 fs outer time 

step in NPT ensemble. The temperature of the system was slowly increased from 10 K to 

300 K over 10 ps retaining the restraint on the system and 10 ps MD was performed 

without the harmonic restraints. Production MD simulations were carried out at 300 K 

and 1 bar for 20 ns using the NPT ensemble, Nose-Hoover thermostat, and Martyna-

Tuckerman-Klein barostat. The long-range electrostatic interactions were computed using 

a smooth particle mesh Ewald (PME) approximation with a cutoff radius of 9 Å for the 

transition between the particle-particle and particle-grid calculations and van der Waals 

(vdW) interactions were truncated at 9 Å. The coordinates and energies were recorded 

every 5 ps.  
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3.1 Abstract 

Dengue virus (DENV), transmitted predominantly in tropical and subtropical 

regions by the mosquito Aedes aegypti, infects millions of people and leads to dengue 

fever and thousands of deaths each year. There are no direct-acting antivirals to combat 

DENV, and a scarcity of molecular and structural knowledge required to develop such 

compounds. The dengue NS2B/NS3 protease is a promising target for direct-acting 

antivirals, as viral polyprotein cleavage during replication is required for the maturation 

of the viral particle. The NS2B/NS3 protease processes eight of the thirteen viral 

polyprotein cleavage sites to allow viral maturation. Although these sites share little 

sequence homology beyond the P1 and P2 positions, most are well conserved among the 

serotypes. How the other substrate residues, especially at the P’ side, affect substrate 

recognition remains unclear. We exploited the tight-binding general serine protease 

inhibitor aprotinin to investigate protease–substrate interactions at the molecular level. 

We engineered aprotinin’s binding loop with sequences mimicking P’ side of DENV 

substrates. P’ residues significantly modulate substrate affinity to protease, with 

inhibition constants varying from nanomolar to sub-millimolar. Structural and dynamic 

analysis revealed the molecular basis of this modulation, and allowed identifying optimal 

residues for each of the P’ positions. In addition, isothermal titration calorimetry showed 

binding to be solely entropy driven for all constructs. Potential flaviviral P’ side 

inhibitors could benefit from mimicking the optimal residues at P’ positions, and 

incorporate hydrophobicity and rigidity to maintain entropic advantage for potency.   
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3.2 Introduction 

Dengue virus (DENV), a member of the family Flaviviridae, is an enveloped 

virus with a positive single-strand RNA genome. There are four different serotypes of 

dengue virus (DENV 1–4), and each serotype shares 65-70% sequence identity of the 

viral genome (Rico-Hesse, 1990). Dengue fever, which is caused by DENV, is a 

worldwide infectious disease endemic in more than 110 countries. Approximately 

390 million people are infected yearly, with 96 million of those infected developing 

disease symptoms and about 20,000 annual deaths (Monath, 1994, WHO, 2009, Bhatt et 

al., 2013). The mosquito Aedes aegypti is the major vector of dengue virus, and due to the 

narrow temperature tolerance of Aedes, DENV is transmitted predominantly in tropical 

and subtropical regions. No vaccine or antiviral drug to combat dengue infections is 

available, except for the first-ever dengue vaccine approved for use in Mexico in 

December 2015 (Simmons, 2015). DENV is in the same flaviviral family as the Zika 

virus, and is also transmitted by Aedes aegypti to cause major outbreaks in the tropical 

and sub-tropical regions, with no specific treatment. A better understanding of DENV 

will contribute to the development of a targeted therapy against this global health threat.  

The dengue RNA genome has one open reading frame which encodes a single 

polyprotein including three structural proteins (C, prM, and E) and seven nonstructural 

proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) (Chambers et al., 1990a) 

(Fig. 3.1A). The viral polyprotein gets processed at the lumen side of the rough 

endoplasmic reticulum membrane by the host cell peptidase, while dengue NS2B/NS3 

protease cleaves the polyprotein at the cytoplasmic side (Chambers et al., 1990a). Dengue 
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NS2B/NS3 protease is a serine protease (Ser 135 is the catalytic residue) of the 

chymotrypsin family with a classic Ser-His-Asp catalytic triad (Bera et al., 2007). The 

hydrophilic core of NS2B cofactor (cNS2B; amino acids 1394-1440) is required for the 

proper function of NS3 protease (NS3pro185; amino acids 1476-1660)  (Yusof et al., 

2000) and participates in substrate recognition (Noble et al., 2012). Dengue protease is 

responsible for processing 8 of the 13 polyprotein cleavage sites (C, NS2A, NS2A-NS2B, 

NS2B-NS3, NS3, NS3-NS4A, NS4A, NS4B-NS5) (Fig. 3.1A) (Falgout et al., 1991). 

Polyprotein processing is required for the maturation of the viral particle.   

The polyprotein cleavage site sequences that DENV protease processes share little 

homology (Fig. 3.1B). Two basic residues at P2 and P1 positions and a small polar 

residue at P1’ are preferred in general by flaviviral NS3 proteases (Chambers et al., 

1990b). However, in DENV, some substrates have non-basic residues at the P2 position 

and residues at P3–P5 and P’ positions are quite diverse (Fig. 3.1B). Although diverse 

between different cleavage sites, the sites themselves are well conserved across all 

serotypes (and even in some cases with Zika), in particular the NS3, NS4A, and NS2B-

NS3 (Table 3.1), implying that these sequences may be required for regulating the 

temporal processing of the polyprotein. However how dengue protease recognizes these 

diverse substrates is not well understood.  

Dengue protease does not share P’ substrate sequence preference with other serine 

proteases in humans, but does so at P1 and P2 positions (furin RXRR, thrombin P1 R, 

trypsin P1 R). Thus, the peptidomimetic dengue protease inhibitors designed based on the 

conserved P2 and P1 positions of substrate sequences alone may not be specific (Yin et 
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al., 2006a, Yin et al., 2006b, Nitsche et al., 2011). Incorporating P’ moieties to current 

inhibitors could improve specificity. P’ residues at each position have been screened to 

investigate the favored amino acids (Li et al., 2005a) but elucidation of the 

interdependence of these residues and key physical features of P’ recognition is still 

lacking. 

In this study, we exploited the high-affinity binding and structural availability of 

bound aprotinin to investigate P’ side substrate interactions with dengue protease. The 

binding loop of aprotinin shares close homology with the DENV NS3 cleavage site (Fig. 

3.1B). The homology makes this structure a useful template to investigate how different 

P’ native substrate residues may interact with the protease. We replaced the aprotinin 

binding loop with corresponding P1 to P4’ substrate sequences of the eight DENV3 

protease cleavage sites (C, NS2A, NS2A/B, NS2B/3, NS3, NS3/4A, NS4A, NS4B/5) 

(Fig. 3.1B). To elucidate how P’ substrate sequence affects binding affinity, we measured 

the inhibition constant for each aprotinin construct in enzymatic assays. These were 

complemented with molecular dynamics simulations based on molecular models of the 

aprotinin–DENV3 complex. Isothermal titration calorimetry revealed that binding is 

solely entropy driven, and enthalpy contributions are unfavorable. These constructs 

varied in binding affinity by five orders of magnitude, and their dynamic behavior 

implicates the recognition patterns of various cleavage sites. Thus P’ side interactions can 

significantly affect ligand binding and incorporating these interactions could help achieve 

additional specificity for dengue protease inhibition. 
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3.3 Results 

3.3.1 Design of aprotinin constructs mimicking dengue protease substrates 

Dengue protease recognizes substrates with diverse sequences, and favors two 

basic residues at P1 and P2 positions (Fig. 3.1B) but little is known about how the 

protease recognizes the entire substrate sequences which are well conserved between 

serotypes. To investigate the role of the prime side in conferring specificity to DENV 

protease we used the serine protease inhibitor aprotinin, whose binding loop shares high 

homology with the DENV NS3 cleavage site sequence (Fig. 3.1B). Aprotinin has 

previously been shown to bind DENV2 protease with an inhibition constant (Ki) of 26 

nM (Mueller et al., 2007), and we measured a Ki of 3.7 nM to DENV3 protease (Fig. 

3.2). The crystal structure of the aprotinin–dengue protease complex (PDB: 3u1j) (Noble 

et al., 2012) (Fig. 3.1C) reveals how P’ positions bind at the active site extending from P3 

to P4’ position (Fig. 3.1D) (Noble et al., 2012), enabling engineering of constructs 

mimicking P’ side of substrates.  

In this study the binding loop (BL) residues in aprotinin (AP) were replaced with 

P1 to P4’ substrate sequences of eight protease cleavage sites (C, NS2A, NS2A/B, 

NS2B/3, NS3, NS3/4A, NS4A, NS4B/5 (Fig. 3.1). These cleavage site residues will be 

referred to as (cleavage site)BL-AP for clarity, and DENV protease residues will be 

distinguished using single-letter amino acid codes. Since the disulfide bond between 

Cys14 (P2 residue) and Cys38 is required for the proper folding of aprotinin (Bode and 

Huber, 1992), residues at P2 and P3 position were kept as the aprotinin sequence in all 

constructs. The eight engineered aprotinin constructs as well as the wildtype aprotinin 
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were expressed and purified. To test whether the constructs maintained the aprotinin fold, 

protein secondary structure was confirmed by circular dichroism spectroscopy (Fig. 3.3). 

Seven of the eight engineered constructs, except 2A-2B, maintained the aprotinin-like 

fold and were used for all further experiments, with wildtype aprotinin as a control.   
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Figure 3.1.  Design of aprotinin constructs mimicking dengue protease substrates. 
(A) Dengue virus polyprotein cleavage sites. (B) Polyprotein cleavage site sequences of 
DENV3 protease. (C) Aprotinin-DENV3 protease complex structure (3u1j). NS3 
protease domain is in green, NS2B co-factor cyan and aprotinin purple. (D) The binding 
loop of aprotinin is displayed as sticks and the residues screened with corresponding P1 
to P4’ substrate sequences are colored yellow.  
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Figure 3.2.  The inhibition constants (Ki) of WT-AP and aprotinin constructs 
against DENV3 WT protease ordered from tightest to weakest binder. Each Ki value 
and standard error was calculated from three independent determinations. 
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Figure 3.3.  The secondary structure is conserved across all aprotinin constructs 
used in this study.  
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3.3.2 Substrate sequences have widely varying affinity to DENV3 protease 

To investigate how diverse P’ substrate sequences affect the binding to dengue 

protease, the inhibition constants of wild type aprotinin and engineered constructs against 

DENV3 WT protease were determined using a FRET-based enzymatic assay. While WT 

aprotinin has a Ki of 3.7 nM against DENV3 protease, the aprotinin constructs have a 

wide variety of Ki values ranging from 5.9 nM (NS3BL-AP) to 184 µM (NS4ABL-AP) 

(Fig. 3.2). The five orders of magnitude difference in binding affinity strongly suggests 

that these sequences modulate the specificity of DENV3 protease. The sequences are 

distributed throughout the range of affinities with three sequences (NS3BL-AP; NS3-

4ABL-AP; NS2B-3BL-AP) binding in the low to mid nanomolar; three sequences (C-AP; 

NS4B-5ABL-AP; NS2A-AP) binding in the sub to low micromolar and finally NS4ABL-

AP in the sub millimolar affinity. The tightest binding NS3BL-AP is very similar to the 

corresponding cleavage site in Zika (Table 3.1). Overall, different P’ residues 

significantly change the binding interactions between DENV3 protease and the substrate, 

over several orders of magnitude, and this variation in affinity likely provides some 

specificity for the regulation of the viral polyprotein processing.  
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Table 3.1. The sequence alignments of dengue and Zika proteases’ polyprotein 
cleavage sites. 
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3.3.3 The binding interactions are solely entropy driven 

Binding thermodynamics of the constructs to DENV3 protease was evaluated 

using ITC experiments. ITC measures the contributions of enthalpy and entropy to the 

binding free energy, which dictates the binding affinity. As expected, the equilibrium 

dissociation constants (Kd) obtained from ITC experiments (Table 3.2) are in very good 

agreement with the inhibition constants (Ki) from enzymatic assays (Pearson's r: 0.99, R 

squared: 0.99) (Fig. 3.2). The contributions of enthalpy and entropy to the binding free 

energy of each construct (Fig. 3.4) indicates that the entropic contributions (–TΔS) are 

negative (favorable) while the enthalpy of binding is positive (unfavorable) for all 

constructs. Thus, binding is solely entropy driven and, with the exception of 4B-5BL-AP, 

the binding entropy strictly follows the trend of inhibition constants. Although still 

having an overall unfavorable binding enthalpy, the constructs of the natural DENV 

substrate sequences are less unfavorable than the WT-AP (Fig. 3.5 / Table 3.2) by ~2–4.5 

kcal suggesting that these natural substrate constructs are more complementary to the 

specific binding surface of DENV protease.  
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Figure 3.4.  The binding of WT-AP and aprotinin constructs to DENV3 protease is 
entropy driven. Changes of Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (-TΔS) 
upon binding are displayed in blue, red and green respectively.  
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3.3.4 Binding loop fluctuations correlate with affinity 

To investigate the molecular interactions between different substrate residues and 

DENV3 protease, extensive fully-solvated MD simulations were performed starting from 

structural models generated based on the complex crystal structure (PDB: 3ulj), where 

the binding loop was replaced by corresponding substrate sequences in silico 

(Schrödinger, 2015). The binding loop of wild type aprotinin was stable over the 

simulation, with well-overlapping snapshots and relatively low root-mean-square 

fluctuation (RMSF) values around ~1 Å (Fig. 3.6A, Fig. 3.7).  

