
UNDERSTANDING THE SEQUENCE-SPECIFICITY AND RNA TARGET 
RECOGNITION PROPERTIES OF THE OOCYTE MATURATION FACTOR, 

OMA-1, IN CAENORHABDITIS ELEGANS  
 

A Dissertation Presented 
 

By 
 

EBRU KAYMAK 
 

Submitted to the Faculty of the 
University of Massachusetts Graduate School of Biomedical Sciences, Worcester 

In partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 

April 28, 2016 
 

Biochemistry and Molecular Pharmacology 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



	 ii	

SIGNATURE PAGE 

UNDERSTANDING THE SEQUENCE-SPECIFICITY AND RNA TARGET 
RECOGNITION PROPERTIES OF THE OOCYTE MATURATION FACTOR, 

OMA-1, IN CAENORHABDITIS ELEGANS 
 

A Dissertation Presented By 
 

Ebru Kaymak 
 

The signatures of the Dissertation Defense Committee signify completion and approval 
as to style and content of the Dissertation 

 
__________________________________ 

Sean P. Ryder, Ph.D., Thesis Advisor 
 

__________________________________ 
Francesca Massi, Ph.D., Member of Committee 

 
__________________________________ 
Nick Rhind, Ph.D., Member of Committee 

 
________________________________ 

Marian Walhout, Ph.D., Member of Committee 
 

___________________________________ 
Kimberly L. Mowry, Ph.D., Member of Committee 

 
The signature of the Chair of the Committee signifies that the written dissertation meets 

the requirements of the Dissertation Committee 
 

___________________________________ 
Scot A. Wolfe, Ph.D. Chair of Committee 

 
The signature of the Dean of the Graduate School of Biomedical Sciences signifies 

that the student has met all graduation requirements of the school. 
 

___________________________________ 
Anthony Carruthers, Ph.D. 

Dean of the Graduate School of Biomedical Sciences 
 

Biochemistry and Molecular Pharmacology Program 
 

April 28, 2016 



	 iii	

DEDICATION 

This thesis is dedicated to my family. To my dear mother, Turkan Kaymak, and 

my father Orhan Kaymak. 

 

 

 

 

 

 

 

Sevgili annecigime ve babacigima.. 

Sizin emeginiz ve desteginiz olmadan bu basariyi elde edemezdim. Hep yanimda 

oldugunuz icin ve elinizden gelenin en fazlasini yaptiginiz icin cok tesekkur 

ederim. 

 

 

  



	 iv	

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to my advisor, Sean Ryder. I 

am deeply grateful to Sean. I have been very lucky to be his student. Without his 

guidance and support, I would not have been grown to be the scientist I am 

today. I am proud of all we’ve accomplished together and I look forward to seeing 

where you take the lab and these projects in the future.  

Thanks to all the labmates in the Ryder lab. John Pagano started me with 

purifications and in vitro selection experiments through my rotation. His guidance 

was very appreciated. Brian Farley has been a great mentor throughout the 

years. He showed me everything I know to do with C. elegans. Ruth Zearfoss 

has been my troubleshooting person. Thanks to her for always being available to 

help with valuable suggestions. 

 I would like to thank my TRAC committee who have been with me since 

qualifying. Scot Wolfe, Francesca Massi, and Nick Rhind provided their time to 

evaluate the progress of my research and showed me new directions to take in 

my projects. Scot Wolfe has been an excellent committee chair with kind advices 

and generous helps. I have been to all of my committee members’ offices with 

questions and they were always very welcoming. Their support at all of my 

committee meetings has added to my abilities as a scientist. I would like to thank 

Phil Zamore and Kirsten Hagstrom for being in my qualifying exam committee 

and guiding me thoughtfully at the very beginning. I would also like to thank 



	 v	

Marian Walhout and Kimberly Mowry for being in my dissertation committee and 

putting in the time to evaluate my thesis with valuable suggestions.  

 I would not have gone through graduate school without the support of my 

friends. Karen Mruk has been a very valuable friend and a mentor to me. She 

was with me at every step of graduate school. Maggie, Laura, Divya and Brian 

were always around in the department for scientific discussions, help with 

experiments and moral support. Arda, Aysegul, Ozlem (Senol), Ozlem (Yildirim), 

Ozge, Salih, Sezin, Yonca, Sungwook, Alper, Orkan, and many others have been 

great friends to me. They always made themselves available to help me 

whenever I needed them.  

 Last but not least, I thank my family for allowing me to live away from them 

for years working to get my doctorate degree. They have always made me feel 

cared and have always been supportive along the way. Without their support and 

trust in me, I would not have decided to come here for my Ph.D. I am extremely 

lucky to have them as my family. I truly love them from the bottom of my heart. 

Special thanks to my brother Ugur Kaymak for always believing in me and 

cheering me up at bad times. I am very lucky to have a great brother like him. 

Many many thanks to my family. 

 

  



	 vi	

ABSTRACT 

Maternally supplied mRNAs encode for necessary developmental 

regulators that pattern early embryos in many species until zygotic transcription 

is activated. In Caenorhabditis elegans, post-transcriptional regulatory 

mechanisms guide early development during embryogenesis. Maternal 

transcripts remain in a translationally silenced state until fertilization. A suite of 

RNA-binding proteins (RBP’s) regulate these maternally supplied mRNAs during 

oogenesis, the oocyte-to-embryo transition, and early embryogenesis. Identifying 

the target specificity of these RNA-binding proteins will reveal their contribution to 

patterning of the embryo. We are studying post-transcriptional regulation of 

maternal mRNAs during oocyte maturation, which is an essential part of meiosis 

that prepares oocytes for fertilization. Although the physiological events taking 

place during oocyte maturation have been well studied, the molecular 

mechanisms that regulate oocyte maturation are not well understood.  

OMA-1 and OMA-2 are essential CCCH-type tandem zinc finger (TZF) 

RBP’s that function redundantly during oocyte maturation. This dissertation 

shows that I defined the RNA-binding specificity of OMA-1, and demonstrated 

that OMA-1/2 are required to repress the expression of 3ʹUTR reporters in 

developing oocytes. The recovered sequences from in vitro selection 

demonstrated that OMA-1 binds UAA and UAU repeats in a cooperative fashion. 

Interestingly, OMA-1 binds with high affinity to a conserved region of the glp-1 

3ʹUTR that is rich in UAA and UAU repeats. Multiple RNA-binding proteins 
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regulate translation of GLP-1 protein, a homolog of Notch receptor. In addition to 

previously identified RBP’s, we showed that OMA-1 and OMA-2 repress glp-1 

reporter expression in C. elegans oocytes.   

Mapping the OMA-1 dependent regulatory sites in the glp-1 mRNA and 

characterizing the interplay between OMA-1 and other factors will help reveal 

how multiple regulatory signals coordinate the transition from oocyte to embryo 

but the abundance of OMA-1 binding motifs within the glp-1 3ʹUTR makes it 

infeasible to identify sites with a functional consequence. I therefore first 

developed a strategy that allowed us to generate transgenic strains efficiently 

using a library adaptation of MosSCI transgenesis in combination with rapid RNAi 

screening to identify RBP-mRNA interactions with a functional consequence. 

This allowed me to identify five novel mRNA targets of OMA-1 with an in vivo 

regulatory connection. In conclusion, the findings in this dissertation provide new 

insights into OMA-1 mediated mRNA regulation and provide new tools for C. 

elegans transgenesis. Development of library MosSCI will advance functional 

mapping of OMA-1 dependent regulatory sites in the target mRNAs. Extending 

this strategy to map functional interactions between mRNA targets and RNA-

binding proteins in will help reveal how multiple regulatory binding events 

coordinate complex cellular events such as oocyte to embryo transition and cell-

fate specification.  
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Universal Characteristics of Metazoan Early Development 

 

Sexual reproduction in metazoans requires the formation of haploid 

gametes: a larger oocyte and a smaller sperm. Fusion of these two haploid 

gametes is required to generate a diploid zygote and initiate the development of 

an organism. How a differentiated oocyte transitions into a totipotent embryo has 

been a crucial developmental question in the field of embryology. 

