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Naval research programs are focusing on a distributed architecture approach for
successful migration of data from one region to another. This presents a challenging
area of modeling and managing the distributed approaches. This article describes a
service-based model, which comprises of two steps that are decomposition and
orchestration, for effectively managing distributed cluster networks. The contribution
of this paper is two-fold. First, the article describes in detail the information transfer
and entropy based decomposition approach. Second, it demonstrates the effectiveness of
the orchestration approach to address challenges in distributed clusters using a
simulation. We have implemented the decomposition approach in both Java and
Matlab for verification.
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1. Dads and Microdads

The Navy initiated the Deployable Autonomous Distributed System (DADS) program to

develop a network of underwater sensors to detect and track surface ships and submarines.

The program’s focus was on the deployment and operation of large-scale network of

autonomous and semi-autonomous sensors, platforms, and other instruments that will

improve the defense capability of the nation. An example of the DADS is a networked

sensor system that includes a field of underwater sensor nodes that communicates via

telesonar [1]. The DADS is capable of operating in a shallow water environment such as
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harbors, beaches, or chokepoints. DADS may contain a variety of capabilities such as

acoustic sensors, electric field sensors, and vector magnetometers. The sensors collect and

forward information to a master node. The master node fuses the sensor output and

performs various controls such as the field power usage to maximize system lifetime.

Typically, master nodes send their data acoustically to gateway nodes that communicate

with a command center via RF communications. The nodes run on battery power and

communicate with each other using underwater acoustic modems. In many cases, the data

communication is from node to node. The master node carries out central coordination of

the major data fusion, control, and communication functions. The centralized control

prevents high degree of autonomy for the system and its associated advantages.

The elimination of the master node in the Micro-DADS results in the distribution of the

system functions among the clusters [2]. The Micro-DADS architecture is comprised of

clustered sensors, new sensors, packaging technologies, and distributed data fusion, control

and coordination. It also includes new sensing technologies in addition to the acoustic, electric

field, and magnetic sensors in current DADS. The cluster nodes in the Micro-DADS will

perform high-order computation such as signal processing and data fusion within the cluster.

The Navy expects the Micro-DADS to be less vulnerable to detection, dredging, trawling, and

future threats such as submarine, unmanned underwater vehicles, and natural events.

2. Problem Statement and Approach

Although the distributed architecture in the Micro-DADS overcomes many disadvantages

of DADS, it also introduces new challenges to overcome. For instance, the increased

autonomy of clusters introduces challenges present in many distributed systems such as

data fusion, coordination, control, and realistic simulation of the autonomous clusters [3].

Furthermore, given the power consumption originating from signal processing and

communication, energy limitations have a major impact on the performance of the sensor

systems. Another important constraint to meet a desired field level effectiveness is low

probability of detection. The development of effective and efficient algorithms and tech-

niques for these challenges becomes an important issue [4].

‘‘Self-configuring cluster networks’’ are typically used to address issues arising in

distributed sensor networks [3, 5–7]. These approaches utilize clustering algorithms to

reduce energy consumption, increase efficient use of memory through better localization,

and improve data aggregation through efficient routing. Top-down and bottom-up control

are both necessary in self-configuring networks. Top-down control is necessary to ensure

that all sensor devices work in a coordinated manner as if they were a single entity. The self-

configuring networks also need top-down control to ensure that tasks performed by the

network fulfill operational requirements. Bottom-up control is necessary to guarantee the

system’s ability to adapt to unforeseen events. Unfortunately, as Iyengar and Brooks report

[8], an effective and efficient model to manage these conflicting control and coordination

requirements is missing.

This article addresses this important problem by proposing a Service-based

Orchestration Model using Agents (SOMA) [9]. We illustrate the applicability of SOMA

to the Micro-DADS in Section 3. In Section 5, we demonstrate, using a simulation, the

potential of SOMA to address at least two of the challenges of Micro-DADS, namely:

1. battery life maximization, and

2. minimization of detection probability.
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The work presented in this article is based on the Master theses of Ravikumar Goli,

Adisesh Krishnan, Stanley Thompson, and Rajesh Kathiru, and in part on the PhD thesis

work of Rajani Sadasivam [10–13].

3. Service-Based Decomposition Model for Self-configuration

In the orchestration model used in Web Services, primarily decomposition and orchestra-

tion are used to achieve a ‘‘desired composite goal.’’ First, the ‘‘desired composite goal’’ is

decomposed to a set of services that are essentially executable components with standard

interfaces. Following the decomposition, orchestration, which is a process of composing

services togetherwithassociated operations, isused to systematically compose these services

together to realize the desired goal at run time [14]. A specific set of generic operations is used

to orchestrate these services. For example, in the Business Process Execution Language

(BPEL), these operations can be of the types invoke, reply, receive, wait, throw (error

handling), terminate, and empty (empty operations) [14]. The orchestration model provides

an inherent ability to effectively manage (control and coordinate) distributed systems, which

is currently missing in self-configuring approaches. Besides, in this article, we also demon-

strate the ability of the orchestration model to address some of the challenges in distributed

clusters using a simulation. The simulation focuses on reducing the probability of detection

and increasing the energy efficiency of the sensors in the Micro-DADS.