Aprotinin constructs with binding loops corresponding to the various substrate 

sequences had varying levels of loop stability. The extent of the RMSF values 

corresponded closely with the affinities of the various substrate sequences, where the 

NS3BL-AP had the lowest RMSF of 1.2 Å and the tightest experimental binding affinity, 

and NS4ABL-AP the highest RMSF value of 4.3 Å and the weakest binding to DENV3 

protease. In fact, the interactions between DENV3 protease and NS4ABL-AP were not 

strong enough to hold the binding loop in the starting pose, and by the end of the 

simulation only P1 Arg of NS4ABL-AP and D129 of the protease were still forming ionic 

interactions. Overall, fluctuations (RMSF) of residues corresponding to substrate 

sequences in each construct correlated well with the experimental Ki values (Pearson's r: 

0.88, R squared: 0.78). The Pearson's r and R squared values for ΔG versus RMSF are 

0.88 and 0.78 respectively.   
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Figure 3.6.  Molecular dynamics (MD) of binding loops bound to DENV protease 
active site. (A) Snapshots from MD simulation trajectories of WT-AP and aprotinin 
constructs bound to DENV3 protease. The protease is shown in cartoon representation 
and the aprotinin binding loops as sticks from start (in red) to end (in blue) of the 
trajectory. (the simulations were performed with full-length aprotinin, but only residues 
corresponding to native substrates are shown for clarity). (B) The binding loop vdW 
contacts during MD simulations of WT-AP and aprotinin constructs against DENV3 
protease. 
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Figure 3.7.  Aprotinin constructs’ binding loop fluctuations correlate with affinity. 
(A) WT-AP and aprotinin constructs’ RMSF values by residue. (B) The overall RMSF 
values of WT-AP and aprotinin constructs. (Snapshots were taken every ten nanoseconds 
throughout the simulation trajectory for the different sequences) 
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3.3.5 Substrate sequences with higher affinity have better packing at the protease 

active site 

To investigate how packing of substrate residues at the protease active site 

contribute to protease binding, the average vdW contact energy was calculated over the 

simulation time and mapped onto the protease surface (Fig. 3.8B). The catalytic H51 

packs against Cys14 and Cys38 (outside the binding loop of aprotinin), and F31 of 

protease packs against Thr32 of aprotinin located outside the binding loop. To determine 

the interactions that dictate substrate specificity, the overall vdW contact energy (P1 to 

P4’) of residues in the binding loop of different aprotinin constructs was calculated. The 

two constructs with the lowest (most favorable) vdW interactions are the two tightest 

binders (Table 3.3, Fig. 3.9), WT-AP and NS3BL-AP (-27.5 and -27.7 kcal/mol 

respectively). The NS3BL-AP substrate residues pack against protease residues G151, 

S135, T134, G133, P132 and V36, with vdW contact energies ranging from -1.3 (G151) 

to -4.0 (P132) kcal/mol. Other residues with significant amount of contact energy include 

packing of Y161 (-4.0 kcal/mol) against P1 residue, P132 (-4.0 kcal/mol) against P1, P2’ 

residues, V36 (-3.2 kcal/mol) against P3’ residue, and I30 (-3.5 kcal/mol) against P4’ 

residue. The binding loops of the other constructs (2B3BL-AP, CBL-AP, 4B-5BL-AP, 3-

4ABL-AP and NS2ABL-AP) have similar levels of vdW energies (-22.6 to -19.6 kcal/mol), 

and the weakest binder NS4ABL-AP has the highest (least favorable) contact energy (-

16.0 kcal/mol). With the exception of 3-4ABL-AP, the overall contact energies of the 

various constructs reflect the differences observed in the experimental Ki values, where 
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stronger binders have more contacts (lower energy) and hence pack better against 

protease active site residues.  
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Figure 3.8.  The interaction of substrate residues with DENV3 protease (NS3BL-AP 
binding to DENV3 protease is shown as an example). (A) NS3BL is displayed as sticks 
and DENV3 protease is as surface. (B) DENV3 protease’s surface colored according to 
the extent of vdW contacts with NS3BL-AP. (C) DENV3 protease’s surface is colored 
based on polarity. (D) Hydrogen bonds between NS3BL-AP and DENV3 protease are 
displayed as yellow dashes. 
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Figure 3.9.  The overall binding loop vdW contacts with DENV3 protease calculated 
from MD simulations of WT-AP and aprotinin constructs.  
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3.3.6 Tightest binders have more hydrogen bonds 

To quantify the contribution of hydrogen bonds to the binding of aprotinin 

constructs to DENV3 protease, the percentage of time each hydrogen bond existed during 

the MD trajectories were calculated (Table 3.4). The most highly populated hydrogen 

bonds are formed with P1 and P2’. The binding loop of WT-AP had 5 hydrogen bonds (3 

strong and 2 weak ones) with DENV3 protease that existed more than 40% of the 

simulation time. NS3BL-AP had four hydrogen bonds (3 strong and 1 weak) (Fig. 3.8D, 

Table 3.4). All other constructs had 3 hydrogen bonds with DENV3 protease, except 4B-

5BL-AP, which had only 2 hydrogen bonds. Thus the number of hydrogen bonds overall 

correlates with binding affinity. 

The hydrogen bond between the P1 side chain and protease D129 side chain is the 

strongest interaction, and is conserved in all constructs (Fig. 3.8D). This hydrogen bond 

existed more than 70% of the simulation time for all constructs (Table 3.4). P1 forms 

additional side chain and backbone hydrogen bonds with the backbone atoms of F130 

and G133 in the protease, respectively. Overall, the P1 residue contributes the most 

hydrogen bonds compared to other residues in the binding loop, acting as an anchor to 

ensure binding.  

The major difference in hydrogen bonds of different aprotinin constructs was at 

the P2’ position. There is one extra hydrogen bond between WT-AP or NS3BL-AP’s P2’ 

Arg side chain and T34 side chain of DENV3 protease (Fig. 3.8D), which existed 54.3% 

and 61.3% of simulation time respectively (Table 3.4). This extra hydrogen bond 

stabilizes the P2’ residue in WT-AP and NS3BL-AP, resulting in more favorable vdW 
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contacts compared to P2’ residues in other constructs (Fig. 3.6B). Thus, Arg is more 

favorable than other amino acids in the P2’ position of substrate sequences.  
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3.3.7 Interactions at individual positions reveal amino acids for optimal packing 

The contribution of various residues to intermolecular interactions at individual 

positions of the binding loop was further examined (Fig. 3.6B, Table 3.3). The P1 

position has the best vdW contacts across all constructs, with the P1 arginine of NS3BL-

AP both forming hydrogen bonds and having the lowest vdW contact energy (-13.3 

kcal/mol), lower by 3.5 to 1.7 kcal/mol compared to the other constructs. However in all 

constructs this side chain is either Arg or Lys, so the relative level of interaction is 

reflective of the interdependence of the rest of the binding site recognition. 

At the P1’ position, serine in both the 2B-3BL-AP and 3-4ABL-AP constructs has 

slightly better contact energy compared to other P1’ residues. This serine can form a 

weak hydrogen bond with the backbone of protease H51 or V36 (12.1% to 32.6% of 

simulation time respectively), and appears to be the most favored side chain at this 

position. NS3BL-AP and 4B-5BL-AP have a Gly at P1’ position, resulting in contact 

energy below -4 kcal/mol. The worst contact energy at the P1’ position is of NS4ABL-

AP’s Thr; however this reflects interdependent loss of contacts and high loop fluctuations 

mentioned above (also observed for P2’ to P4’ positions) during the simulation. 

At the P2’ position, vdW contact energy has major variations among substrates, 

with WT-AP’s and NS3BL-AP’s P2’ Arg having significantly lower contact energy than 

other constructs’ P2’ residues. In addition to being the largest side chain with the most 

contact surface, the extra hydrogen bond between P2’ Arg and T34 of the protease also 

stabilizes this residue (Table 1). CBL-AP has the third most contacts, with the P2’ serine 

also forming a hydrogen bond with Q35 backbone, but this hydrogen bond (24.0% of the 
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time simulated) is not as strong as the one formed by Arg. Serine has smaller contact 

surface than arginine, resulting in less favorable contact energy compared to WT-AP and 

NS3BL-AP. Hence, Arg followed by Ser is favored for vdW contacts and hydrogen bonds 

at the P2’ position. 

At the P3’ position, NS2ABL-AP’s Trp has the lowest contact energy. Tryptophan 

has a much larger side chain compared to the P3’ residues in other constructs, and the 

extra surface area contributes to more vdW interactions. However, Trp is too big to 

optimally fit in the S3’ pocket, and cannot maintain stable interactions with the protease 

throughout the simulation time (Fig. 3.6A). Poor fit and stability of this Trp causes the 

neighboring P2’ and P4’ residues to drift away from the correlated biding pockets, 

resulting in the worst vdW contacts at these two positions among all the constructs. The 

hydrophobic P3’ residues of WT-AP, 2B-3BL-AP and NS3BL-AP (Ile, Val and Val 

respectively) have lower contact energy (-1.22 to -1.46 kcal/mol) compared to the 

remaining 4 constructs (-0.26 to -0.41 kcal/mol). Hence, P3’ side chains smaller than Trp 

better fill the hydrophobic S3’ pocket, by packing against V36 in the protease active site 

(Fig. 3.8C).  

Finally, for the P4’ position, glutamate in the NS4ABL-AP has the least vdW 

contacts with the protease as this residue cannot pack against protease’s hydrophobic 

loop (G29, I30, F31, G32) which defines the S4’ pocket. This unfavorable interaction 

caused P4’ residue to drift away from the active site, and NS4ABL-AP was bound to 

DENV3 protease only through the interaction between P1 Arg and D129 of protease at 
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the end of the simulation. Because of the hydrophobic nature of the S4’ surface, a 

hydrophobic P4’ residue would be favorable at this position. 

Overall, the intermolecular contacts contributed by different aprotinin constructs 

correlate well with the Ki values (Fig. 3.2, Table 3.3) and reveal which combination of 

residues might be optimal. 
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3.4 Discussion 

In this study, the binding interactions of P’ substrate residues to dengue protease 

were investigated by exploiting the high affinity serine protease inhibitor aprotinin. 

Substrate affinity was strongly modulated by different P’ sequences with the inhibition 

constant varying over five orders of magnitude (Fig. 3.2), which indicates protease’s 

affinity and processing may highly vary, potentially in both rate and temporal sequence, 

among various cleavage sites. The biological function of the internal cleavage at NS3 

(tightest binder) is not clear (Arias et al., 1993), however, processing of 3-4A and 2B-3 

(2nd and 3rd tightest binders respectively) is required to release mature NS3 protein 

(Zhang and Padmanabhan, 1993), which can then cleave the other cleavage sites. Hence, 

P’ sequences likely play a key role in regulating the specificity of polyprotein processing.  

Previously, substrate peptides have been used to investigate residue preference at 

each position, with contradictory results. For example, acidic residues Glu and Asp were 

found to be favored at P2’ position in the context of nKRR-X(P2’)XX (X: amino acid 

mixture except Cys, and isostere norleucine instead of Met) (Li et al., 2005a), but Glu 

was found to be the least favorable when screened within GLKR-G(P2’)AK (Shiryaev et 

al., 2007). Using amino acid mixtures as a background can be misleading and mask the 

effect of specific residues at a given position, such as due to intramolecular interactions, 

while using a fixed background sequence may miss other key interdependencies. Linear 

substrate peptides corresponding to natural sequences spanning P4 to P4’ have been used 

to investigate substrate cleavage (Shiryaev et al., 2007). However, with diverse residues 
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at the P positions (both basic and non-basic P2 residues, and distinct P3 and P4 residues) 

distinguishing the contributions of individual P’ sites was very challenging.  

Therefore, instead of changing P’ substrate residues one by one or the whole 

cleavage site at once, our results reveal the effect of P1 to P4’ positions as a group. 

Within this context, we identified the favored amino acids at each substrate position: 

basic residues Arg and Lys at P1, Ser at P1’, Arg at P2’ and hydrophobic residues at P3’ 

and P4’ sites. Compared to previous peptide-based screening results (Li et al., 2005a), the 

main discrepancies are at P2’ and P3’, which suggested acidic residues and serine to be 

favorable at P2’ and P3’ respectively. For the P2’ pocket, hydrogen bonds and vdW 

contacts are likely the dominant forces, and potentially an acidic residue may form 

hydrogen bonds with the same T34 residue that Arg interacts with (Fig. 3.8D). Regarding 

P3’ position, Ser may interact with Q27 through a hydrogen bond. However, we found 

that hydrophobic substrate residues pack well against V36 of the protease. Hydrophobic 

protease residues 30 and 31, which define the S4’ pocket, were proposed to interact with 

the membrane (Li et al., 2005a, Chappell et al., 2008, Assenberg et al., 2009) and further 

studies are required to investigate the effect of hydrophobic interactions at this pocket. 

Thus, Arg/Lys-Ser-Arg-Ile/Val-Leu is the optimal sequence for P1–P4’ positions of the 

dengue protease substrates. None of the natural sequences contain this combination (Fig. 

3.1B) potentially suggesting an evolutionary advantage not to have the highest affinity 

combination for a particular cleavage site. This sequence may be a potent pan-flaviviral 

protease binder, based on the high level of homology among cleavage sites in the dengue 

viral serotypes and other flaviviruses such as the recently pandemic Zika virus.  
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Thus we suggest extending inhibitors to P’ sites to enhance both affinity and 

specificity against dengue protease. Previous peptidomimetic dengue protease inhibitors 

have been designed mainly based on only P site substrate sequences (Yin et al., 2006a, 

Yin et al., 2006b, Nitsche et al., 2011), and usually contain basic P2 and P1 residues. 

Since dengue protease has similar substrate sequence preferences (basic P1 or P1/P2 

residues) as human serine proteases (thrombin, trypsin and furin), further optimization of 

these inhibitors are required to increase specificity. In this study, we found that P’ amino 

acids can significantly affect the binding affinity. Dengue protease does not share P’ site 

sequence preference with other human serine proteases, therefore inhibitor design 

extending to or based on P’ sites could increase both affinity and specificity.  

Designing potent DENV protease inhibitors will likely require using a 

combination of strategies. Inhibitors spanning P1-P1’ positions needed to mimic the 

transition state of the peptide cleavage reaction. Transition state mimicking compounds 

have proved successful in targeting HCV proteases (Malcolm et al., 2006), and enzymes 

have evolved to bind strongest to the transition state, rather than substrate or product. 