To ensure a successful development, meiotic divisions in the oocytes 

must be completed before zygote formation. Therefore, precise regulation of 

meiosis during oocyte development is necessary to couple meiotic events to 

fertilization. An evolutionarily conserved feature of oocyte development is meiotic 

arrest, whereby immature oocytes arrest at meiosis I until a signal triggers 

completion of meiosis. The process of oocyte maturation is the process that 

releases the meiotic arrest upon extrinsic cues and prepares the oocyte for 

fertilization (McCarter et al., 1999; Yamamoto et al., 2006). Maturation is an 

essential step for proper early embryonic development. Physiological changes 

that occur during oocyte development have been well characterized. Nuclear 

envelope breakdown, meiotic spindle assembly, and cortical cytoskeleton 

rearrangement morphologically characterize oocyte maturation (Horner and 

Wolfner, 2008; McCarter et al., 1999). The duration of this arrested state varies 

between organisms: human oocytes can arrest for decades, mouse oocytes 

arrest for months, Drosophila oocytes arrest for hours and nematode worm C. 
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elegans oocytes arrest for approximately twenty-three minutes (Kishimoto, 2003; 

McCarter et al., 1999; Nishiyama and Tachibana, 2010; Sagata, 1996; Stetina 

and Orr-Weaver, 2011; Whitaker, 1996). As oocytes develop during oogenesis, 

information required for programming early development is stored in oocytes. 

This phenomenon is conserved across metazoans and understanding the 

molecular basis of this established program in oocytes has been one of the key 

developmental questions studied. Although oocyte maturation, fertilization and 

early embryogenesis events remain poorly understood in molecular terms, a 

developmental theme unifies the oocyte-to-embryo transition across all 

metazoans studied: developmental control of this transition relies on post-

transcriptional regulation of maternal messenger RNAs (mRNAs) (Farley and 

Ryder, 2008; Richter, 1991; Tadros and Lipshitz, 2005). Remarkably, there is 

little or no transcription during the oocyte-to-embryo transition but after the 

maternal to zygotic transition (MZT) state in the embryos, transcriptional 

regulation of the zygote’s genome takes over the control of developmental events 

(Blackwell, 2004; Cao et al., 2006; Schier, 2007; Stitzel and Seydoux, 2007). 

Therefore, until initiation of zygotic transcription, maternal mRNAs that are 

transcribed during early embryogenesis are essential for programming of oocyte-

to-embryo transition and early development. 
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Regulation of Oocyte-to-Embryo Transition in Metazoan Model Organisms 

	
Several of the key general principles in the field of post-transcriptional 

control of maternal mRNAs during oocyte-to embryo transition were addressed in 

detail using the model organisms Xenopus and Drosophila (Richter and Lasko, 

2011).  

Xenopus is a model organism that has been used extensively to study the 

key concepts of oocyte development and different modes of post-transcriptional 

control in oocytes (Ferrell, 1999; Tunquist and Maller, 2003). The oocytes of 

Xenopus are large and easy to extract in large quantities, as well as easy to 

manipulate and to microinject. As seen in other organisms, Xenopus oocytes 

arrest at prophase I of meiosis I. At this stage, the oocytes are transcriptionally 

active to produce mRNAs that are required for maturation and embryonic cell 

divisions. As oocytes continue to grow, these mRNAs are kept in a masked state 

meaning that they are not translationally active (Richter, 1991; Spirin, 1966). 

Once oocyte maturation is initiated, by the hormone progesterone in this case, 

synthesis of new proteins is required and this necessitates selective activation of 

maternal mRNAs (Tunquist and Maller, 2003). A well characterized mechanism 

of maternal mRNA activation in Xenopus is cytoplasmic polyadenylation. mRNAs 

containing cis-regulatory sequences termed cytoplasmic polyadenylation 

elements, (CPEs) in their 3ʹ untranslated region (3ʹUTR) are translationally 

repressed through binding of a complex of two proteins: CPE-binding protein 

(CPEB) and Maskin (Lin et al., 2010). Maskin is an eIF4E-binding protein (4E-
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BP). Since eIF4-E is a cap-binding protein, binding of 4E-BP competes with eIF4-

G binding, thus preventing recruitment of 40S ribosomal subunit and translational 

initiation  (Cao et al., 2006; Stebbins-Boaz et al., 1999). Upon initiation of oocyte 

maturation, CPEB is phosphorylated (Mendez et al., 2000b). This prevents the 

interaction of CPEB with poly(A) ribonuclease (PARN) which catalyzes the 

deadenylation reaction (J. H. Kim and Richter, 2006). This permits cytoplasmic 

adenylation and activation of transcripts required for maturation events, such as 

cell-cycle progression. Well studied examples of cytoplasmic polyadenylation and 

subsequent activation of maternal mRNAs during oocyte maturation are the 

activation of two cell-cycle regulators cyclin B and mos that are conserved across 

vertebrates (Cao, 2002; Mendez et al., 2000a; Sheets et al., 1994; Stebbins-

Boaz et al., 1996). In mouse oocytes, cyclin B1 is activated in a similar pathway 

to Xenopus (Hodgman et al., 2001; Tay et al., 2000; Tay and Richter, 2001). 

Once maturation initiates, cytoplasmic polyadenylation of cyclin B mRNA is 

observed in Drosophila as well. In immature fly oocytes, cyclin B is repressed by 

the RNA-binding protein Pumilio.  Polyadenylation during maturation is then 

achieved by a poly(A) polymerase present in the oocytes, Wispy (Benoit et al., 

2008; Juge et al., 2002). These examples highlight how post-transcriptional 

regulation is coupled to polyadenylation mechanisms and is crucial for 

progression of oogenesis across model species. Activation of Cyclin B is one of 

the key events that initiate oocyte maturation in most species, including 

mammals (Barkoff et al., 2000; Sagata, 1996).  
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Post-transcriptional regulation of maternal mRNAs can also be coupled to 

localization mechanisms during oogenesis. For example, in Drosophila, oskar 

mRNA is localized to the posterior of the oocyte to establish posterior and germ 

cell fates (Bergsten and Gavis, 1999; Ephrussi and Lehmann, 1992; Kim-Ha et 

al., 1995). During its localization, in early oogenesis, oskar mRNA is repressed 

by an RNA-binding protein Bruno through interactions via cis-regulatory 

sequences termed Bruno response elements (BRE) (Kim-Ha et al., 1995; Lie and 

Macdonald, 1999; Snee et al., 2008; Webster et al., 1997). Bruno interacts with a 

4E-BP, Cup. Cup, like Maskin, prevents oskar’s  translation by competing with 

eIF4E-G (Filardo and Ephrussi, 2003; Nakamura et al., 2004; Nelson et al., 2003; 

Wilhelm et al., 2003; Zappavigna et al., 2004). Once at the posterior pole, in late 

oogenesis, oskar translation is activated by polyadenylation for proper cell fate 

specification (Chang et al., 1999). Similarly, bicoid and nanos mRNA localization 

to the anterior and posterior poles of the oocyte is crucial for anterior-posterior 

axis formation (Gavis and Lehmann, 1992; Irion et al., 2006; Lasko, 2012).  