The orchestration model used in SOMA is based on Conant’s critical work on complex

systems [15, 16]. Conant bases his work on Simon’s theoretical findings in a nearly

decomposable complex system, which are as follows [16, 17]: The short-run behavior of

each of the component subsystems is ‘‘approximately-independent’’ of the short-run

behavior of the other components. The corollary is that the short-run behavior of each of

the parts within a subsystem is ‘‘not-approximately-independent’’ of all other parts in its

subsystem. Deducing from the above, Conant demonstrates that a measure of the intensity

with which the parts of a complex system interact, such as the entropy-based information

transfer function given in Equation (1) can be used to decompose a system. Once the

decomposition is achieved, Conant also demonstrates that the system’s complexity can be

reduced by a judicious regrouping of its sub-systems [15]. Conant’s work suggests that a

process of decomposition and judicious regrouping similar to the orchestration model used

in Web Services can realize effective and manageable self-configuring sensor networks.

There is a key difference between decomposition based on an entropic measure and a

typical Web service decomposition. The entropic decomposition approach provides a level

of objective and formal guidance of the decomposition process, which provides a basis for

intelligent automation in self-configuring sensor networks. A systematic comparison of

suitable decomposition approaches is introduced in [18].

TðXÞ ¼
Xn

i¼1

HðXiÞ � H X1;X2; :::;Xnð Þ ¼
Xn

i¼1

H Xið Þ � H Xð Þ (1)

HðXiÞ in Equation (1) is the entropy of each individual random variable Xi of an

n-dimensional column vector X = (X1, X2,. . .,Xn)t. T(X) is a nonnegative quantity indicating

discrepancy between entropies of the dependence case, i.e., H(X1, X2,. . .,Xn), and in the

independence case,
Pn
i¼1

HðXiÞ, the latter is always larger than the former [19].
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We assume that clusters with busy sensors in the Micro-DADS have a greater prob-

ability of detection and are energy inefficient. We consider busy sensors as those whose

communication activities, derived from the information transfer function T(X), is beyond

an optimal threshold level. The simulation in Section 5 shows that orchestrating, or in this

case distributing, the activities of busy sensors to nearby sensors with lower communication

activities reduces the communication intensity peaks of the sensor clusters. In effect, the

simulation example shows that orchestration could potentially reduce the probability of

detection and increase the energy efficiency of the sensors. In SOMA, we have defined two

operations (ON and OFF) to orchestrate the reconfiguration of clusters. ON makes a sensor

part of the cluster, and OFF removes a sensor from a cluster. In our implementations,

SOMA utilizes two classes of agents to aid in the orchestration, namely the Field-Agent and

Process-Agent. The Field-Agents monitors the states to find out the level of communica-

tion. Process-Agents or an (Orchestration) Agent orchestrates the sensor clusters according

to the communication activity of sensors. A Process-Agent can execute in a sensor, or a

group of collaborating Field-Agents can select a cluster head that acts as a Process-Agent.

Although we have currently defined only two operations for simulation purposes, more

operations can easily be incorporated in SOMA to address other issues in the Micro-DADS.

Figure 1a shows a BPEL process orchestrating three Finite State Machines (FSMs).

The assumption in this example is that the three FSMs act like sensors in the Micro-DADS.

This assumption also holds true from a formal point of view in which sensors can be

considered as a FSMs. We have designed the three FSMs to have two states, which are

‘‘InProgress’’ or ‘‘Stopped’’ that occur as a result of the two operations ON or OFF

respectively. In the BPEL process, the three FSMs are identified using Partner Links.

The fourth Partner Link in the BPEL process is the client orchestrating the FSMs using the

ON and OFF operations. BPEL uses an invoke operation to invoke the FSM Partner Link

and pass on the operation to be performed. We use a simple switch case loop in the example

to identify the FSM, which the BPEL process must invoke among the three FSMs. The

switch to a FSM occurs based on the ‘‘sensor id’’ provided by the client. BPEL also

provides other types such as Flow (for parallel execution), Sequence (for serial execution),

Switch (for branching activity), While (for looping activity), and Pick (for operations such

as timer) for structural activity. To support more advanced simulations, one can incorporate

another Service or a rule engine in the BPEL process to identify the FSM to be invoked. We

use a reply operation to send the output back to the client synchronously in the example

BPEL process, but this can also be achieved asynchronously using an asynchronous call-

back. Figure 1b shows the ASP.net client code in C# to invoke the BPEL process. The two

inputs to the BPEL process are the operation to be performed (ON or OFF) and the FSM

(sensor) on which to perform the operation. The output is the current state of the FSM and

the ‘‘id’’ of the FSM. The next section of the paper describes the decomposition approach

based on information transfer used in SOMA. Section 5 describes a simulation of orches-

tration of sensor networks using agents.