Therefore, incorporating chemical moieties into inhibitors to mimic the transition state 

could increase inhibitor affinity. In fact, the peptidomimetic inhibitor Bz-Nle-Lys-Arg-

Arg-B(OH)2, reported to bind DENV2 protease tightly (Ki value 43 nM) (Yin et al., 

2006b), uses a boronic acid as a warhead for the catalytic serine with the hydroxyl group 

mimicking the transition state. Based on our current study, we also suggest incorporating 

moieties that target the P’ side of the active site, and possibly designing a relatively rigid 

macrocyclic inhibitor that could leverage the entropically driven interactions. Future 
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studies will need to explore and efficiently combine a series of these potential strategies 

for the design of DENV, or other flavivirus such as Zika, protease inhibitors to ensure 

both potency and specificity.  
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3.5 Conclusion 

In Summary, different P’ residues significantly change the binding interactions 

between DENV3 protease and the substrate, over five orders of magnitude. The favored 

amino acids at each substrate position were revealed: basic residues Arg and Lys at P1, 

Ser at P1’, Arg at P2’ and hydrophobic residues at P3’ and P4’ sites. In addition, the 

binding interactions of aprotinin constructs to DENV3 protease are solely entropy driven. 

These properties should be considered when extending inhibitors to P’ sites to enhance 

both affinity and specificity against dengue protease.  
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3.6 Materials and Methods 

3.6.1 Protease gene construction, protein expression and purification 

Synthetic DENV3 protease gene (cDNA encoding NS2B cofactor (cNS2B; aa 

1394-1440) and NS3 protease (NS3pro185; aa 1476-1660) with a G4SG4 in between) 

was constructed using codon optimization for protein expression in Escherichia coli. 

Protease gene was constructed between BamH1 and Xho1 sites of pGEX6p1 (GE 

Healthcare). The plasmid was transformed into BL21(DE3) for protein expression. We 

followed the published protein expression and purification protocols (Li et al., 2005a).  

 

3.6.2 Aprotinin gene construction, protein expression and purification 

The cDNA encoding SUMO and aprotinin with His6 tag at N terminus was 

constructed between Nde1 and Sac1 of pET28a. The plasmid was transformed into 

BL21(DE3) cells for protein expression. We followed the published aprotinin expression 

and purification protocols (Sun et al., 2009). 

 

3.6.3 Enzyme inhibition assay 

FRET-based enzymatic cleavage assay was used to measure inhibition constants 

of aprotinin constructs against DENV3 WT protease. 100 nM of DENV3 NS2B/NS3 

protease was incubated with varying concentrations of aprotinin for 60 min in 50 mM 

Tris assay buffer (20% glycerol, 1 mM CHAPS, pH 8.5) (Leung et al., 2001). Proteolysis 

reactions were initiated by adding 5 µM protease substrate [Ac-[D-EDANS]KRRSWP[K-

DABCYL]-AMIDE] (21st Century Biochemicals) and monitored using the EnVision 
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plate reader (Perkin Elmer) at excitation and emission wavelengths of 340 nm and 490 

nm, respectively. The initial cleavage reaction velocities were determined using nonlinear 

fit to one-phase association of the whole progress curves (Salykin et al., 2013). Apparent 

inhibition constants (Ki) were obtained by nonlinear regression fitting of initial velocity 

versus inhibitor concentration to the Morrison equation using Prism 6 (GraphPad 

Software). Data were collected in triplicate and processed globally to calculate the shared 

inhibition constant and standard deviation. 

 

3.6.4 Molecular dynamic simulations 

All molecular dynamics simulations were performed in triplicate following 

previously published protocols (Ozen et al., 2014). Briefly, aprotinin constructs were 

modeled on DENV3 protease binding pocket based on the aprotinin and DENV3 WT 

protease complex structure (PDB: 3u1j). The modeled structures were prepared for 

simulations by keeping the crystallographic waters within 4.0 Å of any protease or 

aprotinin atom but removing the buffer salts from the coordinate file. By using Protein 

Preparation Tool from Schrodinger {Sastry, 2013 #32}, hydrogen atoms were added to 

the structures and the optimal protonation states for the ionizable side chains were 

determined. The hydrogen-bonding network of the initial structures was optimized and 

the structures were minimized in vacuum using the Impact refinement module with the 

OPLS2005 force field {Shivakumar, 2010 #33}. The prepared systems were solvated in a 

truncated octahedron solvent box with the TIP3P water model extending 10 Å beyond the 

protein in all directions, using the System Builder utility. The overall charge was 



	107	

neutralized by adding the necessary number of counter ions (Na+ or Cl–). Desmond was 

used in all simulations with OPLS2005 force field. Each simulation was carried out at 

300 K and 1 bar for 100 ns and the coordinates and energies were recorded every 5 ps. 

  

3.6.5 MD results analysis 

Hydrogen bonds were determined using VMD (Humphrey et al., 1996). A 

hydrogen bond was defined by a distance between the donor and acceptor of less than 3 

Å and a donor–hydrogen–acceptor angle of greater than 150°.  

The vdW contacts between the protease and aprotinin binding loop were 

calculated using a simplified Lennard-Jones potential V(r) = 4ε [(σ/r)12 – (σ/r)6], with the 

well depth (ε) and hard sphere diameter (σ) for each protease–aprotinin atom pair. The 

V(r) for all protease–aprotinin atom pairs was computed within 6 Å, and when the 

distance between nonbonded pairs was less than e, V(r) was considered equal to –e. More 

details of the rationale for this modification to the original 6-12 Lennard-Jones potential 

were described before (Ozen et al., 2011). The total ΣV(r) of the protease–aprotinin 

complex was computed using this simplified potential for each nonbonded pair. 

 

3.6.6 Isothermal titration calorimetry experiment 

The ITC experiments were performed using Microcal ITC200 (Malvern) at 20 °C 

with the protease in the sample cell and aprotinin constructs in the syringe. The assay 

buffer was 20 mM Tris pH 8.5. By fitting the data with non-linear regression using 

Origin® 7.0, the change in enthalpy (∆H) and corresponding dissociation constant (Kd) 
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were determined. The change in Gibbs free energy (∆G) and entropy (∆S) were derived 

from these values.  
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4.1 Abstract 

The mosquito-transmitted dengue virus (DENV) infects millions of people in 

tropical and sub-tropical regions. Maturation of DENV particles requires proper cleavage 

of the viral polyprotein, including processing 8 of the 13 substrate cleavage sites by 

dengue NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, 

dengue protease is a promising target for inhibitor design. We have previously found that 

the prime side of cleavage sites significantly modulates dengue protease binding affinity 

over several orders of magnitude, and identified optimal amino acids for each position. In 

this study, we designed a series of cyclic peptides based on the prime side of substrate 

cleavage (P’) as inhibitors of dengue protease. By optimizing the length and amino acid 

sequence, the tightest cyclic peptide achieved a Ki value of 2.9 µM against DENV3 WT 

protease. These peptides mainly interact with the protease from P1 to P3’/P4’ sites, and 

since dengue protease does not share P’ site substrate sequence preference with other 

human serine protease, these cyclic peptides could be used as leads to design inhibitors 

with higher specificity. 
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4.2 Introduction 

Dengue virus (DENV), the causative agent of disease dengue fever, is endemic in 

more than 110 countries with approximately 390 million people infected yearly leading to 

about 20,000 deaths (Monath, 1994, WHO, 2009, Bhatt et al., 2013). Currently, no direct-

acting drugs are available either in clinic or development to combat dengue infections. 

Thus, a better understanding of the causative virus is needed to develop effective 

therapies.  

DENV is a member of the family Flaviviridae, an enveloped virus with a positive 

single-strand RNA genome. There are four different serotypes (DENV 1–4), and each 

serotype shares 65-70% sequence identity of the genome (Rico-Hesse, 1990). Dengue 

RNA genome encodes a single polyprotein, which needs to get processed at the 

cytoplasmic side of host cell rough endoplasmic reticulum membrane by dengue 

NS2B/NS3 protease, and by the host cell peptidase at the lumen side (Chambers et al., 

1990a). Dengue NS2B/NS3 protease is a serine protease that belongs to the chymotrypsin 

family with a classic Ser-His-Asp catalytic triad (Bera et al., 2007). The cofactor NS2B 

(cNS2B; amino acids 1394–1440) is required for the proper function of NS3 protease 

(NS3pro185; amino acids 1476–1660) (Yusof et al., 2000) and participates in substrate 

recognition (Noble et al., 2012). Dengue protease is responsible for the cleavage at 8 of 

the 13 polyprotein cleavage sites  (Falgout et al., 1991). These cleavage steps are required 

for maturation of the viral particle, making dengue NS2B-NS3 protease a promising 

target for drug development. 
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Inhibitors targeting dengue protease have largely been based on the P side of 

substrate cleavage (Yin et al., 2006a, Yin et al., 2006b, Nitsche et al., 2011, Nitsche et al., 

2012, Bastos Lima et al., 2015), and these inhibitors were improved to nanomolar level 

binding affinity according to a recently published study (Behnam et al., 2015). P side of 

substrates has been explored as P1 and P2 positions are rather conserved (basic amino 

acids) while the rest of the cleavage sequences are diverse. Since dengue protease has 

similar substrate sequence preferences as human serine proteases (Furin RXRR, thrombin 

P1 R, trypsin P1 R), these linear peptide-based inhibitors are not designed to be specific 

to the viral protease. General serine protease inhibitor aprotinin inhibits DENV2 protease 

with a Ki value 26 nM (Mueller et al., 2007). The binding loop of aprotinin is highly 

analogous in sequence to the native NS3 cleavage site and spans from P3 to P4’ position 

at the active site of DENV protease (Noble et al., 2012). In chapter III, by engineering the 

binding loop of aprotinin, I recently identified the optimal amino acids for each of the P’ 

positions. I determined that forming specific intermolecular interactions (such as 

hydrogen bonds contributed by P1 and P2’ residues, hydrophobic packing of P3’ and P4’ 

residues), and maintaining the overall structure of the aprotinin’s binding loop is critical 

for binding affinity. 

I now take advantage of this knowledge, and design a series of cyclic peptides 

where we optimize the sequence and linker as inhibitors of dengue protease. To help 

maintain the loop structure in aprotinin, the binding loop (Pro13 to Ile18/Ile19) was 

cyclized with a second loop (Tyr35/Gly36 to Arg39) through a linkage between 

Ile18/Ile19 and Tyr35/Gly36. Optimizing the length and sequence of the cyclic peptide 
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led to an inhibitor with a Ki value 2.9 µM against DENV3 WT protease (Apro10). In 

addition, Arg54 on the protease was targeted to form more interactions (hydrogen bond 

and electrostatic interactions). This arginine is conserved through all four dengue 

serotypes but does not exist in human serine proteases (furin, thrombin and trypsin), and 

further optimization of interactions with this residue may increase the specificity of these 

peptides against dengue protease. The cyclic peptides we designed may be used as lead 

compounds in the design of DENV inhibitors with good specificity and potency. 
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4.3 Results 

Previously, by using aprotinin as a platform and replacing the binding loop with 

corresponding native substrate sequences, we showed that P’ side of substrates can 

significantly affect binding interactions with dengue protease and certain interactions are 

critical for binding (Chapter III). Taking advantage of these known interactions, we have 

designed cyclic peptides targeting DENV protease pocket from S3 to S4’ position (Fig. 

4.1). As we identified entropy to be the major driving force for binding, a second 

aprotinin loop was incorporated into the design with the aim of maintaining binding loop 

structure and rigidity. The binding loop of aprotinin (Pro13 to Ile18/Ile19) and a second 

loop (Tyr35/ Gly36 to Arg39) were linked together with or without glycine spacers 

between Ile18/Ile19 and Tyr35/Gly36. The disulfide bond between Cys14 and Cys38 

already in aprotinin was kept to cyclize the peptide. The inhibition constants of cyclic 

peptides against dengue protease were measured by FRET-based enzymatic assays, and 

molecular dynamics simulations were applied to investigate the molecular interactions 

between cyclic peptides and the protease active site residues. To determine whether these 

cyclic peptides get cleaved by DENV3 protease during the FRET-based enzymatic assay, 

we performed the assay with or without protease and then analyzed these samples using 

liquid chromatography-mass spectrometry (LC/MS). Based on the results, these cyclic 

peptides did not get cleaved by the protease during the assay (Apro9 and Apro10 as 

examples) (Fig. 4.2, Fig. 4.3, Table 4.2). 
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Figure 4.1.  Design cyclic peptides derived from aprotinin as dengue NS3/2B 
protease inhibitor. (A) Aprotinin-DENV3 protease complex structure (3u1j). NS3 
protease domain is in green, NS2B co-factor cyan and aprotinin purple. (B) The binding 
loop and 2nd loop of aprotinin are displayed as sticks. Dengue NS3/2B protease is shown 
as surface and the catalytic triad is in orange. (C) Cyclic peptide derived from aprotinin is 
displayed as sticks. The residues are numbered based on substrate residue position. (D) 
Hydrogen bonds between cyclic peptide and dengue NS3/2B protease are displayed as 
yellow dashes. (E) Naming of residues in cyclic peptide.  
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Figure 4.2.  Liquid chromatography-mass spectrometry (LC-MS) analysis of Apro9 
with (red) or without (blue) pre-incubation with DENV3 protease.  



	118	

 
 
Figure 4.3.  Liquid chromatography-mass spectrometry (LC-MS) analysis of 
Apro10 with (red) or without (blue) pre-incubation with DENV3 protease.  
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4.3.1 Optimizing the linker and peptide length 

The inhibition constants of cyclic peptides against DENV3 protease vary from 2.9 

µM (Apro10) to 780.3 µM (Apro14) (Table 4.1, Table 4.2). To determine the optimal 

length of cyclic peptide, peptides were designed with varying lengths from the longest 

Apro 3 (residues P3 to P4’, two glycine linkers and residues 35 to 39) to the shortest 

Apro8 (residues P3 to P3’, and with no linker and residues 37 to 39).  