Importance of maternal mRNA localization patterns has been shown in frog 

oocytes too. In Xenopus, establishment of dorsal-ventral axis relies on correct 

localization of maternal mRNAs to animal and vegetal poles during late 

oogenesis (Melton, 1987; Mowry and Cote, 1999; Mowry and Melton, 1992).  For 

example, restricting Vg1 mRNA, encoding a transforming growth factor beta 

(TGF-β) molecule, to the vegetal pole is crucial for specification of endoderm and 

mesoderm cell-fate (Birsoy, 2006; Thomsen and Melton, 1993; Weeks and 
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Melton, 1987). There is a sequence element in the 3ʹUTR of this mRNA that is 

necessary and sufficient for its localization, the Vg1 localization element (VgLE) 

(Mowry and Melton, 1992). Two different RNA binding proteins 

(VgRBP60/hnRNPI and Vg1RBP/Vera interact with two distinct sequence 

elements within VgLE and these interactions are required for the localization of 

Vg1 mRNA (Cote et al., 1999; Deshler et al., 1998). Vg1 is translationally 

repressed prior to its localization to the vegetal pole. This repression requires a 

cis-regulatory sequence termed the translational control element (TCE) (Otero et 

al., 2001; Wilhelm et al., 2000) presumably via trans-acting partner(s) that 

mediate this repression (Colegrove-Otero et al., 2005). These examples highlight 

how post-transcriptional regulation is coupled to mRNA localization mechanisms 

and is crucial to axis formation and cell-fate specification events across model 

species.  

The importance of post-transcriptional regulation of gene expression in 

controlling spatial and temporal translation of maternal mRNAs to ensure proper 

development has been studied extensively in the nematode worm 

Caenorhabditis elegans as well. Since Sydney Brenner introduced C. elegans as 

a model system to study developmental biology (Brenner, 1974), there have 

been many studies focused on post-transcriptional regulation in controlling 

spatiotemporal translation of maternal mRNAs. Ease of storage, large brood size, 

short life cycle (3 days at 25°C from egg ,through four larval stages, to an adult), 

facile genetics and a defined cellular lineage make C. elegans an attractive 
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model system to study fundamentals of maternal mRNA regulation in oocyte-to-

embryo transition to complement studies in other metazoan systems (Hubbard 

and Greenstein, 2000; Sulston and Brenner, 1974; Sulston et al., 1983). In 

addition to the mentioned strengths of using C. elegans as a model organism, 

nematode worms present some unique features to facilitate studying the oocyte-

to-embryo transition. C. elegans are predominantly hermaphroditic. Both sperm 

and oocytes are derived from the germline in the same gonad arm. As the 

organism develops from the final larval stage to an adult stage, gametogenesis 

switches from sperm production to oocyte production (Corsi et al., 2015; Riddle 

et al., 1997). This turns worm oocyte-to-embryo transition into an “assembly-line” 

where an oocyte matures, gets ovulated and fertilized in about 23 minutes, which 

is remarkably fast compared to other model organisms studied (Greenstein, 

2005; Hubbard and Greenstein, 2000). Moreover, the transparency of the worm 

and the ability to knockdown genes by RNAi (Fire et al., 1998) provides a unique 

advantage to visualize all the developmental changes in oogenesis and early 

embryogenesis in a living organism, in real time, under a microscope. 

Fluorescent protein reporters have proven to be especially powerful tools for 

studying gene expression patterns and for following protein localization in C. 

elegans because the transparency of the worm facilitates the use of fluorescent 

markers as a means of determining gene expression patterns by direct 

observation under a fluorescent microscope. Upon introduction of GFP and the 

technology to make transgenic worm strains led to generation of strains 
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expressing GFP fusions with different promoters and/or different 3ʹUTRs to study 

gene regulatory events (Chalfie et al., 1994). This facilitated investigation of gene 

expression regulation and the role of cis-regulatory elements in patterns of 

expression, protein localization, and cellular developmental events in C. elegans. 

 

C. elegans Germline Development, Oocyte Maturation and Early 

Embryogenesis 

 

C. elegans contain two gonad arms that connect to a common uterus. 

Each gonad arm contains mitotically dividing primordial germ cells in the distal tip 

region (Figure 1.1). These proliferating cells then exit the distal region and enter 

meiosis. During the meiotic transition, the primordial germ cells lose their cell 

membrane and nuclei migrate to the wall of the gonad arm where they share a 

cytoplasmic syncytium (Hirsh et al., 1976). In this syncytial region of the gonad, 

transcription of maternal mRNAs required for oogenesis and early 

embryogenesis occurs (Gibert et al., 1984). As nuclei transition through meiosis, 

they enter the prophase stage of meiosis I and arrest. Around the loop region of 

the gonad, gonad arm makes a turn of about 180 degrees and a small portion of 

the germ cell nuclei recellularize to form oocytes (Hirsh et al., 1976). The rest of 

the nuclei are degraded through apoptosis (Gumienny et al., 1999). At this loop 

region transcription ceases and cytoplasmic streaming deposits maternal mRNAs 

and proteins into developing oocytes (Nadarajan et al., 2009; Wolke et al., 2007). 
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Immature oocytes then develop sequentially in the proximal gonad arm. 

Developing oocytes remain at this stage of meiosis until oocyte maturation 

occurs (Figure 1.1) (Corsi et al., 2015; Farley and Ryder, 2008; Greenstein, 

2005; Hubbard and Greenstein, 2005). The oocyte proximal to the spermatheca, 

which is the organ that stores sperm, is the first oocyte that matures, ovulates 

and becomes fertilized. This cycle repeats approximately every 23 minutes 

(Kimble and Crittenden, 2007; McCarter et al., 1999).  
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Figure	1.1	Anatomy	of	C.	elegans	hermaphrodite	reproduction	

a)	A	single	gonad	arm	from	a	hermaphrodite	worm	is	shown.	The	gonad	is	highlighted	
in	false	color.	The	distal	arm	contains	mitotically	dividing	progenitor	cells	(red).	There	
is	a	transition	(orange)	from	mitosis	to	meiosis	concurrent	with	a	transition	from	a	
single celled	state	to	a	syncytial	region	(blue).	Meiotic	nuclei	recellularize,	first	to	
form	spermatocytes	in	the	L4	larval	stage	that	are	stored	in	the	spermatheca	(yellow)	
and	then	switch	to	form	oocytes	(purple)	at	the	onset	of	adulthood.	b)	Patterns	of	the	
first	two	cellular	divisions	after	fertilization.	Anterior	and	posterior	marks	are	marked.		
c)Pattern	of	division	and	early	lineage	of	embryogenesis.	Several	founder	cells	are	
established	early	in	embryogenesis	that	go	on	to	form	different	tissues	in	the	adult.	
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Maturation of the oocyte proximal to the spermatheca is temporally 

coupled to its ovulation and fertilization; therefore, it is a key step for coordinated 

regulation of oogenesis to ensure successful fertilization. How oocyte maturation 

is triggered is known: the major sperm protein (MSP), a diffusible hormone 

produced by sperm, initiates C. elegans oocyte maturation (Miller et al., 2001). 

As a response to this trigger the fully-grown oocyte proximal to the spermatheca 

completes its meiotic divisions, undergoes nuclear envelope breakdown and 

ovulates into the spermatheca where it is fertilized. The maturing oocyte also 

undergoes structural changes and becomes ovoid before ovulation. In addition, 

meiotic spindle assembly begins in the mature oocyte prior to fertilization 

(McCarter et al., 1999; Ward and Carrel, 1979). Although these hallmark events 

of oocyte maturation are morphologically well-characterized, molecular 

mechanisms behind these events that regulate oocyte maturation are poorly 

understood. Some maternal mRNAs and RNA-binding proteins have been 

identified as positive effectors of oocyte maturation. These are the maternal 

mRNAs transcribed by the germ cells at the distal end of the C. elegans 

germline, silenced, and then activated after fertilization. Sperm entry then 

initiates a cascade of events, like the completion of meiosis, reorganizes the 

cytoskeleton and establishes the anterior posterior axis (Ward and Carrel, 1979). 