4. Cluster Identification Using Decomposition Based on Information Transfer

Decomposition is a process of ‘‘breaking up into constituent elements.’’ Decompositions of

systems provide a much simpler body of constituents that can best represent a given

complex system. In systems science, decomposition consists of finding an optimal partition

of a system in terms of its subsystems. Optimality of decomposition is evaluated by means of

some adopted criteria such as a lower entropic (more information or higher negative-

entropy) measure. The implication is that a ‘‘measure of complexity’’ of a system can be
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================================================================ =  -- ><! -- 
PARTNERLINKS  -- > 
<! --  List of services participating in this BPEL process   -- >  
=================================================================  -- > 
    <partnerLink name="client" partnerLinkType="client:SensorFSMMultiple"  
myRole="SensorFSMMultip leProvider"/> 
    <partnerLink name="PartnerLink_1" partnerRole="ServiceSoap_Role"  
partnerLinkType="ns4:ServiceSoap_PL"/> 
    <partnerLink name="PartnerLink_2" partnerRole="Service2Soap_Role"  
partnerLinkType="ns4:Service2Soap_PL"/> 
    <partnerLink name="P artnerLink_3" partnerRole="Service3Soap_Role"  
partnerLinkType="ns4:Service3Soap_PL"/> 
  </partnerLinks> 

=================================================================  
<! --  ORCHESTRATION LOGIC -- ><! --  Set of activities coordinating the flow of messages  across the     -- >
<! --  services integrat ed within this business process -- > 
================================================================ 
  <sequence name="main"> 
    <receive name="receiveInput" partnerLink="client" portType="client:SensorFSMMultiple" 
operation="process" variable="inputVariable" createInstance="yes"/> 
    <switch name="Switch_1"> 
      <case  
condition="bpws:getVariableData('inputVariable','payload','/client:SensorFSMMultipleProcessRequest/clie 
nt:actiondetails/client:SensorID') = 1"> 

      <sequence name="Sequence_1"> 
          <assign name="Assign_7"> 
            <copy> 
              <from variable="inputVariable" part="payload"  
query="/client:SensorFSMMultipleProcessRequest/client:actiondetails/client:Action"/> 
              <to vari able="Invoke_3_MicroDADSSensor_1_InputVariable" part="parameters"  
query="/ns4:MicroDADSSensor_1/ns4:actiondetails/ns4:Action"/> 
            </copy> 
            <copy> 
              <from variable="inputVariable" part="payload"  
query="/client:SensorFSMMulti pleProcessRequest/client:actiondetails/client:SensorID"/> 
              <to variable="Invoke_3_MicroDADSSensor_1_InputVariable" part="parameters"  
query="/ns4:MicroDADSSensor_1/ns4:actiondetails/ns4:SensorID"/> 
            </copy> 
          </assign> 

    <invoke name="Invoke_3" partnerLink="PartnerLink_1" portType="ns4:ServiceSoap"  
operation="MicroDADSSensor_1" inputVariable="Invoke_3_MicroDADSSensor_1_InputVariable"  
outputVariable="Invoke_3_MicroDADSSensor_1_OutputVariable"/> 
          <assign name="A ssign_2"> 
            <copy> 
              <from variable="Invoke_3_MicroDADSSensor_1_OutputVariable" part="parameters"  
query="/ns4:MicroDADSSensor_1Response/ns4:MicroDADSSensor_1Result"/> 
              <to variable="outputVariable" part="payload"  
query="/ client:SensorFSMMultipleProcessResponse/client:result"/> 
            </copy> 
          </assign> 
        </sequence> 
      </case>  
    <reply name="reply" partnerLink="client" portType="client:SensorFSMMultiple" operation="process"  
variable="outputVariable"/> 
  </sequence>
</process>

Figure 1a. Orchestration BPEL code.
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related to the entropy H(S) and information transfer T(S) functions for a system

S = {X1, X2,. . .,Xn} with n ordered components X1, X2,. . .,Xn . S is not necessarily a vector

with coordinates X1, X2,. . .,Xn, but represents a system with ordered components in the sense

that, unless stated otherwise, all permutations of {X1, X2,. . .,Xn} stand for distinct systems.