First, the linker between the binding loop and second loop was optimized for 

length. Comparing Apro1 to Apro5, or Apro2 to Apro10, no glycine linker is required 

between Ile18 and Tyr35. Without glycine linker, the Ki of Apro1 decreases from 376.8 

µM to 14.5 µM (Apro5), and the Ki of Apro2 decreases from 966.1 µM to 2.9 µM 

(Apro10). Comparing Apro3 (Ki value 14.5 µM) to Apro5 (Ki value 678.3 µM), P4’ 

isoleucine and two glycine residues as a linker is not favorable. Thus, no linker is 

required to connect the two loops and shorter cyclic peptides have better inhibition 

against dengue protease.  

Next, we investigated length of the second loop, by comparing Apro10 to peptides 

with shorter second loops: For Apro8 (without Tyr35 and Gly36), Apro13  (without 

Gly36) and Apro14 (without Tyr35), the Ki values increase from 2.9 µM to 101.2 µM, 

467.9 µM and 780.3 µM respectively. Therefore, the optimal number of residues for the 

second loop of the cyclic peptide between P3’ Ile and Cys38 is three residues. 
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Table 4.1.  The Ki values of different length of cyclic peptides against DENV3 
NS3/2B protease. 
 

Peptide 
name 

Peptide sequence 
Ki (µM) 

Fold 
change P3 P2 P1 P1’ P2’ P3’ P4’     35 36 37 38 39 

Apro4 P C K A R I I G G Y G G C R 232.3 ± 69.9 1.00 

Apro3 P C K A R I I G G Y G G C A   678.3 ± 244.1 2.92 

Apro1 P C K A R I   G   Y G G C A   376.8 ± 204.1 1.62 

Apro2 P C R A R I   G   Y G G C A   966.1 ± 328.8 4.16 

Apro5 P C K A R I       Y G G C A 14.5 ± 6.7 0.06 

Apro6 P C R A R I       Y G G C R 187.3 ± 43.2 0.81 

Apro10 P C R A R I       Y G G C A   2.9 ± 0.8 0.01 

Apro13 P C R A R I       Y  G  C A 467.9 ± 68.7 2.01 

Apro14 P C R A R I         G G C A   780.3 ± 195.5 3.36 

Apro7 P C R A R I         G G C R 29.7 ± 5.8 0.13 

Apro11   C R A R I       Y G G C R 145.1 ± 27.9 0.62 

Apro8 P C R A R I           G C A 101.2 ± 24.8 0.44 
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Table 4.2.  The Ki values of cyclic peptides with sequence optimization against 
DENV3 NS3/2B protease. 
 

Peptide 
name 

Peptide sequence 
Ki (µM) Fold 

change P3 P2 P1 P1’ P2’ P3’ 35 36 37 38 39 

Apro10 P C R A R I Y G G C A   2.9 ± 0.8 1.00 

Apro16 Bz C R A R I Y G G C A 33.2 ± 6.5 11.45 

Apro12 P C R A Q I Y G G C A NB NB 

Apro9 P C R A W I Y G G C R 19.7 ± 8.8 6.79 

Apro21 P C R A W I Y G G C A 144.8 ± 54.4 49.93 

Apro17 P C R A R I D G G C A   69.3 ± 24.4 23.90 

Apro18 P C R V R I D G G C A   35.8 ± 16.4 12.34 

Apro19 P C R V R I Y G G C A 25.6 ± 9.9 8.83 
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4.3.2 Optimizing residues for P1 and P2’ positions of the peptides 

Dengue protease prefers basic residues lysine and arginine at the P1 position, and 

whether one of these residues is preferred over the other was tested. Apro1, with lysine at 

P1, has lower Ki (376.8 µM) compared to Apro2, with arginine at P1 (966.1 µM), but 

Apro10, with arginine at P1, has lower Ki (2.9 µM) compared to Apro5, with lysine at P1 

(14.5 µM) (Table 4.1). Thus, the preference between the two basic amino acids is subtle 

and context dependent. While Arg can form one more hydrogen bond compared to Lys, 

both residues can form electrostatic interactions with the negatively charged residue 

D129 on the protease. The charge interaction might be the dominant force in this pocket, 

explaining no significant difference between these two amino acids.   

Previously, I have shown that for different substrate sequences, arginine is 

favored at P2’ position and can form both a hydrogen bond and more vdW contacts 

compared to other residues. In this study, arginine (big side chain, hydrogen bond 

partner), glutamine (smaller side chain, hydrogen partner) and tryptophan (big side chain 

with more contribution to vdW contacts) at the P2’ position were compared: Apro10, 

Apro12 and Apro21 have Ki values 2.9, 1273 and 145 respectively (Table 4.2). 

Glutamine of Apro12, which can also form a hydrogen bond, is less favorable at this 

position compared to arginine (Apro10), and tryptophan of Apro21, which was designed 

to interact with protease through extensive vdW contacts, is also less favorable compared 

to Apro10. These results reflect that both hydrogen bonding and vdW contacts 

contributed by P2’ residue are critical for the binding interactions in this pocket. 
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4.3.3 Optimal C terminal residue depends on the peptide length 

To decrease the flexibility at the C terminus of the cyclic peptides, Arg39 (present 

in native aprotinin sequence) was replaced with alanine, resulting in Apro10. For longer 

peptides with linkers between the binding and second loop, Apro3, with an arginine 

(678.3 µM), gains potency in Apro4, with an alanine, with a lower Ki (232.3 µM). 

Similarly comparing Apro10, with an arginine, with Apro6, with an alanine, the affinity 

improves with the Ki value dropping from 187.3 µM to 2.9 µM (Table 4.1). Thus, 

decreased flexibility at the peptide C terminus is beneficial for tighter binding 

interactions. However, in contrast for shorter peptides where Tyr 35 has been also 

removed, Apro7, with an arginine, has a lower Ki value (29.7 µM) compared to Apro14, 

with an alanine (780.3 µM). Potentially in these smaller peptides with Tyr 35 removed 

the binding conformation is altered and the terminal arginine interacts with the S2’ 

pocket, specifically with Asp75, resulting in the observed lower Ki value. Overall, the 

length of the peptide likely determines the position of the terminal residue when bound to 

dengue protease active site, resulting in peptides with different lengths favoring different 

amino acid at this position. 
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4.3.4 N terminal capping 

To investigate the contribution of P3 residue (N terminus), the proline at this 

position was replaced with a smaller benzoyl capping group, which can mimic 

interactions contributed by the ring. Apro16 with the capping group has a higher Ki value 

(33.2 µM) compared Apro10 (2.9 µM), indicating proline is more favorable compared to 

benzoyl group (Table 4.2). Further, to investigate the requirement of a P3 residue, we 

designed Apro11 which does not have P3 residue. Comparing Apro6 and Apro11, 

removal of the whole proline residue does not significantly change the Ki values, which 

suggests that P3 proline is not required (Table 4.1).  
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4.3.5 Targeting Arg54 on the protease 

Arg54 of dengue protease is conserved throughout all four serotypes of dengue 

virus but not in human furin, thrombin or trypsin. To build interactions with this 

particular residue and thus potentially enhance specificity, various residues on the second 

loop of the cyclic peptides were replaced with acidic residues. Replacing Tyr 35 with 

aspartate, Apro17 and Apro18 have Ki values 69.3 µM and 35.8 µM respectively (Table 

4.2). While P1’ alanine is more favorable over valine comparing Apro10 to Apro19, there 

is no significant difference between alanine and valine when Tyr35 is replaced with 

aspartate. Since the S1’ pocket is relatively small, alanine may fit better compared to 

valine. However, the P1’ valine may push the second loop closer to Arg54 on the 

protease, stabilizing the interaction between cyclic peptide’s Asp35 and Arg54 of the 

protease. The interactions I aimed to build between these two residues were reflected by 

an extra hydrogen bond between this cyclic peptide-protease pair as discussing in later 

paragraph. 
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4.3.6 Cyclic peptide is more flexible compared to binding loop in aprotinin 

Based on the Ki values of the cyclic peptides designed and assayed, both sequence 

and length of the cyclic peptide significantly affect binding to dengue protease. However, 

the Ki values are still higher compared to the same peptide sequence within the binding 

loop of aprotinin. I found before that entropy is the driving force for binding and 

fluctuations in MD simulations correlate with binding affinity for aprotinin constructs. To 

investigate how the dynamics of molecular interactions compare to those within the 

context of aprotinin constructs, we carried out MD simulations of the highest affinity 

cyclic peptide Apro10 bound to dengue protease (Apro10 was modeled into the binding 

pocket by aligning to aprotinin-DENV3 protease complex structure (PDB: 3u1j)). The 

dynamics were compared to aprotinin-protease complex structure (PDB: 3u1j) to 

examine whether those interactions critical for aprotinin binding were still maintained.  

The snapshots of binding loop within aprotinin (the simulation included the whole 

aprotinin, but only the binding loop and second loop are displayed) and the corresponding 

cyclic peptide Apro10 are compared in Figure 4.4. Both the superimposed snapshots and 

RMSF values calculated indicate that the binding loop and second loop are more flexible 

in Apro10, with 0.7 Å and 1.6 Å higher RMSF values compared to the corresponding 

loops within the context of aprotinin, respectively. The second loop of Apro10 was 

incorporated into the design with the aim of sustaining the binding loop structure and 

rigidity as observed in aprotinin, however, these results illustrate that the cyclic peptide is 

relatively more flexible. The decreased rigidity of the cyclic peptide compared to 

aprotinin may be responsible for the increased Ki values (decreased affinity).  
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Figure 4.4.  Molecular dynamics (MD) of aprotinin or apro10 bound to dengue 
protease active site. (A) Snapshots from MD simulation trajectories of aprotinin or 
apro10  bound to DENV3 protease. The protease is shown in cartoon representation and 
the aprotinin binding/2nd loops or apro10 as sticks from start (in red) to end (in blue) of 
the trajectory. (the simulations were performed with full-length aprotinin, but only 
residues corresponding to native substrates are shown for clarity). (B) The RMSF values 
during MD simulations are displayed as average of binding loop, 2nd loop, or individual 
residues.  
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4.3.7 Binding loop residues lose interactions in cyclic peptide compared to aprotinin 

To investigate how each residue packs against the protease active site within the 

cyclic peptide, the average contact energy of each binding loop residue was calculated 

throughout the simulation time (Figure 4.5). Similar to the contacts of same positions 

within aprotinin binding loop, P1 Lys/Arg and P1’ Arg contribute the most contact 

energies. Overall, residues in aprotinin have better packing compared to Apro10 at each 

corresponding position. As these binding loops within aprotinin and within the cyclic 

peptide have the same sequence except P1 residue (lysine or arginine), the differences 

may reflect how stable these residues stay in the binding pockets. Thus, residues lose 

favorable packing contacts within the cyclic peptide compared to aprotinin. 

The intermolecular hydrogen bonds formed by the binding loop residues were 

also analyzed and compared to those in aprotinin (Table 4.3). The hydrogen bonds that 

are critical for aprotinin binding to the protease are conserved in the cyclic peptides; 

however, these hydrogen bonds are more stable in aprotinin. These hydrogen bonds 

formed in lower percentage of time, possibly due to the higher flexibility of the cyclic 

peptide.  

For the peptide Apro17, which was designed to target Arg54 of the protease, there 

is one extra hydrogen bond formed between Asp35 of Apro17 and Arg54 of the protease, 

which is promising. As Arg54 on the protease is conserved within all four serotypes of 

dengue proteases but not in human serine proteases, further optimization of interactions 

with this residue is a potential strategy to increase the specificity of these peptides against 

dengue protease. 
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Figure 4.5.  The binding loop vdW contacts during MD simulations of aprotinin or 
apro10 against DENV3 protease. 
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4.4 Discussion 

In this study, we designed cyclic peptide inhibitors targeting both P and P’ sites of 

dengue protease, and optimized the sequence and length of these peptides. The best 

binder (Apro10) has a 2.9 µM Ki value against DENV3 WT protease. These inhibitors 

were derived based on the binding loop of aprotinin, and as intended, favorable 

interactions for aprotinin binding were preserved, specifically the hydrogen bonds 

contributed by P1 and P2’ residues and vdW contacts of each residue position. However, 

these interactions in the cyclic peptides were not as strong as those in aprotinin upon 

binding to dengue protease. The RMSF values reflect that even though a second loop was 

included in the design to support the structure and stability of the binding loop, the cyclic 

peptide is still more flexible compared to the corresponding loop in aprotinin. As the 

binding between aprotinin and the protease is entropy driven (Chapter III), the increased 

flexibility may account for the decreased affinity between the cyclic peptides and 

protease, which explains why these cyclic peptides have higher Ki values against DENV3 

WT protease compared to aprotinin. 

To make sure the entropy of binding is favorable, forming hydrophobic 

interactions at P3’ and P4’ positions is also critical. Hydrophobic protease residues 30 

and 31, which define the S4’ pocket, were proposed to interact with the membrane 

(Chappell et al., 2008, Assenberg et al., 2009) and further studies are required to 

investigate the effect of hydrophobic interactions at this pocket. 
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Since most of P site inhibitors are highly charged and polar, design inhibitors 

forming  hydrophobic interactions with prime site pocket can adjust the hydrophilicity of 

these compounds, potentially affects their cell permeability. 

These cyclic peptides will serve as leads for future design. For enhancement of 

affinity and specificity of dengue inhibitors. To increase the affinity of the cyclic peptide 

against dengue protease, the rigidity needs to be increased, such as by using a carbon 

linker instead of disulfide bond to connect the binding loop to the second loop, using non-

rotatable backbone, and further decreasing the overall size of the peptide. While there is 

no linkage between these two loops in cyclic peptides beside the ends, incorporating 

heterocycles between binding loop and 2nd loop of cyclic peptides at different positions 

could be another approach to rigidify the peptides. To ensure specificity, Arg54 on the 

protease should be considered when designing P’ site inhibitors, as this residue is 

conserved between all serotypes of dengue protease, but not in human serine proteases. 

Further optimization of the interactions with this residue could be a strategy to increase 

the specificity of these peptide inhibitors. 