Point of sperm entry determines the posterior pole of the embryo which 

undergoes its first mitotic division along this axis (Goldstein and Hird, 1996; 

Wallenfang and Seydoux, 2000). The first asymmetric cell division gives rise to a 
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larger and a smaller blastomere. The larger one is the anterior blastomere (AB) 

and the smaller one is the posterior blastomere (P1). The anterior blastomere is 

the first founder cell. The AB founder cell specifies pharynx, neurons and 

hypodermis. The posterior blastomere is the germline progenitor. In turn, division 

of P1 gives rise to another founder cell, EMS, and another germline blastomere 

P2. The posterior cell divides two more times in this pattern producing a founder 

cell and a germline blastomere with each division. Each founder cell then 

differentiates into a specific tissue type before gastrulation. Ultimately, the last P-

lineage cell divides symmetrically into two primordial germ cells that establish the 

entire germline (Sulston et al., 1983). 

Transcriptional activity ceases when the oocytes enter the prophase arrest 

and transcription is not initiated in the somatic blastomeres until the four-cell 

stage embryo (Blackwell and Walker, 2006; Seydoux, 1996; Seydoux and Fire, 

1994; Walker et al., 2007). Asymmetric expression of maternal transcripts drives 

cellular differentiation before transcription begins in the embryo (Pellettieri and 

Seydoux, 2002). Therefore, post-transcriptional regulation of maternal mRNAs 

transcribed in the syncytial region contributes significantly to regulate the 

complex events of meiosis, oogenesis in the germline and early cell divisions in 

the embryo (Farley and Ryder, 2008; Stitzel and Seydoux, 2007). RNA-binding 

proteins play a crucial role in the regulation of maternal transcripts. In C. elegans, 

there are around 500 annotated RNA-binding proteins with known RNA-binding 
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domains; such as, RRM, KH, CCCH, PUF and Piwi/Argonaute/Zwille (PAZ) 

(Kimble and Crittenden, 2007; Lee and Schedl, 2006; Tamburino et al., 2013). 

Nematode RNA-Binding Proteins 

	
RNA regulation is pervasive and impacts nearly every aspect of gene 

expression.  RNA molecules function both as regulators and targets in diverse 

pathways to ensure appropriate decoding of the genome.  RNA-binding proteins 

are central to this form of regulation.  They act as effectors of RNA stability and 

translation efficiency, they guide transcripts to defined locations within a cell, they 

control the fidelity of gene decoding, and they function as cofactors to promote 

the activity of functional and structural RNA molecules. 

Forward and reverse genetic experiments indicate that many play distinct 

roles in germline development, gametogenesis, and early embryogenesis, where 

regulation of maternal RNAs plays a primary role (Farley and Ryder, 2008).  

Below is an outline of representative structures from the PUF, and TZF families, 

and highlights of data that identifies the basis for specialized function in the 

expanded set of nematode homologs. 

 

The PUF family: (Kaymak et al., 2010) 
 

PUF proteins in nematode germline development 
	

The fem-3 binding factor (FBF) was the first Pumilio homolog identified in 

C. elegans (Zhang et al., 1997).  Pumilio and FBF together comprise the 
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founding members of the PUF family of RNA-binding proteins.  FBF is encoded 

by two nearly identical genes, fbf-1 and fbf-2.  Together, they act to maintain the 

population of progenitor cells in the distal region of the germline and promote 

switch from spermatogenesis to oogenesis at the onset of adulthood (Crittenden 

et al., 2002; Zhang et al., 1997) (Figure 1.1).  FBF binds in a sequence specific 

fashion to the 3ʹUTR of several messenger RNAs, including fem-3 and gld-1 

(Bernstein et al., 2005b).  GLD-1 and FEM-3 promote spermatocyte 

differentiation, and GLD-1 promotes entry into meiosis (Ahringer and Kimble, 

1991; Francis et al., 1995b).  FBF represses translation of gld-1 mRNA in the 

distal end of the germline, and it represses translation of gld-1 and fem-3 mRNA 

in developing oocytes (Crittenden et al., 2002; Zhang et al., 1997). 

Ten additional puf genes, termed puf-3 to puf-12, are present in the C. 

elegans genome.  Most have distinct biological functions defined by phenotypic 

differences, mRNA target specificity, or expression pattern.  Three of these 

genes—puf-5, puf-6, and puf-7—are redundantly required for embryonic viability 

and oocyte maturation (Lublin and Evans, 2007).  They prevent premature 

translation of glp-1 mRNA in oocytes.  PUF-8 promotes mitosis in germline 

progenitor cells, similar to FBF, but binds to RNA with different sequence 

specificity and as such likely regulates a distinct set of target mRNAs.  PUF-9 

regulates hunchback-like (hbl-1) mRNA in the hypodermis and ventral nerve 

cord(Nolde et al., 2007).  RNAi screens reveal important roles for PUF-3, PUF-4, 

PUF-10, PUF-11, and PUF-12 in oogenesis and early embryonic development, 
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but their critical mRNA targets have not been identified.	(Fraser et al., 2000; 

Sönnichsen et al., 2005). In the following sections, we review a recently 

published crystal structure of FBF and highlight biochemical experiments that 

define differences in RNA recognition in this family (Wang et al., 2009). 

 

Biochemical insights into PUF binding specificity 
 

 Wickens and co-workers have dissected the RNA binding properties of 

several PUF proteins (Bernstein et al., 2005a; Koh et al., 2009; Opperman et al., 

2005; Stumpf et al., 2008).  The consensus sequence recognized by FBF, 

termed the FBF binding element (FBE), is 5´-UGURNNAUA-3´ (Bernstein et al., 

2005b).  The FBE is nine nucleotides in length and is partially degenerate at 

three positions.  FBEs are present in the 3ʹUTR of fem-3, gld-1, and several other 

mRNAs regulated by FBF in the germline.  Mutation of the FBE in the 3ʹUTR of 

fem-3 leads to de-repression of FEM-3 and failure to switch from 

spermatogenesis to oogenesis (Ahringer and Kimble, 1991). 

PUF-8 and PUF-9, on the other hand, recognize an eight nucleotide 

consensus identical to that bound by human Pum1 (5’-UGUANAUA-3’) termed 

the Nanos Response Element (NRE) (Opperman et al., 2005; Wang et al., 2002).  

The NRE is similar to the FBE but is a single nucleotide shorter.  This difference 

is critical, as FBF discriminates between these two elements by more than 30-

fold.  Intriguingly, the specificity of PUF-8 can be converted to that of FBF by 
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swapping a 64-amino acid fragment in the middle of the PUF domain, 

demonstrating that this region is critical for specificity. 

 PUF-5 and PUF-6/7 recognize a longer, partially degenerate consensus 

motif termed the PUF-5 Binding Element (5BE:  5´-CyCUGUAyyyUGU-3´, where 

y is a pyrimidine) (Stumpf et al., 2008).  PUF-11 binds three sets of RNA targets, 

5´-CUGUGAAUA-3´, 5´-CUGUANAAUA-3´ and 5´-NUGUNAAAUA-3´, 

suggesting multiple modes of RNA recognition through a mechanism that is not 

immediately apparent (Koh et al., 2009).  Clearly, these experiments show that 

the nematode PUF family has diverged to expand the repertoire of sequences 

recognized by the PUF domain.  Recent crystal structures begin to address the 

molecular basis for this variance. 

 

Crystal structures of PUF proteins 
	
	
 The first structures of a PUF domain, including Drosophila Pumilio and 

human Pum1, were determined independently in 2001 (Edwards et al., 2001;  

Wang et al., 2001). The structures revealed an architecture of eight repeat motifs 

comprised of three alpha helices.  The repeats pack against each other to form 

an extended curved structure that vaguely resembles a banana.  A subsequent 

structure of human Pum1 bound to RNA demonstrates that the concave surface 

comprises the RNA binding interface, where each repeat recognizes a single 

nucleotide (Figure 1.2A) (X. Wang et al., 2002).  The amino acids that face the 

concave surface define the nucleotide specificity at each repeat, which has been 
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reviewed previously (Lu et al., 2009).  This architecture immediately suggests a 

model where PUF proteins bind to RNA with modular specificity, such that 

changing the order of the repeats could modify RNA-binding specificity.  Several 

experiments with chimeric PUF proteins support this model and suggest this 

domain is particularly amenable to protein engineering (Koh et al., 2009; 

Opperman et al., 2005; Stumpf et al., 2008). 