Thus, since complexity is related to information (actually, it is lack of information), the

following non-negative magnitude, which is in fact a measure of information,
Pn
i¼1

H Xið Þ is

used to measure lack of complexity of a system when n individuals (components) are taken

one by one and their inherent potentials (measured in terms of entropy) are added up. The

underlying assumption for such a measure is that individuals act independently of each other

not to exhibit a coherent body. Similarly, H(X1, X2,. . .,Xn) = H (S) is also a measure of

information (lack of complexity) when interactive behavior of n components is taken into

account, i.e., when individuals form a coherent body of a system.

T S;Pð Þ ¼
Xn

i¼1

H Xið Þ � H X1;X2; :::;Xnð Þ (2)

The transfer function T(X) will now be designated by T S;Pð Þ and will be defined in

terms of the components of S. Equation (2) is a non-negative measure of change in

information between a system composed of a random collection of n independent indivi-

duals and a system composed of an integrated body of these n individuals. This implies in a

way that the transfer function can indicate useable information that exists in components

for the system or vice versa. The larger the magnitude is, the more remote the system S will

be from the chaotic case of n components being unable to form a system. The symbol P, or

expressed precisely as P{X1, X2,. . .,Xn}, represents a partition of S. The notation T S;Pð Þ
hence emphasizes that information transformation depends on the given system S as well

as the specific partition P of S under consideration. Roughly, ‘‘the contribution of P to

SensorFSMMultiple service = new SensorFSMMultiple();

etails.SensorID = 2;

SensorFSMMultipleProcessRequest sfr = new SensorFSMMultipleProcessRequest();
sfr.actiondetails = new ActionDetails();
sfr.actiondetails.Action = "ON";
sfr.actiondetails.SensorID = 1;

SensorFSMMultipleProcessResponse res = service.process(sfr);
Label1.Text = res.result.ToString();

sfr.actiondetails.Action = "OFF";
sfr.actiond

res = service.process(sfr);
Label2.Text = res.result.ToString();

sfr.actiondetails.Action = "ON";
sfr.actiondetails.SensorID = 3;

res = service.process(sfr);
Label3.Text = res.result.ToString();

Figure 1b. ASP.Net in C# client code.
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T S;Pð Þ’’ corresponds to the sum
Pn
i¼1

H Xið Þ on the right-hand side of Equation (2) and ‘‘that

of the S-part’’ is yielded by the term H(X1, X2,. . .,Xn) on the same side of the equation.

Since we are now dealing with a system rather than the vector X, we can bring the system

symbol S into Equation (1) to have the notation in Equation (2). By a partition P{S1, S2,. . .,

Sq} of S, we mean a collection of disjoint subsets S1, S2,. . ., Sq, (q� n), of S that exhaust S,

that is, S ¼
Sq
i¼1

Si. Therefore, the simplest partition is P{X1, X2,. . .,Xn} where q = n with

Si ¼ Xif gand is called an element partition. A trivial partition is P{S}, i.e., P{S} = S with

q = 1. Corresponding to 1 < q < n, on the other hand, there are numerous partitions, the well

known of which is dichotomous partition P{S1, S2}. With partition notation P{S1, S2,. . ., Sq},

information transfer function becomes Equation (3) below where H(S1,S2,. . .,Sq) is equal to

H(X1, X2,. . .,Xn), since
Sq
i¼1

Si ¼ S ¼ X1;X2; :::;Xnf g and H(S1), H(S2), . . ., H(Sq) are the

corresponding entropies of the individual elements of the partition.

TðS;PÞ ¼ T S1; S2; :::; Sq;P
� �

¼
Xq

i¼1

HðSiÞ � HðS1; S2; :::; SqÞ (3)

When a dichotomous partition such as P{S1, S2} and their transmission is involved

then, to emphasize the interaction between these two sets, the function T is sometimes

indexed by the subscript B as in Equation (4).

TBðS1; S2; PÞ ¼ HðS1Þ þ HðS2Þ � HðS1; S2Þ ¼ TðS1; S2; PÞ (4)

Similarly, to emphasize interaction within the system S = {X1, X2,. . .,Xn} with an element

partition P, the magnitude T(S, P) can also be tagged as TW(S, P), where the subscript W

stands for the interaction within the system S itself. Since a coherent system can only be

composed of a series system, a parallel system, or a mixture of both [20], the probability

corresponding to the partition can range from the probability indicated in Equation (5) to

the probability indicated in Equation (6).