The strategies of optimizing cyclic peptides will be further discussed in chapter 

5.3. 
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4.5 Conclusion 

Overall, we leverage the potency of aprotinin and our detailed analysis of the 

specificity for dengue protease to design the scaffold for specific inhibitors. We design a 

series of cyclic peptides as DENV3 NS3/2B protease inhibitors, and the tightest cyclic 

peptide achieved a Ki value of 2.9 µM. Since dengue NS3/2B protease does not share 

substrate preference with human serine proteases and certain residue we targeted (Arg54) 

is conserved through all four dengue serotypes, the cyclic peptides we designed may be 

used as lead compounds in the design of DENV inhibitors with good specificity and 

potency.  



	134	

4.6 Material and Methods 

4.6.1 Protein and peptides 

DENV3 protease gene (cDNA encoding NS2B cofactor [cNS2B; amino acids 

1394–1440] and NS3 protease [NS3pro185; amino acids 1476–1660] with a G4SG4 

linker in between) was constructed for protein expression in Escherichia coli, as 

described previously (Noble et al., 2012). The protease gene was constructed between 

BamH1 and Xho1 sites of pGEX6p1 plasmid (GE Healthcare) and BL21(DE3) cells were 

used for protein expression. Protein expression and purification protocols published 

previously (Li et al., 2005a) were used. All cyclic peptides were purchased from 21st 

Century Biochemicals. 

 

4.6.2 Enzyme inhibition assay 

Fluorescence Resonance Energy Transfer (FRET) based enzymatic assay was 

used to determine the inhibition constants of cyclic peptides against DENV3 WT 

protease. 100 nM of the DENV3 protease was incubated with varying concentrations of 

cyclic peptides  (5 mM to 500 nM) for 60 min in 50 mM Tris assay buffer (20% glycerol, 

1 mM CHAPS, pH 8.5) (Leung et al., 2001). 5 µM of protease substrate [Ac-[D-

EDANS]KRRSWP[K-DABCYL]-AMIDE] (21st Century Biochemicals) were added to 

initiate proteolysis reactions and monitored using the EnVision plate reader (Perkin 

Elmer) at excitation and emission wavelengths of 340 nm and 490 nm, respectively. One-

phase association to nonlinear fit the whole progress curves was applied to determine the 

initial cleavage velocities (Salykin et al., 2013). By nonlinear regression fitting to the 
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Morrison equation of initial velocity versus inhibitor concentration using Prism 6 

(GraphPad Software), apparent inhibition constants (Ki) were obtained. Data were 

collected in triplicate and processed independently to calculate the shared inhibition 

constant and standard deviation. 

 

4.6.3 Molecular dynamics simulations 

All molecular dynamics simulations were performed in triplicate following 

previously published protocols (Ozen et al., 2014). To prepare the modeled complex 

structures, aprotinin-bound DENV3 WT protease structure (3u1j) was used as a starting 

point. Aprotinin residues except the binding loop (Pro13 to Ile18/ Ile19) and the second 

loop (Tyr35/ Gly36 to Arg39) were removed from the structure, and these two loops were 

linked together with a peptide bond using Maestro (Suite 2012: Maestro, version 9.3, 

Schrödinger). The modeled structures were prepared for simulation by keeping the 

crystallographic waters within 4.0 Å of any protein atom but removing the buffer salts 

from the coordinate file. Next, hydrogen atoms were added to the structure using Protein 

Preparation Tool from Schrodinger (Sastry et al., 2013), and the optimal protonation 

states for the ionizable side chains were determined. Hydrogen bonding network of the 

initial structures was optimized, and by using the Impact refinement module with the 

OPLS2005 force field, the structures were minimized in vacuum (Shivakumar et al., 

2010). Using the System Builder utility, these prepared systems were then solvated with 

the TIP3P water model extending 10 Å beyond the protein in all directions in a truncated 

octahedron solvent box. Overall charge of the systems were neutralized by adding 
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counter ions (Na+ or Cl–). Desmond was used in all simulations with the OPLS2005 force 

field. Each simulation was carried out at 300 K and 1 bar for 100 ns and the coordinates 

and energies were recorded every 5 ps.  

 

4.6.4 Structural analysis 

The hydrogen bonds were determined using VMD (Humphrey et al., 1996). A 

hydrogen bond was defined by the donor and acceptor distance less than 3 Å and a 

donor–hydrogen–acceptor angle of greater than 150°. To calculate the vdW contacts 

between cyclic peptides and protease, a simplified Lennard-Jones potential was applied, 

as described before (Ozen et al., 2011). 
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Chapter V 

Discussion  
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5.1 Viral protease substrate recognition and drug design 

HIV-1 protease inhibitors (PIs) are the only antiretroviral drugs used as a mono-

therapy (Perez-Valero and Arribas, 2011), and they also have the highest intrinsic 

antiviral activity among HIV-1 drugs (Shen et al., 2008, Jilek et al., 2012), making PIs 

one of the most effective antiretroviral drugs (Rabi et al., 2013). Therefore, even with the 

occurrence of PI drug resistance and the availabilities of inhibitors against other HIV-1 

viral protein targets, a deeper understanding of how protease recognize its ligands and 

optimizing PIs is still required for the development of antiviral therapy. 

Viral proteases are able to recognize diverse substrate sequences. HIV-1 protease 

substrates have heterogeneity at all positions (Table 1.1). HCV protease substrate 

sequences are similar at P6 (acidic residues), P1 (mainly cysteine) and P1’ (mainly 

serine) positions; however, residues from P5 to P2 and P2’ to P4’ are diverse (Table A.1). 

Dengue protease substrate sequences show homology at P2 and P1 (basic residues with 

exceptions at P2), and P1’ (small/polar residues with exceptions), but no similarity at 

other positions (Figure 1.9). Since most FDA approved HIV-1 and HCV protease 

inhibitors are peptidomimetics (except HIV-1 protease inhibitor TPV), applying the 

knowledge of how viral proteases recognize diverse sequences is critical to drug design 

and development.  

For both HIV-1 and HCV proteases, the recognition motif is not a consensus 

substrate sequence but a consensus volume shared by substrates. Previous studies in the 

Schiffer lab on HIV-1 protease substrate recognition showed that the protease recognizes 

the substrates through a three dimensional consensus volume occupied by different 
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substrates, and this volume spans from P4 to P4’ substrate positions (Prabu-Jeyabalan et 

al., 2002). The same phenomenon was also observed in HCV: HCV NS3/4A protease 

recognizes N-terminal of substrates through a three-dimensional consensus volume 

occupied by different substrates, and this consensus volume was defined as the substrate 

envelope as in HIV-1 protease (Romano et al., 2010). Viral proteases are less likely to 

develop drug resistance mutations to inhibitors that fit within the substrate envelope 

because protease mutations that affect these inhibitors’ binding would simultaneously 

affect substrate binding. 

Inhibitors that protrude out the substrate envelope were found to be susceptible to 

resistance mutations. HIV-1 I50V protease, for example, was observed in patients failing 

amprenavir and darunavir treatment; these protease inhibitors protrude out of the HIV-1 

protease substrate envelope and interact with residue I50 (Partaledis et al., 1995, Van 

Marck H, 2007, Vermeiren et al., 2007). The I50V removes this key van der Waal contact 

with the inhibitor.  HCV protease drug resistance mutation R155K is often observed in 

patients treated with protease inhibitors with a big aromatic P2 moieties.  In danoprevir 

(Lim et al., 2012) the P2 moiety protrudes out substrate envelope and forms a pi-stacking 

interaction against arginine 155 that is lost with the R155K. Furthermore, HIV-1 protease 

inhibitors which were designed by using substrate envelope as a constraint were shown to 

retain robust binding to multi-drug resistance protease variants (Nalam et al., 2013). 

Protease–substrate co-evolution was observed in patients who received therapy 

that included HIV-1 protease inhibitors. For example, mutations at the p1-p6 cleavage 

site are statistically associated with protease mutation I50V (Kolli et al., 2009), and these 
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co-evolved substrates rescue mutated protease’s activity. In Chapter II, I showed that co-

evolved substrates can rescue binding interactions by forming more vdW contacts and 

hydrogen bonds, or by restoring the dynamic fluctuations of protease binding site. 

Meanwhile, co-evolved substrates maintain a comparable fit within the substrate 

envelope regardless of whether the protease carries the I50V/A71V mutations or not, 

supporting that substrate envelope is the recognition motif.  

Since protease inhibitors are more rigid than the substrates and can not mutate to 

accommodate the lost binding interactions with the mutant protease, the protease-

substrate co-evolution would skew the balance between inhibitor binding and substrate 

processing in favor of the latter and cause drug resistance. Therefore, this substrate 

envelope should be used as a constraint in protease inhibitor design to avoid drug 

resistance.  

As dengue has a large amount of variation between serotypes, there is a high 

probability that resistance might emerge for any direct acting antiviral. Since the 

substrate envelope has been proven to be a critical constraint for inhibitor design 

targeting HIV-1 or HCV proteases, identifying the dengue NS3/2B protease substrate 

envelope would be beneficial to designing a Dengue Protease inhibitor. I have tried to co-

crystallize different aprotinin constructs with DENV3 protease, however, the 

crystallization trials were not successful. Methods like co-crystallizing inactive DENV3 

NS3/2B protease with substrates or co-crystallizing DENV3 NS3/2B protease with non-

cleavable substrates (or products) are potential ways to get substrate complexed 

structures, which will help us define dengue NS3/2B protease’s substrate envelope. 
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Along with DENV3 protease, I have also tried to co-crystallize active or inactive DENV2 

proteases with substrates or substrate products, and these trials will be discussed in 

Appendix B. 
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5.2 Dynamics of protease substrate/inhibitor interactions 

Protein complex structures enable investigating protein-protein or protein-ligand 

interactions at the molecular level; however, the atomic fluctuations, which are critical 

for intra- and inter- molecular interactions, are not always captured in the static crystal 

structure. NMR experiments are performed in solution and allow us to capture the 

flexibility of proteins or the dynamics of protein-ligand interactions; nevertheless, this 

method cannot fully elucidate the conformational flexibility in atomic scale. To fill this 

gap, molecular dynamic simulations have been successfully applied to address the 

dynamics of protein-protein interactions and protein folding at atomic resolution (Cho et 

al., 2008, Pan et al., 2013).  

Throughout my thesis I used molecular dynamics (MD) to capture some of these 

motions.  In Chapter II, I show that co-evolved p1-p6 substrates rescue the HIV-1 I50V 

protease’s binding activity by forming more vdW contacts and hydrogen bonds (Fig. 2.4, 

Table 2.2), and molecular dynamics simulations suggest that co-evolution restores the 

dynamics at the active site (Fig. 2.8). Studying static structures alone cannot elucidate 

these phenomena.  

In Chapter III, the MD analysis of aprotinin constructs bound to DENV3 protease 

revealed that the binding loop fluctuations, vdW contacts and hydrogen bonds all 

correlate well with the experimental Ki values and also highlight the favorable binding 

interactions (Fig. 3.2, Fig. 3.6, Fig. 3.9, Table 3.4).  In Chapter IV, dynamic analysis 

helped us understand why cyclic peptides derived from aprotinin experience a significant 

potency loss against DENV3 protease (Fig. 3.2, Table 4.1, Table 4.2, Fig. 4.4). The 
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RMSF values derived from MD simulations show that even though we incorporated the 

second loop in cyclic peptide to sustain the binding loop structure as observed in 

aprotinin, both loops are more flexible compared to corresponding loops in aprotinin 

(Fig. 4.4). Since the entropy is the main driving force for binding (Fig. 3.4), the loss of 

rigidity causes the cyclic peptides to lose affinity against DENV3 protease.   

In Appendix A, I present that the impact of the distal V36M mutation on the HCV 

NS3/4A protease-inhibitor complex crystal structures is subtle, with little change in the 

inhibitor binding mode, intermolecular hydrogen bonds and salt bridges (Table A.4, 

Table A.5). However, MD simulations results reveal that the impact of V36M mutation 

propagates to the binding site through B1 β-strand, and this distal modulation decreases 

the size of the active site (Fig. A.3, Fig. A.4). Since HCV protease inhibitors typically 

protrude beyond the dynamic substrate envelope (Ozen et al., 2013), this shrinking is 

expected to impair inhibitor binding more than substrate recognition, and contribute to 

drug resistance.  

Traditional	structure-based	drug	design	approaches	allow	us	to	design	inhibitor	

targeting	certain	static	state	of	a	protein	of	interest.	However,	static	structures	are	

not	enough	to	explain	the	existence	of	drug	resistance	in	several	cases	(Fig.	2.8,	Fig.	

A.3,	Fig.	A.4).	MD	simulations	enabled	investigating	the	dynamic	interactions	

between	protein	and	ligand,	which	could	not	be	captured	in	the	static	crystal	

structures.	Since	these	protein-protein	and	protein-ligand	dynamics	are	crucial	in	

determining	inhibitor	binding	and	drug	resistance,	incorporating	the	mutational	
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and	conformational	flexibility	of	target	protein	into	drug	design	would	be	critical	to	

avoid	resistance.	  
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5.3 Optimization of dengue protease inhibitors 

I designed a series of aprotinin derived cyclic peptides as DENV3 NS3/2B 

protease inhibitors, and the tightest cyclic peptide achieved a Ki value of 2.9 µM (Table 

4.1). However, these cyclic peptides are still weak DENV3 protease binders compared to 

aprotinin (3.7 nM) (Fig. 3.2). Entropy is the main driving force for binding of all 

aprotinin constructs to dengue protease (Fig. 3.4), and compared to the binding loop of 

aprotinin, aprotinin-derived cyclic peptides are much more flexible upon binding to 

DENV3 protease (higher RMSF values) (Fig. 4.4). Therefore, to make these cyclic 

peptides better binders, their rigidity needs to be increased. Certain strategies to address 

this problem including incorporating non-reducible bond, non-rotatable bond, peptide 

bioisosteres, heterocycles and macrocycles among side chains to the peptide design, and 

shortening the length of cyclic peptide. 