 All of the nematode PUF proteins are comprised of eight repeats, but 

many bind to a consensus element that contains more than eight nucleotides.  To 

gain insight into the structural basis for recognition of longer elements by this 

domain, Hall and coworkers crystallized FBF-2 in complex with six different RNA 

sequences, including four naturally occurring sites (Wang et al., 2009).  This 

study reveals that FBF has an elongated structure with less curvature relative to 

other PUF domain proteins (Figure 1.2B).  This elongated structure enables a 

single base to flip out and point away from the protein without affecting 

interactions with the other eight nucleotides.  Thus, a slight variance of the 

curvature of the overall structure, governed by repeats 4-6, has a profound 

impact on the RNA-binding specificity. 
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within this core.  If the inserted nucleotides flip out, a model similar to FBF would 

resolve the multiple modes of binding.  The incomplete degeneracy of the 

inserted nucleotides may be partially explained by differential stacking free 

energy with neighboring nucleotides.  A similar model could be proposed for 

PUF-5/6/7, where eight nucleotides are specified unambiguously, and five more 

nucleotides are partially degenerate (Stumpf et al., 2008). More structural work is 

needed to assess this hypothesis and define the basis for the variance in PUF 

specificity.  It is also important to assess whether conformational flexibility 

contributes to binding specificity. 

 

TTP-like CCCH tandem zinc finger proteins: (Kaymak et al., 2010) 
 

TZF proteins in C. elegans early embryogenesis 
	
	

TTP is a mammalian RNA-binding protein that regulates the immune 

response by promoting the turnover of the mRNA encoding the pro-inflammatory 

cytokine TNF-alpha (Farley et al., 2008; Pagano et al., 2009).  TTP is an AU-rich 

element (ARE) binding protein, which coordinate the stability of mRNAs 

containing extended repeats of UAUU in their 3ʹUTRs.  TTP has two 

CX8CX5CX3H zinc finger motifs.  Each motif binds to a single UAUU repeat 

(Hudson et al., 2004). 

There are several TTP homologs in the C. elegans genome, many of 

which are required for worm fertility.  A cascade of TZF proteins, including OMA-
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1/2, MOE-3, MEX-5/6, MEX-1, POS-1, and PIE-1, guide the progression from the 

oocyte to embryo.  OMA-1/2 and MOE-3 are partially redundant factors that 

promote oocyte maturation, and inhibit embryonic gene expression prior to 

fertilization (Detwiler et al., 2001; Mello et al., 1992; Tabara et al., 1999). MEX-

5/6 are required for anterior patterning in the early embryo (Schubert et al., 

2000). They are translated from maternally supplied mRNA shortly after 

fertilization, and migrate to the anterior of the embryo prior to the first cellular 

division.  POS-1, PIE-1, and MEX-1 are also translated after fertilization, but 

accumulate in the posterior of the embryo in a pathway that depends upon MEX-

5/6 anterior localization (Cuenca et al., 2003; Reese et al., 2000).  All three 

proteins are required for posterior patterning and segregation of germline and 

somatic lineages, but have non-redundant functions (Mello et al., 1992; Tabara et 

al., 1999).In addition to these well studied examples, there are eight additional 

TZF genes in the C. elegans genome.  DCT-13 and possibly Y116A8C.20 

promote germline tumor formation in a sensitized genetic background, while 

CCCH-1, CCCH-2, CCCH-5, F38C2.7, Y116A8C.19, and C35D6.4 have no 

known function (Pinkston-Gosse and Kenyon, 2007). 

 

NMR structure of a TZF family protein 
	
	

Wright and coworkers determined the solution structure of the Tis11D 

bound to the RNA sequence 5´-UUAUUUAUU-3´ (Figure 1.3A) (Hudson et al., 

2004).  Tis11D is a mammalian paralog of TTP that regulates mRNA stability in 
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response to growth factors (Varnum et al., 1991).  It binds to RNA with identical 

specificity to TTP.  The structure reveals that each CX8CX5CX3H finger motif 

independently recognizes the four nucleotide sequence UAUU.  A conserved 

motif with the sequence (R/K)YKTEL lies upstream of the first cysteine of each 

finger. This region makes numerous contacts with the RNA.  These are primarily 

comprised of hydrogen bonds between the protein backbone and the Watson-

Crick edges of the bases, and van der Waals interactions that specify the shape 

of the base at each position.  In addition, the side chains of two conserved 

aromatic amino acids form stacking interactions between adjacent RNA bases at 

two positions within each finger.  These amino acids are essential for high affinity 

binding, and may contribute to specificity through differential stacking propensity.  

This structure has thus far provided our only glimpse into RNA recognition by this 

class of RNA-binding proteins, and as such serves as the primary frame of 

reference for the interpretation of experiments for related factors. 

 

Biochemical insights into nematode TZF binding specificity 
	
	
 In most cases, the RNA-binding activity of nematode TZF proteins has not 

been investigated in detail.  The two exceptions are MEX-5 and POS-1, which 

bind to RNA but with different specificity compared to TTP, Tis11D, and each 

other (Farley et al., 2008; Pagano et al., 2007). MEX-5 binds with high affinity but 

relaxed specificity to any uridine rich sequence, including polyuridine.  This 

contrasts with TTP which binds >80-fold more tightly to AREs than polyuridine.  
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POS-1 binds with high affinity to a consensus termed the POS-1 recognition 

element (PRE:  5’-UA(U2 3)RD(N1 3)G-3’, where R is any purine, D is A, G, or U, 

and N is any base).  Compared to TTP binding sequence, the PRE is more 

degenerate and specifies three purines instead of two. 

 In Tis11D, three contiguous amino acids in each finger form an adenosine 

recognition pocket:  glutamate, leucine, and the first cysteine of the CCCH motif 

(Figure  1.3B) (Hudson et al., 2004).  The glutamate side chain accepts a 

hydrogen bond from the exocyclic amine of the adenosine.  The leucine and the 

cysteine are conserved in both MEX-5 and POS-1, but the glutamate is not.  In 

MEX-5, the analogous amino acids are arginine in the first finger and a lysine in 

the second.  Mutating both to glutamate confers TTP-like specificity to MEX-5, 

suggesting they are critical specificity determinants (Pagano et al., 2007).  In 

POS-1, an alanine and a valine occupy the analogous amino acids.  It is not clear 

how these amino acids contribute to the differences in POS-1 specificity, or how 

this protein specifies three purines compared to two.  Structural data are needed 

to resolve this problem.  One nematode TZF protein, CCCH-1, has two glutamate 

residues in the analogous position similar to TTP.  The rest have basic residues, 

small hydrophobic residues, or some combination thereof.  It is expected that 

CCCH-1 will bind to RNA with TTP-like specificity, and that the others will bind to 

RNA with hybrid specificity, but this has not been experimentally demonstrated. 
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Figure	1.	3	NMR	Structure	of	human	Tis11D	bound	to	RNA	

Each	zinc	finger	domain	independently	recognizes	a	UAUU	through	a	combination	of	
base specific	hydrogen	bonding	interactions	and	stacking	interactions	driven	by	
aromatic	side	chains.	The	inset	shows	recognition	of	adenosine	in	the	N terminal	
finger.	Three	amino	acids,	glutamate,	leucine	and	cysteine,	come	together	to	form	an	
adenosine	recognition	pocket.	In	MEX 5,	the	glutamate	is	replaced	with	an	arginine	
(red),	which	is	proposed	to	flip	away	from	the	adenosine	and	form	non specific	
interactions	with	the	backbone	of	adjacent	nucleotides	(Hudson	et	al.,	2004).	
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K homology (KH) family of RNA-binding proteins: 
 