PðS1; S2Þ ¼ PðS1Þ · PðS2Þ (5)

PðS1; S2Þ ¼ minfPðS1Þ;PðS2Þ (6)

The corresponding entropy of Equation (5) is H(S1,S2) = H(S1) + H(S2) and the entropy of

Equation (6) is given in H(S1, S2) = min{H(S1), H(S2)}. We have thus a maximum value for

T(S1,S2,P) that is obtained when H(S1, S2) = min{H(S1), H(S2)} and the minimum value of

TB(S1,S2,P) is reached when H(S1,S2) = H(S1) + H(S2), in which case TB(S1,S2,P) = 0. The

minimum value of the transfer function indicates that S1 and S2 are independent in

statistical terms. If we let TU
B (S1:S2) stand for the maximal value of TB(S1,S2,P), we can

obtain Equation (7).
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0 � T12 ¼
TB S1; S2;Pð Þ
TU

B S1; S2ð Þ � 1 (7)

Therefore, for all systems partitioned as S1 and S2 and having joint distributions with fixed

marginal distributions for S1 and S2 (systems with the given marginal distributions of S1 and

S2), as the underlying sub-systems S1 and S2 become more integrated to form a whole

system T12 will approach to one. T12 will approach to zero as S1 and S2 become disin-

tegrated to form separate systems. T12 is actually some version of the absolute value of the

usual correlation coefficient when S1 and S2 are singletons like S = {X1} and S2 = {X2}.

Hence, T12 = 0 means non-relatedness of subsets S1 and S2, and T12 = 1 implies that S1 and

S2 are completely dependent on each other. This latter aspect of transfer functions are

emphasized in Conant [15, 16]. For comparison of the complexities of pairs of subsystems,

on the other hand, Conant introduces an additional instrumental index called ‘‘interaction

measure’’ and is defined as Equation (8).

QSi
Sj

� �
¼ TSi

ðSjÞ � T Sj;P
� �� �

i�j ¼ 1; 2:::q (8)

Equation (8) is useful in detecting a change in the complexity of Sj when it is integrated into

the subsystem Si, so that the interdependence among the components of Sj are evaluated

against their joint conditional interdependence given the integration of the elements of

Si. T Sj;P
� �

in Equation (8) denotes the conditional transmission over Sj ¼ Xj1 ;Xj2 :::Xjr

� �
given the interrelatedness of the elements of Si and is defined as Equation (9) where

HSi
ðSjÞ = H(Si, Sj) –H(Sj).

TSi
Sj

� �
¼
Xjr

i¼j1

HSi
Xið Þ � HSi

Xj1 ;Xj2 ; :::;Xjr

� �
(9)

Unlike the transfer functions T(.)’s which are always positive, the interaction measure

Q(.) in Equation (8) can be negative (i.e., the sets Si and Sj interact negatively), positive

(i.e., Si and Sj have positive interaction between them) or zero (i.e., Si and Sj are stochas-

tically independent). Usefulness of the information transfer functions in Equation (2) and

Equation (3) for applications of systems is two-fold. Obviously, when we have no usable

information, or conversely when we have full information, on both S and P, the function

T(S, P) ceases to be of some use. Its use becomes accentuated when we have partial

information on S and/or P. In fact, we may be in a position to obtain a system with some

given subsystems or to derive some subsystems from a given system. The former problem is

composition (integration) and the latter is decomposition. In the composition issue, P is

known but we have no knowledge about S. In the decomposition problem, we have

information on S but none about P. Information on P and/or S means knowledge about

the distributions involved as well. The concept information used here either is in the

information theoretic sense, for example, the information transfer function, or is in

the daily usage sense, that is ‘‘knowledge.’’ Thus, for obtaining the solution of the

integration problem, the information transfer function is maximized over all possible

systems S = {S|S 2 S} which yield the given common partition P. In other words,

H(S) = H(S1,S2,. . .,Sq) or H(X1, X2,. . .,Xn) is minimized. Conversely, a solution for
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decomposition (partition P) is obtained by minimizing the transfer function over all

possible partitions of the given system S. In other words,
Pq
i¼1

HðSiÞ or
Pn
i¼1

HðXiÞ is mini-

mized. All foregoing discussions and indices are undoubtedly relevant for the case where

we know the distributions. When such information is unavailable, as consistent estimates,

we can use empirical distributions. Collection of observations for the purpose is however

costly and hard to obtain. This is true for empirical assessment of joint distributions, when

we are especially interested to obtain estimates of multivariate distributions for large sets of

components. The following illustrate the initial stages where observations on element

partition and pair-wise partition of the system are available.

4.1. Illustration 1

A simple empirical case corresponds to availability of observations on each individual

component. Let S = {Y1, Y2,. . .,Yn} hence be a system with n ordered components and with

the given matrix Y given in Equation (10) of discreet observations where yij denotes the

ith functional value (i = 1, 2,. . ., k) taken up by the jth component of the system

S = {Y1,Y2,. . .,Yn}. Assume further that these values are observed with the frequencies as

in Table 1.

Y ¼

y11 y12 � � � y1n

y21 y22 � � � y2n

..

. ..
. ..

...
...
. ..