The two loops of cyclic peptide inhibitor (Apro10 as an example) are linked 

together through a peptide bond between Ile18 and Tyr35, and a disulfide bond between 

Cys14 and Cys38 (Fig. 4.1, Table 4.1, Table 4.2). Nevertheless, this disulfide bond can 

be broken under reducing conditions, making it unstable. Using a non-reducible bond 

instead is a strategy to increase the stability of the cyclic peptide, or incorporating 

heterocycles at the same position to increase both stability and rigidity. 

Since the peptide bond between P1 and P1’ residues is still cleavable, replacing 

with a non-cleavable bond would be beneficial to the integrity of the cyclic peptide. The 

carbonyl group of P1 residue forms a hydrogen bond with protease’s Ser135 backbone 

amine groups (Fig. 4.1D, Table 4.3); therefore, replacing this peptide bond with peptide 
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bioisosteres such as ester, thioester, ketoethylene and ketone, this hydrogen bond can be 

maintained while making the bond non-cleavable. 

 Decreasing the length of cyclic peptide is a feasible way to increase the overall 

conformational entropy. Since the length of second loop is already optimized, the overall 

length of the peptide can be decreased by cutting residues at both termini. Further, even 

though the overall length of the second loop is optimized, the rigidity of this loop can be 

increased by incorporating non-peptide-like rigid chemical groups. Meanwhile, all 

backbones within the cyclic peptides are rotatable, giving the cyclic peptides great 

flexibility. Hence, replacing backbone bonds flanking the peptide bonds (phi and psi) 

with non-rotatable bonds would also increase rigidity. This design should be done 

carefully, investigating the dynamics of corresponding bonds in the aprotinin-DENV3 

complex structure.    

Macrocyclic inhibitors were shown to successfully inhibit HCV NS3/4A protease 

compared to their linear analogs [Summa, 2012 #658;Jiang, 2014 #233;Rosenquist, 2014 

#231]. These inhibitors were cyclized through links between side chains (Fig. A.1), 

unlike through-backbone bonds in dengue cyclic peptides. Since dengue protease’s S2’ 

and S4’ pockets are solvent exposed and overlapping (Fig. 4.1C), similar to the S4 and S2 

pockets (or S3 and S1 pockets) of HCV NS3/4A protease, introducing a P2’-P4’ 

macrocycle to these cyclic peptides can potentially increase both peptide rigidity and also 

the packing against residues in these two pockets.  
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Besides the prime site cyclic peptides, cyclizing dengue P site peptides is another 

strategy to increase both rigidity and specificity, which will be discussed in Chapter 5.4 

and Appendix D. 
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5.4 Design of dengue inhibitors with higher specificity 

Dengue protease shares similar substrate sequence preferences with human serine 

proteases (furin RXRR, thrombin P1 R, trypsin P1 R) (Lim et al., 2013). Therefore, 

increasing specificity of dengue protease inhibitor is a necessary but challenging 

endeavor. With the lack of investigation into increasing the specificity of dengue protease 

inhibitor, we can apply the lesson we learned from the HCV protease inhibitor design 

(targeting conserved residue) to address this problem. Also, we can take advantage of 

dengue NS3/2B protease’s unique structural feature at the active site and design inhibitor 

with higher specificity. 

Residue Cys159 of HCV NS3/4A protease is conserved across all HCV genotypes 

and subtypes, and this residue is structurally unique to HCV protease (Hagel et al., 2011). 

Covalent inhibitors designed to interact with this cysteine were shown to have high 

specificity against HCV protease (Hagel et al., 2011). Therefore, targeting an active site 

residue that is conserved among various genotypes (or serotypes) of virus is a feasible 

strategy to increase inhibitor specificity.  Residue Arg54 in the protease domain of 

dengue NS3/2B protease is conserved across all serotypes of dengue virus.  In addition 

human serine protease furin, thrombin and trypsin do not have arginine at the analogous 

position. Thus targeting this arginine by building electrostatic interactions or hydrogen 

bonds can increase inhibitor specificity against dengue protease. 

Even though dengue protease shares similar substrate sequence preferences with 

human serine proteases, the active site structure of dengue protease is configured very 

differently from these human proteases. Dengue protease has a flat and solvent exposed 
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S1 pocket, but the shapes of these human proteases’ S1 pockets are relatively narrow 

(Fig. D.1). Therefore, I expect that cyclized P site peptides (tetra-peptide with cyclization 

between N terminus capping and modified P1 side chain as an example) (Fig. D.2) will 

still bind to dengue protease, but might be too big to fit into human serine protease active 

sites. The macrocylic inhibitor design targeting this pocket will be further discussed in 

Appendix D.   
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5.5 Implications for Zika virus 

In addition to the challenges we face in drug design against dengue virus, there is 

no effective therapy against Zika virus either. Zika virus (ZIKV), first isolated from 

febrile sentinel rhesus monkey in 1947 (Dick et al., 1952), had a major outbreak in Brazil 

recently, with an estimated 500,000-1,500,000 cases in 2015 (Bogoch et al., 2016). Zika 

virus, a mosquito-borne virus that belongs to Flaviviridae, Flavivirus, is an enveloped 

virus with a positive single-stranded 10,794 nucleotide RNA genome, which encodes a 

single polyprotein. Similar to dengue virus, the ZIKV polyprotein is further processed 

into three structural and seven non-structural proteins by the viral protease (Kuno and 

Chang, 2007, Faye et al., 2014). 

DENV protease and ZIKV protease structures are highly similar; DENV3 

protease (PDB: 3U1I) and ZIKV protease (PDB: 5LC0) structures have a RMSD value of 

0.6 Å. ZIKV and DENV proteases active site residues are highly conserved (72% 

identity, 88% similarity), and the tightest prime site substrate NS3 is also highly 

conserved among different serotypes of DENV and ZIKV (Table 3.1). Therefore, the 

lessons I learned from inhibitor design targeting DENV protease should be applicable to 

ZIKV, and the cyclic peptide (P1 to P3’) I designed could be a starting scaffold for ZIKV 

inhibitor design. The main difference between DENV and ZIKV proteases is at the NS2B 

cofactor domain. ZIKV protease has an aspartic acid at position 81 (glycine in dengue 

protease), located between S3 and S2 pockets. How an acidic residue at this position 

would affect substrate or inhibitor binding is not clear. Further research is required to 

study this specific residue’s contribution.  
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Appendix A:  Distal Mutation V36M Allosterically Modulates the Active 

Site to Accentuate Drug Resistance in HCV NS3/4A Protease 

A.1 Preface 

 

Manuscript of Appendix A is in preparation as: 

 

Ayşegül Özen, Kuan-Hung Lin, Keith P Romano, Davide Tavella, Alicia Newton, 

Christos J. Petropoulos, Wei Kuang, Cihan Aydin, and Celia A. Schiffer. Resistance 

from Afar:  Distal Mutation V36M Allosterically Modulates the Active Site to 

Accentuate Drug Resistance in HCV NS3/4A Protease. 

 

 

Author contributions: A.Ö. and C.A.S. designed research; K.-H.L., A.Ö., K.P.R.,  D.T. 

and C.A. performed research; K.-H.L., A.Ö., D.T., and N.K.Y. analyzed the data. 

 

Contributions from Kuan-Hung Lin: I performed protein expression and purification and 

solved three crystal structures for this study. I created figures for the manuscript. Nese 

Kurt-Yilmaz and Celia Schiffer guided interpretation of the data.  

 

Former lab member Keith Romano solved the crystal of WT, R155K, R155K/V36M 

NS3/4A protease in complex with telaprevir and Danoprevir. These structures were 

analyzed by former lab member Ayşegül Özen and also Davide Tavella from Dr. 
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Francesca Massi’s lab. Aysegul and Davide performed molecular dynamics simulations 

to investigate the dynamic interactions between HCV NS3/4A protease and the inhibitors. 

The enzyme inhibition assay was performed by former lab member Cihan Aydin.  
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A.1.1 Hepatitis C virus 

Hepatitis C virus is a worldwide health burden with an estimated 170 million 

individuals chronically infected, and the infection of HCV causes severe liver diseases 

include fibrosis, cirrhosis and hepatocellular carcinoma (WHO, 2014). There are six 

genotypes of HCV (genotypes 1-6) with more than 50 subtypes, genotype 1 is the most 

common one globally (46%), followed by genotype 3 (22%), and genotype 3 and 4 (13% 

each) (Simmonds et al., 2005, Gower et al., 2014). Each genotype is further 

subcategorized in to different subtypes (a, b, c, etc.). 

HCV is RNA virus belongs to the family Flaviviridae and genus Hepacivirus. 

The 9.6 kb RNA genome of HCV has a open reading frame (ORF) flanked by 5’ and 3’ 

untranslated regions (UTRs), this ORF is translated via internal ribosome entry site 

(IRES). The genome gives rise to a single polyprotein, which is further processed to 

structural proteins (core, E1, E2 and p7) and nonstructural proteins (NS2, NS3, NS4A, 

NS4B, NS5A and NS5B) (Major and Feinstone, 1997). 

 

A.1.2 HCV NS3/4A protease and substrate recognition 

HCV genome is translated at ER membrane by host replication machinery into a 

single polyprotein. The polyprotein then be processed by cellular proteases (signalase and 

signal peptide peptidase) (Moradpour et al., 2007) and viral proteases (NS2/NS3 protease 

and NS3/4A protease) (Egger et al., 2002, Chang et al., 2003) and give rise to structural 

proteins (core, E1 and E2) and nonstructural proteins (p7, NS2, NS3, NS4A, NS4B, 

NS5A and NS5B). NS3/4A protease cleaves at four viral polyprotein cleavage sites (3-
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4A, 4A-4B, 4B-5A and 5A-5B), and these cleavages are required for the replication and 

maturation of viral particle, making the protease a promising drug target. NS3/4A 

protease also cleaves human cellular targets TRIF and MAVS (Kawai et al., 2005, Li et 

al., 2005b, Seth et al., 2005). These substrate sequences show homologies at P6 (acidic 

residues), P1 (mainly cysteine) and P1’ (mainly serine), however, residues from P5 to P2 

and P2’ to P4’ show heterogeneity (Table A.1). 

HCV NS3 protein is a 631 amino-acid bi-functional protein, with a serine 

protease domain at the N-terminus followed by C-terminal NTPase/ RNA helicase 

domain. NS3/4A protease, a chymotrypsin-like protein with two β-barrel domains, has a 

catalytic triad (H57, D81, S139) located in a cleft separating the two barrels. NS4A, a 54-

amino acid peptide, is required as a cofactor for optimal proteolytic activity. The central 

11 amino acids of the cofactor inserts as a β-strand to the N-terminal β-barrel of NS3 to 

form the active enzyme (Yao et al., 1999).  

The study published by Schiffer lab in 2010 showed that the NS3/4A protease 

recognizes N-terminal of substrates through a three dimensional consensus volume 

occupied by different substrates, this consensus volume was defined as substrate 

envelope as in HIV protease (Prabu-Jeyabalan et al., 2002, Romano et al., 2010). 

Inhibitors that fit within the substrate envelope were proposed less likely to be 

susceptible to drug-resistant mutations, since protease mutations impacting such 

inhibitors would simultaneously impact the processing of substrates. For example, 

protease inhibitors, ITMN-191 (Jiang et al., 2014), TMC435 (Rosenquist et al., 2014) and 

boceprevir (Malcolm et al., 2006) all have P2 moieties protrude out the substrate 



	155	

envelope and contact protease’s residues A156 and R155, and these residues were 

reported to mutate and cause drug resistance (Kieffer et al., 2007, Sarrazin et al., 2007b, 

He et al., 2008, Tong et al., 2008, Yi et al., 2009, Lenz et al., 2010). 

 

A.1.3 HCV NS3/4A protease inhibitors as antivirals 

Protease inhibitors Telaprevir (Perni et al., 2006, Kwong et al., 2011) and 

Boceprevir (Malcolm et al., 2006) were approved in 2011 and used as part of the direct-

acting antivirals (DAAs) for HCV genotype 1 infections. The cure rate increased from 

45% to 70% when these PIs were added to standard PEG-IFN/ribavirin treatment 

(Jacobson et al., 2011, Poordad et al., 2011).  

HCV NS3/4A peptidomimetic inhibitors are mainly spanning from P3 to P1 

positions, with different moieties or chemical groups at P4, P2 and P1 positions (Fig. 

A.1). There are three main classes of inhibitors: linear α-ketoamide covalent inhibitors 

(telaprevir, boceprevir and narlaprevir), linear non-covalent inhibitors (asunaprevir, 

sovaprevir, GS-9451 and Faldaprevir) and macrocyclic inhibitor (BILN-2061, 

Simeprevir, Paritaprevir (ABT-450), Danoprevir (ITMN-191), Vaniprevir (MK-7009) 

and Grazoprevir (MK-5172)) (Fig. A.1). 

 

A.1.4 Drug resistance mutation selected by HCV NS3/4A protease’s inhibitor usage 

Because of the high error rate of HCV RNA polymerase (10-4 substitutions per 

base per year, 10 fold higher than HIV reverse transcriptase’s) (Ogata et al., 1991, 

Mansky and Temin, 1995) and high virion production rate (1012 new virions per day, 100 
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fold higher than HIV), drug resistant strains may preexist and quickly be selected under 

drug pressure (Perelson et al., 1996, Neumann et al., 1998).  

Mutations arise in the NS3/4A protease depending on the therapeutic regime; 

A156 mutations were observed in patients treated with linear ketoamide inhibitors 

(Kieffer et al., 2007, Sarrazin et al., 2007a, Susser et al., 2009, Halfon and Sarrazin, 2012, 

Svarovskaia et al., 2012, Vermehren and Sarrazin, 2012, Welsch and Zeuzem, 2012) and 

macrocyclic PIs mainly select for D168A and R155K variants (Manns et al., 2011a, 

Manns et al., 2011b, Lim et al., 2012). Mutations at V36, T54, and V36/R155 were 

initially reported to be associated with resistance to ketoamide inhibitors (Kieffer et al., 

2007, Sarrazin et al., 2007a, Susser et al., 2009). In particular, V36M/R155K mutations 

were observed in patients receiving boceprevir (Howe et al., 2015), and these double 

mutations were also selected in patients received mericitabine/danoprevir combination 

therapy (Gane, 2012). 