KH domain proteins in C. elegans germline development and embryogenesis 
	
	

KH domain is an evolutionarily conserved domain first identified in 

heterogeneous nuclear ribonucleoprotein particle (Valverde et al., 2008). There 

are several homologs of this family of proteins in C. elegans and most are 

involved in oogenesis or cell-fate specification in early embryogenesis. One such 

protein is MEX-3. MEX-3 is a dual KH-domain RNA-binding protein that is 

required for anterior cell-fate specification (Draper et al., 1996). mex-3 (muscle 

excess) mutant embryos show abnormal development at the anterior blastomere 

of the two-cell embryo where excess muscle tissue is produced instead of 

hypodermal and pharyngeal tissues (Draper et al., 1996). This is due to spatial 

and temporal regulation of a homeodomain transcription factor PAL-1 that 

functions in specification of muscle cell fates in the embryo (Draper et al., 1996). 

MEX-3 represses pal-1 mRNA in the anterior of the embryo and the 3ʹUTR of 

pal-1 was shown to be sufficient for this repression (Hunter and Kenyon, 1996). 

nos-2 mRNA is another target of MEX-3. nos-2 encodes a Nanos homolog which 

is required for primordial germ cell development (Jadhav et al., 2008). In the 

germline, the absence of both MEX-3 and another protein GLD-1, also a KH 

domain protein, leads to transdifferentiation of germ cells into somatic cells 

(Ciosk et al., 2006). Hence, both of these KH domain proteins are required to 

maintain germ cell identity in the germline. 
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GLD-1 is another RNA-binding protein with a KH domain, but it also has a 

STAR (signal transduction and activation of RNA) domain (Jones et al., 1996; 

Vernet and Artzt, 1997). GLD-1 is essential for progression of meiosis of germ 

cell nuclei in the distal end of the germline to subsequently ensure proper 

oogenesis (Francis et al., 1995b; Jones et al., 1996). Several mutations that alter 

or inhibit GLD-1 function are within the STAR domain (Francis et al., 1995b; 

Jones and Schedl, 1995). gld-1 null mutants show ectopic proliferation of germ 

cells leading to a germline tumor and failed oogenesis (Francis et al., 1995b; 

1995a). Consistent with its role in promoting meiotic progression, GLD-1 is 

expressed at its most abundant level in the transition zone of the germline where 

it acts to repress glp-1 mRNA, a C. elegans encoded homolog of Notch receptor 

(Austin and Kimble, 1987; Farley and Ryder, 2012; Francis et al., 1995b; Marin 

and Evans, 2003). Repression of glp-1 by GLD-1 is required for proper timing of 

the mitosis-meiosis switch (Kadyk and Kimble, 1998; Marin and Evans, 2003). 

Other targets of GLD-1 are also identified (Lee and Schedl, 2001; Min-Ho Lee 

and Schedl, 2004; Ryder et al., 2004). For example, GLD-1 also represses pal-1 

in regions of the germline where there is no MEX-3 expression (Mootz et al., 

2004). Repression of rme-2, which regulates yolk updake by oocytes, by GLD-1 

is required for successful oogenesis (Grant and Hirsh, 1999; Lee and Schedl, 

2001). GLD-1 also functions in male sex determination, as GLD-1 mediated 

repression of tra-2, which is required for the switch to oogenesis, contributes to 

male sex determination (Doniach, 1986; Jan et al., 1999; Kuwabara et al., 1992).   
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Crystal structure of GLD-1 dimerization domain and STAR domain 
	
	

Conventional KH domain bears a β1α1α2β2β3α3 fold with a GxxG loop 

connecting the first two alpha helices (Valverde et al., 2008). RNA recognition is 

achieved via van der Waals forces, electrostatic and hydrophobic interactions in 

a binding cleft that accommodates four nucleotides (Valverde et al., 2008). GLD-

1 has a STAR domain which is a maxi-KH domain flanked by two conserved 

regions (Ryder et al., 2004; Vernet and Artzt, 1997). KH domain of GLD-1 is 

flanked by a dimerization domain, QUA1, at the N-terminus and by another 

domain QUA2 at the C-terminus (Chen et al., 1997; Ryder et al., 2004; Vernet 

and Artzt, 1997). Crystal structure of the QUA1 dimerization domain was solved 

first. The structure showed that the domain possesses a helix-turn-helix motif 

where each protomer is perpendicular to the other (Beuck et al., 2012; 2010). 

Crystal structure of the whole STAR domain was then solved with the RNA 

sequence: 5ʹ-CUAACAA-3ʹ (Teplova et al., 2013). This structure showed that the 

KH and the QUA2 domains interact to form a hydrophobic surface to 

accommodate the RNA-bases whereas the positively charged regions of the 

domains surround the sugar-phosphate backbone of the RNA molecule. QUA2 
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domain interacts with the two residues at the 5ʹ end of the RNA whereas the KH 

domain interacts with the remaining residues (Teplova et al., 2013) (Figure 1.4). 

 

Biochemical insights into MEX-3 and GLD-1 binding specificity 
	
	

The sequence specificities of the KH domain proteins, MEX-3 and GLD-1 

have been studied in detail (Pagano et al., 2009; Ryder et al., 2004). The RNA-

binding sequence specificity of MEX-3 was biochemically identified. MEX-3 

consensus sequence is DKAGN0 8UHUA, where D is A, G or U; K is G or U, N is 

any base, and H is A, C or U.  In fact, this sequence is present in the 3ʹUTR of 

Figure	1.	4	GLD-1	Crystal	Structure	bound	to	RNA	

Each	protomer	of	the	dimer	is	shown	bound	to	CUAACAA	RNA	sequence.	The	RNA	sits	in	
a	hydrophobic	surface	produced	by	the	KH	and	QUA2	domains.	The	backbone	of	the	
RNA	molecules	interacts	with	the	positively	charged	residues	of	the	domains	(Teplova	et	
al.,	2013).		
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pal-1 and nos-2. MEX-3 consensus sequences in the nos-2 3´UTR was shown to 

be required for the repression of this target. nos-2 3´UTR has two MEX-3 binding 

sites. Mutating each half-site AUAG to CCCC led to disruption of the spatial and 

temporal regulation of the UTR reporter expression (Pagano et al., 2009). MEX-3 

consensus sequence is also present in 30% of the annotated C. elegans 3ʹUTR’s 

suggesting an interplay with other factors to specify functional targets (Pagano et 

al., 2009).  

GLD-1 recognizes a hexameric sequence UACU(A/C)A (Ryder et al., 

2004). STAR family members have an extended KH domain, which might permit 

a tighter consensus than MEX-3. One of the conserved domains, QUA2, flanking 

the KH domain adds an alpha-helix extension through which two to three 

additional nucleotides can be recognized. Recently it was shown that the GLD-1-

binding motifs (GBMs) are responsible for association of GLD-1 with hundreds of 

maternal transcripts (Wright et al., 2010). GBMs were also shown to be functional 

for some targets of GLD-1. Mutating the GBMs present in the rme-2 and glp-1 3´ 

UTRs led to de-repression of reporter expressions in the syncytial regions of the 

germline (Farley and Ryder, 2012; Wright et al., 2010). 

To conclude, the function of RNA-binding proteins is dictated by their 

structure. It is important to understand how structural changes in the RNA-

binding domains define the basis for novel function. While genetics and 

biochemical experiments can identify the critical sequence elements, they cannot 

in most cases address how these elements contribute to novel function in a 



	 31	

mechanistic sense. Structural studies can provide key insights needed to 

understand biological function. 