.

y�1 y�2 � � � y�n

2
6664

3
7775 ¼ ðyijÞ (10)

By definition, the magnitudes mi� and m in Table 1 are
P�
j¼1

mij = mi� and
Pn
i¼1

mi� = m. Clearly,

these observations are sufficient to obtain estimates for marginal distributions of

the individual components Y1, Y2,. . .,Yn. Another easy to follow real life example for this

Table 1

Frequency Table For Illustration 1 of the Cluster

Identification Using Decomposition Approach

Y1 Y2 Yn zz 

    yi1 11m 12m n1m zz

    yi2 21m 22m n2m zz

zz

    yi 1m 2m nm zz

Marginal  

   Sums 

1m 2m nm m 
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case corresponds to the frequency of long distance phone calls mij placed at a certain

geographical location Yi at some given time unit yij. Consider the element partition

P{S1,S2,. . .,Sn}of S where Si = {Yi} for each component Yi. Thus, the marginal probability

of each component Si = {Yi} is P(Si) = �i which can be consistently estimated by �i
^ ¼ mi�

m
.

For each component Yi,, the probability of the event {Yi = yij} is represented by

P(Yi = yij|Si) = �j|i and the latter will similarly be estimated by �jji
^ ¼ mij

mi�
. However, after

observing the system S, the probability for the same event {Yi = yij} becomes P(Yi =

yij|S) = �ij and is estimated with �ij
^ ¼ mij

m
. Accordingly, Equation (11) provides the esti-

mates for the entropies of individual components and Equation (12) provides the estimate

for the system entropy.

HðS
^

iÞ ¼ �
X�
j¼1

mij

mi�
log

mij

mi�

� 	
; i ¼ 1; 2; . . . ; n (11)

HðS
^

1; S2; . . . ; SnÞ ¼ �
Xn

j¼1

X�
i¼1

mij

m
ðlog

mij

m
Þ

8: 9; (12)

The estimated information transfer will be

TrðS;PÞ
^

¼
Xn

i¼1

HðS
^

iÞ � HðS1; S
^

2; . . . ; SnÞ

¼ �
X�
j¼1

mij

mi�
log ð mij

mi�
Þ þ

Xn

j¼1

X�
i¼1

mij

m
ðlog

mij

m
Þ

8: 9; (13)

A vanishing value of this non-negative real number in Equation (13) provides some

evidence that the partition P{S1, S2,. . .,Sn} conforms well with the given system S, so that

the degree of its divergence from zero is a clue that there is still some unused information in

P{S1, S2,. . .,Sn} for S or vice versa. Accordingly, when TrðS;PÞ
^

= 0, observations suggests

that the system cannot be decomposed further than the element decomposition

P{S1,S2,. . .,Sn}. A non-vanishing value of the empirical information transfer function

TrðS;PÞ
^

thus suggests that it is worthwhile to seek decompositions other than

P{S1,S2,. . .,Sn}. We can clearly partition S in some other way such as P{S1, S2,. . .,Sq}

where 1 < q < n. The foregoing analysis can be repeated using (14) for this case to check

whether P{S1, S2,. . .,Sq} has some information for S. In that case, the system entropy

estimate HðS1; S
^

2; . . . ; SnÞ will stay put, but estimates of entropies HðS,Þ
^

of individual

subsets S, will change. The given observations in the frequency Table 1 are clearly not

sufficient to obtain a conclusion beyond the result obtained above. For further conclusion,

we need more sophisticated observations and experiments. Hence, we introduce next, the

second Illustration.

4.2. Illustration 2

The second illustration relates to a case where empirical data for pairs of components are

available. Obviously, this case is more general in the sense that the availability of empirical

observations (frequencies) on pairs of random variables implies also the availability of

observations on individual variables as well. Assume again, for simplicity of exposition,
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that the random components Y1, Y2,. . ., Yn-1 and Yn are discreet in nature and the number of

functional values taken by each Yi is ri, (i = 1,2,. . .,n) with these values ranging over the

whole numbers yi1,yi2, . . ., yiri
. For notational convenience and without loss of generality,

we can assume that ri = r for all i = 1,2,. . .,n. As such, in accordance with a certain pattern,

the joint event {Yi = yih, Yj = yjk}, i � j, takes values in the discrete (r(n-1)) · ðrðn� 1ÞÞ
matrix layout set up as in Table 2. This layout is now our observational system T, which is a

proper subset of S · S.

Since we are interested in cross pairs of variables like Yi and Yj with i � j, the diagonal

block cells (shaded in darker gray) of Table 2 are irrelevant and we therefore have (n-1)

rows and (n-1) columns of interest. Hence, off-diagonal cells become a center of interest.