Even though the HCV protease inhibitors are in nanomolar or subnanomolar 

level, the existence of protease mutations still make inhibitors weak binders while the 

substrates are hydrolyzed, skewing the balance between inhibitor binding and substrate 

processing in favor of the latter and cause drug resistance. While resistance via active site 

mutations in the viral NS3/4A protease has been well characterized, e.g., mutations 

R155K and D168A disrupt favorable cation-π stacking interactions with R155 and confer 

danoprevir and vaniprevir resistance (Romano et al., 2012), the mechanism of resistance 

caused by non-active site mutations is unclear. In particular, protease mutations R155K 

and V36M often co-evolve, and while R155K alters the electrostatic network at the 
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binding site, V36M is >13 Å away. In the absence of crystal structures, molecular 

modeling led to the hypothesis that the distal mutations at V36 and T54 can impair 

interaction with telaprevir’s cyclopropyl group (Welsch et al., 2008). However, no 

experimental data exists on the structural changes due to V36M and how the effects of 

this distal mutation may affect PI binding at the active site.  

In this study the mechanism by which V36M confers resistance, in the context of 

R155K, is elucidated with drug susceptibility assays, crystal structures, and molecular 

dynamics (MD) simulations for three protease inhibitors:  telaprevir, boceprevir and 

danoprevir. 
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Table A.1.  Genotype 1a HCV NS3/4A protease substrate sequences. 
 

Substrate P6 P5 P4 P3 P2 P1 P1’ P2’ P3’ P4’ 
3-4A D L E V V T S T W V 
4A4B D E M E E C S Q H L 
4B5A E C T T P C S G S W 
5A5B E D V V C C S M S Y 
TRIF P S S T P C S A H L 

MAVS E R E V P C H R P S 
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Figure A.1.  Schematic representation of HCV NS3/4A protease inhibitors. (A) 
Linear α-ketoamide covalent inhibitors. (B) linear non-covalent inhibitors in pink. (C) 
Macrocyclic inhibitors.  



	160	

A.2 Methods 

A.2.1 Protein Expression and purification 

NS3/4A protease expression and purification were carried out as described 

previously (Gallinari et al., 1998, Wittekind et al., 2002). Transformed Escherichia coli 

BL21(DE3) cells were grown at 37°C until OD600 reached 0.6 and induced by adding 1 

mM IPTG. Cells were harvested after overnight expression at 4°C and pelleted. Cell 

pellets were resuspended in 5 mL/g of resuspension buffer (50 mM phosphate buffer at 

pH 7.5, 500 mM NaCl, 10% glycerol, 2 mM β-mercaptoethanol [β-ME]), and lysed with 

a cell disruptor. The soluble fraction was applied to a nickel column (Qiagen), washed 

with resuspension buffer supplemented with 20 mM imidazole, and eluted with 

resuspension buffer supplemented with 200 mM imidazole. The eluant was dialyzed 

overnight (molecular mass cutoff, 10 kDa) against resuspension buffer to remove the 

imidazole, thrombin treatment was applied simultaneously to remove the His tag. The 

nickel-purified protein was then flash-frozen with liquid nitrogen and stored at -80°C for 

future use. 

 

A.2.2 Crystallization 

Danoprevir was prepared in-house using our convergent reaction sequence as 

described previously (Romano et al., 2010);  boceprevir was provided by Merck & Co., 

Inc; telaprevir was purchased from A ChemTek, Inc. (Worcester, MA). For 

crystallization, the protein solution was thawed and loaded on a HiLoad Superdex75 

16/60 column equilibrated with gel filtration buffer (25 mM morpholineethanesulfonic 
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acid [MES] at pH 6.5, 500mMNaCl, 10% glycerol, 30  µM zinc chloride, and 2 mM 

dithiothreitol [DTT]). The protease fractions were pooled and concentrated to 25 mg/mL 

using an Amicon Ultra-15 10-kDa device (Millipore). The concentrated samples were 

incubated 1 h with 2 to 20 molar excess of protease inhibitors. Concentrated protein 

solutions were then mixed with precipitant solution (20 to 26% polyethylene glycol 

[PEG] 3350, 0.1 M sodium MES buffer at pH 6.5, and 4% ammonium sulfate) at a 1:1 

ratio in 24-well VDX hanging-drop trays and diffraction-quality crystals were obtained 

overnight. 

 

A.2.3 Data collection and structure solution 

Crystals large enough for data collection were flash-frozen in liquid nitrogen for 

storage. Constant cryostream was applied when mounting crystal, and X-ray diffraction 

data were collected at Advanced Photon Source LS-CAT 21-ID-F and our in-house 

Rigaku_Saturn 944 X-ray system, respectively. The product complexes diffraction 

intensities were indexed, integrated, and scaled using the program HKL2000 

(Otwinowski and Minor, 1997). All structure solutions were generated using simple 

isomorphous molecular replacement with PHASER (McCoy et al., 2007). The model of 

viral substrate N-terminal product 5A-5B (3M5O) (Romano et al., 2010) was used as the 

starting model for all structure solutions. Initial refinement was carried out in the absence 

of modeled ligand, which was subsequently built in during later stages of refinement. 

Upon obtaining the correct molecular replacement solutions, ARP/wARP or Phenix 

(Adams et al., 2010) were applied to improve the phases by building solvent molecules 
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(Morris et al., 2002b). Crystallographic refinement was carried out within the CCP4 

program suite or PHENIX with iterative rounds of TLS and restrained refinement until 

convergence was achieved (Collaborative-Computational-Project, 1994). The final 

structures were evaluated with MolProbity (Davis et al., 2007) prior to deposition in the 

Protein Data Bank. Five percent of the data was reserved for the free R-value calculation 

to prevent model bias throughout the refinement process (Brunger, 1992). Manual model 

building and electron density viewing were carried out using the program COOT (Emsley 

and Cowtan, 2004). 

 

Drug susceptibility assay, enzyme inhibition assay, distance-difference maps, 

hydrogen bonds, salt bridges, van der Waals interactions, molecular dynamics 

simulations and molecular modeling were performed by other members working on this 

project, the methods for these sections will not be discussed here. 
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A.3 Results 

To understand the molecular basis of the selection of V36M distal mutation under 

the pressure of PI including regimens, wild-type (WT) and resistant protease variants 

carrying R155K and R155K/V36M mutations were compared for binding telaprevir, 

boceprevir, and danoprevir. WT apo protease was published before (). Apo R155K and 

R155K/V36M variants’ homology models were generated using crystal structures of the 

danoprevir-bound R155K and R155K/V36M variants. Together, these twelve (10 crystal 

and 2 models) resulting structures and their subsequent extensive MD simulations (100ns 

in triplicate) were analyzed to investigate the effects of V36M. 

 

A.3.1 V36M Further Decreases Susceptibility of R155K variants to PIs 

The activity of the three PIs against R155 and R155/V36M variants was assessed 

by enzymatic (Ki) and the cellular half-maximal inhibition constants (IC50) (Table A.3). 

While the double mutant has varying degrees of susceptibility to the three PIs, in all 

cases, V36M enhances resistance against both linear and macrocyclic compounds 

compared to R155K alone. Replicon-based cellular inhibition results correlate well with 

the enzyme inhibition constants. For all three PIs, the loss of antiviral activity (fold-

change in IC50 relative to wild-type) against the R155K/V36M clones is substantial 

compared to the HCV clones carrying the R155K single mutation. In conclusion, the non-

active site mutation V36M reduces the activity of all three PIs both on molecular and 

cellular levels in the presence of the active site mutation R155K. 
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A.3.2 Resistance Mutations Cause Changes in the Active Site Electrostatic Network 

The PIs make hydrogen bonds mainly with the backbone donors /acceptors in the 

binding site. As a result, the impact of R155K on the hydrogen-bonding network is 

minimal (Table A.4). 

The electrostatic network at the binding site of NS3/4A, involving residues D81–

R155–D168–R123, is critical for substrate recognition and inhibitor binding (Ali et al., 

2013, Romano et al., 2011). Disruption of this network can arise as a mechanism of 

resistance by weakening inhibitor binding. Therefore, sensitivity of the salt bridges this 

network to resistance mutations was assessed (Table A.5). R155 can make two salt 

bridges, one with D81 and the other with D168 in all PI-bound structures. While R155K 

mutation favors D81–K155 over K155–D168 in telaprevir and danoprevir complexes, 

this mutation favors K155–D168 over D81–K155 in boceprevir complexes (Table A.5). 

R155K mutation disrupted the electrostatic network in all three PIs’ binding mode, since 

this network was shown critical for inhibitor binding, the fluctuations in the salt bridges 

contribute to the decreased Susceptibility of R155K variants to PIs. The effects of V36M 

were not observed in this electrostatic network. 

 

A.3.3 The Distal V36M Mutation Changes the Active Site via F43 

To better capture the dynamic changes at the binding site due to resistance 

mutations, inter-residue Ca-Ca distance during MD simulations was tracked for pairs of 

protease residues. V36M mutation changed the dynamics and distance sampled for some 

key residue pairs across and away from the active site (Fig. A.3, Fig. A.4). In the 
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presence of V36M, residue 36 and F43 become closer to each other compared to WT and 

R155K complexes (Figure A.3A). F43 interacts with the bound inhibitor and is located in 

B1 strand, which bridges the distal V36M mutation on the A1 strand to the binding site 

(Fig. A.2). We found that four residues, K136 in α2 helix and residues 155–157 on E2 β-

strand, also become closer to F43 with V36M mutation (Fig. A.3, Fig. A.4). The fact that 

E2 and B1 β-strands and the α2 helix are closer to each other suggests a slight shrinking 

in the binding site across the B1–E2 strands direction. 

Structural and dynamic reorganization in the binding site involving the α2 helix 

and B1 and E2 strands also impacts the catalytic triad (Fig. A.3B). In telaprevir and 

danoprevir complexes, R155K mutation causes H57 and D81 Cα atoms to get farther 

away from each other, which is further aggravated by V36M in danoprevir-bound 

protease. When farther apart, the sidechains of these two catalytic residues are not 

oriented properly for strong salt bridging (Table A.5). In contrast, the distances and the 

H57-D81 salt bridge are robust in complexes of boceprevir, which is the least susceptible 

of the three inhibitors to R155K/V36M resistance mutations (Table A.3). 

In summary, detailed investigation of co-crystal structures and conformational 

ensembles coupled with drug susceptibility assays show that the distal site mutation 

V36M, in the presence of the binding site mutation R155K, alters the binding site shape 

through changes in conformational dynamics.   



	166	

Table A.2.  Crystallographic statistics for HCV protease with Boceprevir co-crystal 
structures. 
 
Drug Boceprevir 

Protease 
 

WT R155K R155K/V36M 

Resolution 
  

1.7 1.8 1.7 

Space group  P212121 P212121 P212121 

a (Å)  55.1 55.4 55.4 

b (Å)  58.8 59.0 58.9 

c (Å)  60.1 59.8 60.0 

Molecules in 
 

1 1 1 

Rmerge (%)b 4.5 3.2 3.4 

Completeness 
 

95.8 90.8 90.8 

I/ σ 22.8 15.4 11.6 

Measured 
 

96791 48641 41927 

Unique 
 

21118 15757 19992 

Redundancy 4.1 3.1 2.1 
RMSDc in: 

Bonds (Å)  0.012 0.006 0.007 

Angles (°)  1.492 1.117 1.128 

Rfree (%) 19.3 18.8 20.0 

Rfactor (%) 15.6 15.2 16.3 

No. of waters 247 186 212 

PDB Code 5EBQ 5EBR 5EBS 
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Figure A.2.  Topology of hepatitis C viral serine protease, NS3/4A. Protease is 
colored by the secondary structures; α-helices, strands, and loops colored in red, yellow, 
and green, respectively. Side chains of the catalytic triad are in magenta and the mutation 
sites, R155K and V36 are in cyan (A).  Crystallographic binding modes of telaprevir, 
boceprevir, and danoprevir in the wild-type, R155K and R155K/V36M protease 
complexes. Protease and inhibitors are represented as surface and sticks, respectively. 
Side chains of key residues are also shown as sticks; the drug resistance mutation sites 
R155K and V36M (cyan), the catalytic triad H57-D81-S139 (magenta), and other binding 
site residues (green). Inhibitors in complex with wild-type, R155K and R155k/V36M 
proteases are shown in blue, orange and yellow respectively. 
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Table A.3.  Drug susceptibilities against wild-type and resistant HCV clones and 
inhibitory activities against NS3/4A proteases. 
 

Full-length NS3/4A Enzyme - Ki (nM)a 
 WT R155K R155K/V36M 

Telaprevir 40.9 ± 3.7 824.0 ± 75.1 (20) >10,000 (>244) 
Boceprevir 34.7 ± 2.9 390.8 ± 43.0 (11) 1018.0 ± 192.3 (29) 
Danoprevir 1.2 ± 0.1 132.0 ± 18.0 (111) 292.9 ± 38.6 (246) 
Protease domain Ki (nM)a   
 WT R155K R155K/V36M 
Telaprevir 33.3 ± 4.0 803.7 ± 89.9 (24) 7342 ± 1281 (220) 
Boceprevir 35.4 ± 3.3 236.7 ± 44.3 (7) 1097.0 ± 120.4 (31) 
Danoprevir 1.0 ± 0.1 157.9 ± 20.5 (158) 295.5 ± 34.3 (295) 
Replicon IC50 (nM)a  
 WT R155K R155K/V36M 
Telaprevir 1349 4740 (3.5) 15759 (12) 
Boceprevir 971 2788 (3) 3941 (4) 
Danoprevir 0.24 >100 (>416) >100 (>416) 

aNumbers in parentheses reflect fold-change relative to wild-type; > indicates IC50 and Ki 
values higher than the maximum drug concentration tested in the assay. 
  