 C. elegans germline has been shown to have four times the number of 

RNA-binding proteins as compared to the soma (Wang et al., 2009). In line with 

this finding, there are a suite of RNA-binding proteins that have essential 

functions in regulation of complex events of germline development, oogenesis 

and early embryonic cell divisions, as discussed above. To summarize, these 

proteins include, OMA-1/2, MOE-3, MEX-5/6, PUF-5/6/7, GLD-1, POS-1, MEX-1 

and PIE-1, which regulate oogenesis (OMA-1, OMA-2, MOE-3, PUF-5/6/7) 

(Bernstein et al., 2005a; Detwiler et al., 2001; Lublin and Evans, 2007; Shimada 

et al., 2002) and embryogenesis (GLD-1, MEX-5/6, POS-1, MEX-1 and PIE-1) 

(Mello et al., 1992; Schubert et al., 2000; Tabara et al., 1999). As alluded to 

above, C. elegans germline development and early embryogenesis relies 

extensively on post-transcriptional regulation via specific RNA-binding proteins 

that regulate when and where maternal mRNAs are translated. Different modes 

of post-transcriptional regulation involve RNA-binding proteins. In some 

instances, RBPs bind small RNAs, such as microRNAs, to target the RBP to its 

cognate RNA for regulation (Ghildiyal and Zamore, 2009; Pasquinelli, 2012). In 

other instances, RBPs directly interact with specific sequence elements in 5ʹ 

untranslated regions (5ʹUTR) or 3ʹ untranslated regions (3ʹUTR) of the mRNA (de 

Moor et al., 2005; Evans and Hunter, 2005; Glisovic et al., 2008; Lunde et al., 

2007). Since the 5ʹUTRs are trans-spliced to a common leader sequence for the 
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majority of transcripts in C. elegans, 3ʹUTR mediated regulation of gene 

expression is prevalent (Blumenthal, 2012; 1995). The theme of 3ʹUTR mediated 

regulation of maternal transcripts is commonly seen in the C. elegans germline 

(Merritt et al., 2008).  

 3ʹUTR Governed Expression Pattern of Transcripts in C. elegans Germline 

	
It is possible to integrate fluorescent reporters into worms to study post-

transcriptional regulatory events (Praitis et al., 2001; Frøkjaer-Jensen et al., 

2012; 2008). The Seydoux lab used this technology and showed that maternally 

encoded transcripts expressed in the germline show specific patterns of reporter 

expression. They also showed that the 3ʹUTRs of germline expressed transcripts 

are sufficient to govern their expression patterns in the germline, oocytes and 

early embryos (Merritt et al., 2008). In this study, expression patterns of 

fluorescent transgenic reporter strains were analyzed under two different 

conditions and compared for a group of germline expressed genes. One set of 

reporters contained gene specific promoters and an unregulated 3ʹUTR. These 

reporter strains showed ubiquitous GFP expression in the germline and oocytes 

for all the genes tested. In contrast, when the reporters bearing a pan-germline 

promoter and gene specific 3ʹUTR were analyzed, a patterned reporter 

expression was observed. Moreover, for all the germline specific genes studied, 

the pattern of reporter expression mostly matched the pattern of expression of 
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the endogenous protein. By contrast, sperm-expressed genes showed promoter 

governed expression pattern in the sperm.  

Patterned germline reporter expressions showed that many germline 

expressed genes are post-transcriptionally regulated through their 3ʹUTRs. This 

regulation is conferred through RNA-binding proteins. Consistently, there are a 

number of RNA-binding proteins that contribute significantly to oogenesis and 

early embryogenesis by regulating maternal mRNAs in the germline and early 

embryos. A number of the RNA-binding proteins regulating maternal transcripts 

and their cognate RNA targets are known, such as GLD-1, FBF-1/2, PUF-5/6/7, 

POS-1, MEX-3 (Bernstein et al., 2005b; Crittenden et al., 2002; Farley and 

Ryder, 2012; Lublin and Evans, 2007; Pagano et al., 2009; Ryder et al., 2004; 

Wright et al., 2010). These proteins have been shown to repress their regulatory 

targets spatially and temporally in germline development and early embryos, as 

discussed above. Studies have identified regulatory targets these proteins. 

However, for most of these and other RNA-binding proteins, direct regulatory 

targets are not known. It is likely that there are additional regulatory factors, 

especially in the oocytes since oocytes are rich in maternal mRNAs and proteins 

that are precisely regulated during oocyte-to-embryo transition to ensure proper 

embryonic development as well as oocyte development. Very little is known 

about the network of RNA-binding proteins and their direct targets required for C. 

elegans development.  
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To begin understanding which RNA-binding proteins regulate which 

mRNAs during oocyte-to-embryo transition to contribute to the pattern of gene 

expression, it is necessary to dissect the direct interaction sites between RNA-

binding proteins and their cognate targets that are functionally relevant to a 

pattern of expression observed at the oocyte-to-embryo transition. One such 

example of a maternal transcript that has a patterned expression at this transition 

is glp-1. glp-1 mRNA is translationally repressed during throughout oogenesis but 

it becomes translated in early embryos. 

glp-1 Signaling 

	
glp-1 was first identified in a genetic screen for sterility. Loss of function 

mutants of glp-1 have only approximately 10 germ cells in their gonads, as 

compared to an average of around 230 germ cells in the distal mitotic zone of 

wild-type adults (Austin and Kimble, 1987; Kimble and Crittenden, 2007). This 

results in failure of formation of oocytes and sterility in hermaphrodites. Another 

screen for maternal-effect embryonic lethal genes also identified glp-1 (Priess et 

al., 1987). Embryos produced in the absence of maternal glp-1 died during 

embryogenesis due to a failure in producing pharyngeal tissue. A gain-of-function 

mutation in glp-1 was subsequently isolated. This dominant mutation resulted in 

continuous proliferation of the mitotic germ cells leading to a tumorous germline 

(Berry et al., 1997).  



	 35	

GLP-1 belongs to the Notch family of transmembrane receptors. Notch 

signaling pathway is highly conserved in a variety of model organisms and was 

shown to contribute to stem cell maintenance (Andersson et al., 2011; Bray, 

2006). This pathway regulates germline stem cell fate typically by a ligand 

expressing cell communicating with a receptor expressing cell. In C. elegans, the 

ligand that activates glp-1 signaling is present at the distal tip cell (DTC) (Figure 

1.5), which is a somatic gonad cell at the distal end of the germline, and is 

responsible for maintaining about 60-80 cells as stem cells. This ligand belongs 

to the Delta/Serragate/LAG-2 family and it is called LAG-2 in C. elegans (Byrd 

and Kimble, 2009; Fox and Schedl, 2015; Henderson et al., 1994). Once LAG-2 

is present, it interacts with the extracellular portion of the type I transmembrane 

domain and leads to the cleavage of the intracellular domain of GLP-1. This 

domain then translocates to the nucleus where it activates a transcription factor 

LAG-1, which then activates downstream genes such as fbf-2 and lip-1 (Lamont 

and Kimble, 2007; Lee et al., 2006; Neves et al., 2007; Yochem and Greenwald, 

1989). GLP-1 begins to be expressed at the two-cell stage and is localized to the 

anterior blastomere(s) (AB) of the two- and four-cell embryos. Its ligand in the 

embryos is APX-1 (Evans et al., 1994; Mango et al., 1994; Mello et al., 1994). 

This ligand is present in the single posterior blastomere, P2, at the two- and four-

cell stages. Therefore, only the anterior blastomere touching the P2 blastomere 

shows an activation of transcription factors that specify hypodermal cell fates 

(Neves et al., 2007). This communication between the posterior and anterior 
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controls specification of the anterior blastomeres. Through these inductive 

signaling events, GLP-1 participates in correct cell fate specification patterns in 

the embryos (Priess, 2005). 