Each off-diagonal block cell in Table 2 is composed of an (r · r) matrix of observations on

the bi-variable event such as {Yi = yih, Yj = yjk}, i � j = 1,2,. . .,n and h,k = 1,2,. . .,r. When

the two events {Yi = yih, Yj = yjk} and {Yj = yjk,Yi = yih} are identical, i.e., when they are

symmetrical, then only the upper or lower off-diagonal part of Table 2 can be used. For

convenience of visualization, the unused part (for instance, the lower part) is shaded in light

gray in Table 2. In this latter case, the upper off-diagonal block cells become the system T of

observations to be considered. The bottom row and the last column shaded in blue are

empty and the cell in the south east corner contains one single element marked m

representing total number of observations. To aid exposition, the block cell corresponding

to the observational frequencies on the ith and jth variables (shaded in orange color in

Table 2) is reproduced in Table 3 with the same color. For the specific pair of Yi and Yj,

the symbol miðhÞjðkÞ of Table 3 stands for the frequency with which the bi-variable event

{Yi = yih, Yj = yjk} is observed empirically. The last column and the bottom row of Table 3

present marginal frequencies involved. For observations on {Yi = yis} corresponding to a

certain s=1,2,. . .,r, we have Equation (14) and similarly, for a certain t =1,2,. . .,r, we have

Equation (15).

Table 2

Pair-Wise Observations for Illustration 2 of the Cluster Identification

Using Decomposition Approach

Y1 Y2 Yi Yj Yn

 Y1

 Y2

 Yi

  Yj

Yn

  m
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miðsÞj ¼
Xr

k¼1

miðsÞjðkÞ; i�j (14)

mijðtÞ ¼
Xr

h¼1

miðhÞjðtÞ; i�j (15)

Thus, we can obtain Equation (16) where m =
P
i¼1

P
i<j

mij.

mij ¼
Xr

s ¼ 1

miðsÞj ¼
Xr

t ¼ 1

mijðtÞ: (16)

As shown in Table 2, m is located in the southeast cell of the table. The q =
nðn �1Þ

2
upper

off-diagonal block cells of Table 2 can now be labeled as T1, T2, . . .,Tq. Obviously, P{T1,T2,

. . .,Tq} is a proper partition of T. Labeling starts from the top leftmost cell of the table, it then

goes to the leftmost off-diagonal block cell of the second row and so on as in the lexico-

graphical ordering: T1 for {Y1,Y2}, T2 for {Y1,Y3},. . ., Tq for {Yn-1,Yn}. For each partition , =

(i,j), i < j estimates of the marginal probabilities P(Yi = yih, Yj = yjk) = �i(h) j(k), j > i = 1,2,. . .,n

and h,k = 1,2,. . .,n, is given by Equation (17). Furthermore, for the whole system the same

estimate becomes Equation (18) so that, as before, we obtain Equations (19) and (20).

�
^

iðhÞjðkÞ ,j ¼
miðhÞjðkÞ

mij

(17)

�
^

iðhÞjðkÞ ¼
miðhÞjðkÞ

m
(18)

HðT,
^
Þ ¼ �

Xr

h¼1

Xr

k¼1

miðhÞjðkÞ
mij

log ð
miðhÞjðkÞ

mij

Þ (19)

HðT1; T
^

2; :::; TqÞ ¼ �
Xn

i¼1

Xn

i<j

Xr

h¼1

Xr

k¼1

miðhÞjðkÞ
m

log ð
miðhÞjðkÞ

m
Þ (20)

Thus, the estimated transfer function in Equation (21) will have small values close to zero

when pair-wise partition is enough for decomposition, whereas its higher values will

produce evidence that there is some further information to be utilized in T for further

partition P{T1, T2, . . .,Tr}, q � r.

Table 3

Frequencies of {Yi = Yih, Yj = Yjk} in Table 2 for The

Highlighted Pair of I and J

i(1)j(1)m i(1)j(2)m i(1)j(r)m mi(1)j

i(2)j(1)m i(2)j(2)m i(2)j(r)m mi(2) j

i(r)j(1)m i(r)j(2)m i(r)j(r)m mi(r) j

mi j(1) mi j(2) mi j(r) mi j
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TrðT ;PÞ
^

¼
Xq

,¼1

HðT,Þ
^
�HðT1; T2; :::; TqÞ

^
(21)

5. Simulation of Sensor Network Orchestration Using Agents

SOMA use two classes of intelligent agents to aid in orchestration: Field-Agents and

Process-Agents. Field-Agents monitor and provide internal status and information about

sensors, monitors battery levels and exceptional conditions in the system. Process-Agents

monitor the cluster status at any time and dynamically orchestrate the cluster to reduce the

detection signature, determine the strengths of the communication activity between the

groups of clusters, and group clusters or destroy them to reduce communication between

sensors and prevent detection.