	169	

Table A.4.  Intermolecular hydrogen bonds between the inhibitor and protease 
active site residues. 
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Table A.5.  Intramolecular salt bridges forming a network at the NS3/4A active site 
surface in crystal structures, and stabilities assessed by MD simulations. 
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Figure A.4.  The distribution of Ca–Ca distance during MD simulations for F43 
with K136, R/K155, A156 and A157. 
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Appendix B:  Engineering DENV2 NS2B/3 protease for crystallization        

B.1 Preface 

Due to the lack of information about how dengue NS3/2B protease can recognize 

diverse substrate sequences, I aimed to solve the complex structures of DENV2 protease 

with either substrates or substrate products to address this problem. However, the S1 

pocket of the DENV2 protease active site is blocked in the apo structure because of 

crystal packing, making this crystallization condition not optimal for co-crystallization 

purpose (PDB: 2fom). As shown in Figure B.1, leucine 31 from the NS3 domain of the 

bottom monomer blocks the S1 pocket of the top monomer and vice versa. To address 

this problem, I did protein engineering to disrupt the interactions formed by this leucine 

residue. 

The co-factor NS2B was observed to adapt an opened conformation in the apo- 

DENV2 protease structure (PDB: 2fom), and the electron density beyond residue 76 of 

NS2B domain was not observed, which may reflect multiple conformations in this region 

(Erbel et al., 2006). In contrast, the NS2B domain of DENV3 protease (PDB: 3u1i) 

(Noble et al., 2012) adapts a closed active conformation, and the c terminus of NS2B was 

observed to contribute to the formation of protease binding pocket (Fig. 1.3.2). Therefore, 

I introduced disulfide bond between DENV2 protease’s NS2B and NS3 domains to 

induce the folding of NS2B, which may decrease the flexibility of NS2B, facilitate the 

formation of protease active conformation, and increase the possibility of getting a 

complex crystal. 
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Certain regions on DENV2 protease surface are highly flexible, e.g., 90KEGE93 

and 142KKGK145, which may decrease the possibility for this protease to crystallize. 

These two highly charged regions are entropically unfavorable once participating in 

packing interactions. Previously, surface entropy reduction has been shown successfully 

applied to the crystallization of HCV protease (Hagel et al., 2011). Therefore, to facilitate 

crystallization of DENV2 protease, I proposed to apply this method and build more 

favorable packing surface on the protease. 
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B.2 Methods and Results 

To make the DENV2 protease active site available for ligand binding, I mutated 

leucine 31 to phenylalanine or tryptophan to disrupt the interactions formed by this 

residue upon crystal packing (Fig. B.1). Since DENV3 protease has phenylalanine at this 

position and the S1 pocket of DENV3 protease is available for inhibitor binding, this 

mutation was expected to break the packing interactions formed by residue 31. Mutation 

L31W was also expected to break the packing because the S1 pocket is not big enough to 

accommodate large tryptophan side chain. After the mutagenesis, I could not grow 

crystals of these mutant constructs’ using same crystallization condition, which may 

reflect the success of breaking packing surface formed by L31. Therefore, I performed 

crystallization screening of DENV2 L31F or L31W protease with substrates or substrate 

products. However, no hits were obtained from the crystallization trials. 

To facilitate the folding of NS2B cofactor of DENV2 protease, I introduced 

disulfide bond between NS2B and NS3 domains: S70C−S127C or S71C−G114C. These 

residue pairs were picked using Disulfide by Design (Craig and Dombkowski, 2013) 

based on distances between Cα carbons (Fig. B.2). Next, I combined these two sets of 

mutations with the L31 mutations and then performed crystallization screening. However, 

no hit was found. 

To facilitate the crystallization of DENV2 protease, I applied surface entropy 

reduction method and mutated two highly charged and flexible regions on protease 

surface: 90KEGE93 and 142KKGK145. These two regions were mutated to residues AAGA, 

which were expected to significantly decrease the entropy penalty upon packing (Fig. 
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B.3). These mutations were then combined with L31 mutations and disulfide mutations 

(Table B.1), and crystallization screening were applied. However, no hit was obtained. 

Further construct engineering and crystallization trials are required to get DENV2 

protease-ligand complex structures. 

Along with DENV2 NS3/2B protease constructs, I also performed crystallizations 

of DENV3 WT NS3/2B protease, unlinked DENV2 NS2B NS3 protease, and NS2B/FL 

NS3 protein (DENV2, DENV3). All these constructs were co-crystallized with either 

substrates or substrate products in the crystallization trials. To identify new crystallization 

condition, co-crystallizing these protease constructs with the cyclic peptides (Chapter IV) 

or P site cyclic inhibitors (Appendix D) should be pursued. 
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Figure B.1.  Selected crystal packing surface of DENV2 protease apo-structure. NS3 
is shown in green, NS2B in cyan, catalytic triads in orange and leucine 31 in magenta.  
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Figure B.2.  Building disulfide bonds between NS3 and NS2B domains of DENV2 
protease. DENV3 protease structure (3u1i) is shown as an example of where the 
disulfide bonds are, and the ligand in this structure is removed for visualization purpose. 
Residues are labeled based on DENV2 protease sequence. NS3 is shown in green, NS2B 
in cyan, catalytic triads in orange and mutated residues in magenta.  
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Figure B.3. Applying surface entropy reduction to DENV2 protease for 
crystallization purpose. Two flexible and charged loop regions are highlighted as sticks. 
NS3 is shown in green, NS2B in cyan, catalytic triads in orange and mutated residues in 
magenta.  



	180	

Table B.1.  The expression, purification and crystallization trials of dengue NS3/2B 
protease constructs or NS2B/full length NS3 constructs. 
 

Protease construct Expression  Purification Crystallization  

DENV2 WT ✓ ✓ ✓ 
DENV2 L31F ✓ ✓ ✓ 
DENV2 L31W ✓ ✓ ✓ 
DENV2 S135A ✓ ✓ ✓ 
DENV2 90AAGA93 ✓ ✓ ✓ 
DENV2 70-127 disulfide bond ✓ ✓ ✓ 
DENV2 71-114 disulfide bond ✓ ✓ ✓ 
DENV2 S135A / 90AAGA93 ✓ ✓ ✓ 
DENV2 S135A / 70-127 disulfide bond ✓ ✓ ✓ 
DENV2 S135A / 71-114 disulfide bond ✓ ✓ ✓ 
DENV2 L31F / K90A ✓ ✓ ✓ 
DENV2 L31F / 90AAGA93 ✓ ✓ ✓ 
DENV2 L31F / K143A    
DENV2 L31F / 70-127 disulfide bond ✓ ✓ ✓ 
DENV2 L31F / 71-114 disulfide bond ✓ ✓ ✓ 
DENV2 L31F / S135A ✓ ✓ ✓ 
DENV2 L31F / S135A / K90A ✓ ✓ ✓ 
DENV2 L31F / S135A / 90AAGA93 ✓ ✓ ✓ 
DENV2 L31F / S135A / K143A    
DENV2 L31F / S135A / 70-127 
disulfide bond 

✓ ✓ ✓ 

    
DENV3 WT ✓ ✓ ✓ 
    
DENV2 unlinked NS2B NS3 ✓ ✓ ✓ 
DENV2 unlinked NS2B NS3 (K90A) ✓ ✓ ✓ 
DENV2 unlinked NS2B NS3 
(90AAGA93) 

✓ ✓ ✓ 

    
DENV2 WT NS2B + FL NS3 ✓  ✓ 
DENV3 WT NS2B + FL NS3 ✓  ✓ 
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Appendix C:  Virtual fragment screening against DENV3 NS3/2B 

protease 

C.1 Preface 

Fragment based drug design has become a powerful method to target individual 

protein active site pocket, and several compounds have been successfully built by either 

fragment linking or growing methods (Kumar et al., 2012). 

Previously, fragment based drug design was applied to discover inhibitors 

targeting the S pocket of dengue protease active site (Knehans et al., 2011). However, as 

mentioned in chapter 1.3.5, these inhibitors may not be specific to dengue protease. To 

address this issue, I proposed to screen fragments against conserved residues at protease 

active site, which would help us design inhibitors more specific to DENV. 
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C.2 Methods 

The fragment library (ChemBridge Corp.) was prepared using canvas (Duan et al., 

2010) and ligand preparation (LigPrep, version 2.3, Schrödinger, LLC ). Target protein 

DENV3 protease (PDB:3u1i) was prepared using protein preparation wizard (Sastry et 

al., 2013), and the grid was generated using receptor grid generation tool in maestro. 

These grids were centered at residues conserved among different serotypes of dengue 

proteases. Glide (Halgren et al., 2004, Friesner et al., 2004) was then applied for the 

docking of fragment libraries onto DENV3 protease.  

Top 10 percent of docking hits were further filtered by MM-GBSA free energy 

calculation (Prime, version 2.1, Schrödinger, LLC), and the top ranked fragments with 

favorable docking poses were chose for further experimental verification. Enzyme 

inhibition assay was applied to measure the inhibition constants of these fragments 

against DENV3 protease. The method for this assay is the same as described in chapter 

3.5.3.. 

Fragment hits verified by enzyme inhibition assay would then be developed using 

fragment linking or fragment growing methods, which will be performed by Jacqueto 

Zephyr in our lab. 
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C.3 Summary of findings 

I obtained fragment hits with mircomolar to low millimolar Ki values against 

DENV3 NS3/2B protease (Table C.1). These fragment hits were categorized based on 

their targeting protease residues, e.g., R54, D75, and S135 (Table C.1). The hit against 

R54 allows us to build compound outside the S pocket of dengue protease (Fig. C.1B). 

As mentioned in chapter 4.3.5, this arginine residue is conserved among different 

serotypes of dengue viruses. Further fragment growing based on the hit against this 

residue could help us obtain compound with higher specificity against dengue protease. 
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(A) 

 
 
(B) 

 
 
Figure C.1.  Examples of docking result of hit obtained from fragment based 
screening with different target residues. (A) Fragment targeting S135. (B) Fragment 
targeting R54. 
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Appendix D:  Design of P site cyclic peptide inhibitors against dengue 

NS3/2B protease 

D.1 Preface 

Dengue protease shares similar P site substrate sequence preferences with human 

serine protease, however, the dengue protease active site structures are different from 

these human proteases’. Dengue protease has a flat and solvent exposed S1 pocket, 

however, the shapes of these human proteases’ S1 pockets are relatively narrow (Fig. 

D.1). Therefore, by cyclizing P site peptide (tetra-peptide with cyclization among N 

terminus capping and modified P1 side chain as an example) (Fig. D.2), I expect this P 

site macro-cyclic inhibitor to bind to dengue protease but  too big to fit into human serine 

proteases’ active sites. 

 

D.2 Methods and Results 

P site cyclic inhibitors were designed by connecting P1 and P4 side chains, or P1 

side chain and N terminal capping group. The linkers include five member rings and six 

member rings (Fig. D.3, Fig. D.4). These designed compounds were modeled onto 

DENV3 protease active site and followed by energy minimization using protein 

preparation wizard in Maestro (Sastry et al., 2013). Compounds with favorable binding 

mode were chose, and chemists Dr. Linah Rusere and Jacqueto Zephyr are working on 

the synthesis.  



	187	

 

Figure D.1.  Surface comparison of serine proteases’ active sites. DENV3 protease’s 
inhibitor is labeled based on corresponding substrate residue positions. Furin substrate 
residues are labeled. The n terminus beyond P4 position of both ligands are removed for 
visualization purpose. 
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Figure D.2.  Modeling of P site macrocyclic inhibitors onto dengue and human 
serine proteases. (A) Chemical structure of selected protease inhibitor. (B) Modeling of 
inhibitor onto DENV3 protease (3u1i), furin (1p8j), thrombin (2afq) and trypsin (1trn).  
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Figure D.3.  Chemical structures of P site cyclic peptidomimetic inhibitors with 
P1−P4 macro-cyclization.  
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Figure D.4.  Chemical structures of P site cyclic peptidomimetic inhibitors with 
P1−N terminus capping macro-cyclization. 
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Appendix E:  Design of linear P site inhibitors against dengue NS3/2B 

protease 

E.1 Preface 

A potential reason I did not get any dengue NS3/2B protease apo- or ligand bond 

crystal was that I did not have a tighter binder to stabilize the flexible NS2B co-factor 

domain. Beside introducing a disulfide bond between NS2B and NS3 domains as 

described in appendix B, I designed a series of linear P site inhibitors to interact and 

stabilize the co-factor. Low micromolar P site inhibitors with c-terminus aldehyde 

capping group have been investigated, and the structural information was available (Yin 

et al., 2006a, Yin et al., 2006b, Noble et al., 2012). However, due to the cyclization and 

hydration issues, we could not get pure aldehyde compound (Fig. E.1).  Beside aldehyde 

compounds, linear P site inhibitors without c-terminus capping group have also been 

shown to inhibit dengue NS3/2B protease with low- to sub-micromolar Ki values 

(Hammamy et al., 2013). Therefore, I proposed to use P site peptidomimetic inhibitors 

without c-terminus capping to stabilize the NS2B co-factor and help us identify favorable 

crystallization conditions for dengue NS3/2B protease.  

 

E.2 Methods and results 

Working with Dr. Akbar Ali in our lab, we designed a series of P site 

peptidomimetic inhibitors without c-terminus capping. Akbar taught me how to used 

solution-phase methods to synthesize these compounds. 



	192	

These inhibitors were tested against dengue NS3/2B protease using assay 

described in chapter 3.5.3., and the Ki values are in micromolar range (Table E.1). The 

crystallization trials of these inhibitors against dengue NS3/2B protease were performed 

using commercial crystallization screening kits, however, no hit was obtained. Further 

compound optimization is required to identify tighter binders for crystallization purpose. 
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Table E.1.  The inhibition constants of linear P site inhibitors against dengue 
NS3/2B protease. 
 
Compound Ki value (µM) 
AI-13 237.5 ± 23.9 
AI-25 166.5 ± 10.4 
AI-26 109.7 ± 11.2 
AI-27 142.3 ± 30.5 
AI-34 137.1 ±   8.3 
AI-35 336.6 ± 85.0 
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