In the simulation, we have assumed that each sensor has one Field-Agent. The Process-

Agent collects data from the Field-Agents in the sensors. The states of operations

(state-values) at an instance of time of a sensor were indicated to be one, two, three, or

four. The state-values are based on two variables. One is the state of the Field-Agent

associated with the sensor, and the second is the detection state of the sensor. Currently, we

have implemented the decomposition method in Java and Matlab, and these two imple-

mentations are used to verify and validate the calculations of each other. The data in these

calculations are simulated by taking into account realistic situations.

4.3. Pre-Orchestration Phase

Table 4 shows the state-values based on a simulation of the expected target track. Figure 2

shows the plot of the normalized transmissions calculated for the data set of this phase. Based

on Table 5, sensors with transmission values higher than the set threshold value (we assumed

it as 60% of the maximum transmission value) were identified as ‘‘busy sensors.’’ The

maximum transmission value of Table 4 data set was calculated to be 1.3480 and the

threshold value to be 0.8088. From the above transmissions (25 · 25 array of transmission

values), the following sensors indexes were determined to have a transmission value higher

than the set threshold value: 1, 2, 3, 6, 7, 8, 26, 27, 28, 31, 32, 33, 51, 52, 53, 56, 57, 58, 79, 80,

89, 90, 104, 105, 114, 115, 126, 127, 128, 131, 132, 133, 151, 152, 153, 156, 157, 158, 176,

177, 178, 181, 182, 183, 326, 327, 328, 329, 330, 331, 332, 333, 339, 340, 351, 352, 353, 354,

355, 356, 357, 358, 364, 365, 469, 514, 515, 539, 540, 564, 565, 589, 590, 614, and 615.

The analysis of the data revealed that sensors numbered 1, 2, 3, 4, 5, 6, 7, 14, 15, 19, 21,

22, 23, 24, and 25 were involved in majority of the transmissions in the network. Of these,

most of the transmissions were taking place between the sensors numbered 1, 2, 3, 4, 5, and

6. Additionally, sensors numbered 14 and 15 had high transmissions between them.

Table 4

State-Values for the Example Orchestration Simulation

Sensor State

(Detecting or Not

Detecting)

Agent State

(Single Agent

on or off)

Generated State-Values for

Entropy Method

Calculations

Not Detecting Off 1

Not Detecting On 2

Detecting Off 3

Detecting On 4
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4.4. Orchestration Phase

The Process Agents is used to turn-off the Field-Agents in the above busy sensors

and orchestrated (distributed the load) to other sensors in their proximity, which had their

Table 5

Simulated Data Set of the Example Orchestration Simulation

1 1 2 2 2 2 2 1 1 1 

2 2 4 4 4 3 3 1 1 1 

2 2 4 4 4 3 3 1 1 1 

2 2 4 4 4 4 3 1 1 1 

2 2 4 4 4 1 3 1 1 1 

2 2 3 3 3 2 3 1 1 1 

2 2 3 3 3 3 4 1 1 1 

Collected values for 10 sensors 

T
im

e

Figure 2. Transmissions plot for the 1st time phase of the single-agent approach.
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Field-Agents state as OFF. The reconfigured transmissions after orchestration were calcu-

lated and the plot in Fig. 3 shows the transmissions plot for a data set collected from these

sensors. Comparing Figs. 2 and 3 (plotted with intensity of communications in the Y-axis),

we can see that the orchestration method in SOMA has successfully reduced the intensity of

transmission.

By carefully applying the orchestration method in the example simulations, we

demonstrated that at least two of the Micro-DADS related challenges can be addressed

using SOMA. These two challeges are to improve the energy efficiency of the sensors, and

reduce their probability of detection. In this paper, we estimate that if the intensity of

communication of a sensor cluster is above a certain threshold level, then there is greater

probability of detection and the sensors are less energy efficient. Therefore, by reducing the

intensity of communication in a cluster by ‘‘switching’’ the activities of busy sensors to

nearby sensors through orchestration, we have reduced the probability of detection and

increased the efficiency of the sensors.

6. Conclusion and Future Work

The article outlines some of the challenges the Navy faces because of its shift to a

distributed architecture in the Micro-DADS program from a central architecture in the

DADS program. Primary among those challenges is the ability to conserve energy and

prevent detection. Adopting the orchestration model of Web Services and employing a

formal decomposition technique based on entropic analysis, we introduced a Service-

based Orchestration Model using Agents (SOMA) for efficient and effective control and

coordination of self-configuring sensor systems. The decomposition technique used in

SOMA is free from restrictions of structural modeling and does not depend on the type of

Figure 3. Transmissions plot after agent-switching in the 1st phase of the one-agent approach.

238 R. S. Sadasivam et al.



distribution of the random variables involved. It does not require either any restriction on

the type of interaction of variables such as their uncorrelatedness or independence. The

operational steps in SOMA are shown using simulations. The example simulations

demonstrate the potential of SOMA addressing two of the important problems of

Micro-DADS, namely

1. battery life maximization, and

2. minimization of detection probability.
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