As described, GLP-1 protein has a spatially restricted expression pattern. 

It is present at the distal end of the germline and the anterior cells of the four-cell 

embryo where it regulates the switch from mitosis to meiosis at the distal end and 

specifies endodermal cell fates in the anterior cells of embryos (Austin and 

Kimble, 1987; Crittenden et al., 1994; Evans et al., 1994). However, the mRNA 

encoding GLP-1 is present throughout the germline and in all stages of the 

embryos and, thus, post-transcriptionally regulated. In 1994, Evans and 

colleagues showed that the 3ʹUTR of the glp-1 mRNA is sufficient to drive its 

restricted pattern of expression (Evans et al., 1994). Distinct regions of the UTR 

that are sufficient for translational repression across different regions of the 

germline, oocytes and embryos have also been mapped. Initial studies identified 

a 61-nucleotide region of the UTR termed the spatial control region (SCR) as 

necessary to confer the endogenous GLP-1 pattern of expression to a reporter 

(Evans et al., 1994). Follow up experiments identified a 34-nucleotide sub-region 

containing both repression and de-repression elements is sufficient to generate 

the glp-1 translation pattern (Marin and Evans, 2003). One of these regions, 

called Glp-1 Repression Element (GRE), contributes to repression in the distal 

end of the germline but not in oocytes (Evans et al., 1994; Marin and Evans, 

2003). On the other hand, another distinct 129-nucleotide element at the 3´- end 



	 37	

of the UTR is required for repression in oocytes (Evans et al., 1994). The GRE 

element is also required for repression of glp-1 in the posterior blastomeres of 

embryos.  

Subsequent studies identified RBP binding sites within this region that are 

sufficient for repression. For example, the RNA-binding proteins, POS-1 and 

GLD-1 directly repress glp-1 3ʹUTR through cis–acting sequence elements 

containing overlapping binding sites across a conserved region of the UTR 

(Farley and Ryder, 2012). Other RBP’s discussed earlier contribute to repression 

of glp-1 at distinct developmental locations of the germline and embryos. GLD-1 

represses glp-1 in the syncytial region of the germline as well (Marin and Evans, 

2003). PUF-5/6/7 are required to repress glp-1 around the re-cellularization 

region of the oocytes (Lublin and Evans, 2007). MEX-3, GLD-1 and POS-1 are 

involved in repressing glp-1 in the embryos (Farley and Ryder, 2012; Marin and 

Evans, 2003; Ogura et al., 2003; Pagano et al., 2009) (Figure 1.5). Since glp-1 

3ʹUTR has a sequence element that confers translational repression in 

developing oocytes and one-cell embryos, it is likely that there are a different 

group of proteins participating in the GLP-1 expression pattern during oocyte-to-

embryo transition.  
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Two redundant proteins that are abundantly present in developing 

oocytes, OMA-1 and OMA-2, are candidate regulatory proteins to ensure 

successful oocyte maturation by regulating specific maternal transcripts, such as 

glp-1 mRNA, present in the oocytes (Detwiler et al., 2001). 

 

Figure	1.	5	Repression	of	glp-1	in	the	germline	and	embryos	

Schematic	representation	of	the	C.	elegans	germline	and	early	embryos	is	shown	with	different	
regions	annotated.	
glp-1	mRNA	is	present	throughout	the	germline	and	in	all	cells	of	the	embryos	(shown	in	tan).	
The	protein	has	a	restricted	pattern	of	expression	(shown	in	green).	GLP-1	is	present	at	the	distal	
end	of	the	germline	and	in	the	anterior	cells	of	the	four-cell	embryo.	At	other	regions,	RNA-
binding	proteins	participate	in	the	repression	of	glp-1.	These	RNA-binding	proteins	are	labelled	
in	the	schematic	at	their	corresponding	regions	of	activity.	
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OMA-1 and OMA-2 as Post-Transcriptional Regulators in Oocyte-to-Embryo 

Transition 

 

  oma-1 was identified in a genetic screen for embryonic lethal 

phenotypes. A gain of function mutation, zu405, was identified and mapped to a 

region that did not show any obvious phenotype by RNAi (Lin, 2003). However, 

when this region was knockeddown simultaneously with a highly related 

homologue of this sequence, sterility was observed in the worms treated with 

double knockdown. The sterility phenotype was shown to be due to defects in 

oocyte maturation. Accordingly, these genes resulting in the observed phenotype 

were named oma-1 and oma-2 (standing for oocyte maturation defective). 

Subsequently, null alleles of oma-1 and oma-2 were found in a two-step 

dominant suppressor screen for the zu405 embryonic lethality (Detwiler et al., 

2001; Lin, 2003).  

oma-1 and oma-2 are redundantly required for oocyte maturation. Worms 

homozygous for oma-1 and oma-2 null alleles are sterile (Detwiler et al., 2001). 

They produce both sperm and oocytes but no embryos; they have an empty 

uterus. The gonad arm fills with a higher number of oocytes as compared to wild-

type worms. In addition, the oocytes of these worms are larger than wild-type 

oocytes (Detwiler et al., 2001). However, worms homozygous for either oma-1 

null or oma-2 null show no phenotypic effect. Worms homozygous for reduction 

of function alleles of oma-1 and oma-2 also do not show a fully penetrant oocyte 
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maturation defect and do produce embryos. However, these embryos have 

cleavage defects and fail to hatch (Detwiler et al., 2001). 

 OMA-1 and OMA-2 are closely related to each other. They share 64% 

amino acid sequence identity and they are both translated in the oocytes. OMA-1 

and OMA-2 are expressed in proximal oocytes and their abundance increases in 

growing oocytes reaching a maximum level in maturing oocytes and rapidly 

decreasing following the first mitotic division of the one-cell embryo (Detwiler et 

al., 2001) (Figure 1.6).  
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Figure	1.	6	Expression	pattern	of	OMA-1	

The	top	panel	shows	a	schematic	of	C.	elegans	oocyte	maturation	where	[OMA-1]	is	denoted	in	
green.	OMA-1	is	present	in	developing	oocytes.	Its	concentration	is	highest	in	the	mature	oocyte	
and	in	one-cell	embryo.	
Bottom	panel	is	an	image	of	the	gonad	of	a	transgenic	strain	expressing	OMA-1::GFP.	The	
described	pattern	of	OMA-1	expression	is	observed	in	this	strain	too. 
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This degradation occurs in a timely manner to prevent embryonic lethality 

(Lin, 2003; Nishi and Lin, 2005). MBK-2, which is a serine/threonine kinase that 

marks maternal proteins for degradation during embryogenesis, primes 

degradation of OMA-1 in one-cell embryos. MBK-2 phosphorylates a threonine 

residue at amino acid position 239 (T239) but this phosphorylation does not 

directly initiate degradation of OMA-1. Another serine/threonine kinase, GSK-3 

phosphorylates OMA-1 at T339 before degradation begins (Nishi and Lin, 2005; 

Shirayama et al., 2006). It is thought that MBK-2 serves as a priming 

phosphorylation for GSK-3.  

 Gain-of-function mutant of oma-1 prevents its timely degradation by 

interfering with phosphorylation of OMA-1 by a kinase MBK-2. This mutation has 

a leucine instead of a proline at amino acid 240, which is one amino acid 

downstream of the MBK-2 phosphorylation site (Lin, 2003). It was shown that this 

mutation impairs MBK-2 phosphorylation. Consequently, OMA-1 is not degraded 

through a proteasome pathway leading to its persistence in embryos (Nishi and 

Lin, 2005).  

Phosphorylation of OMA-1 at T239 not only primes OMA-1 for 

degradation, but also is suggested to give OMA-1 a different role in one-cell 

embryos. Phosphorylated OMA-1 can interact with a TATA-binding protein 

associated factor, TAF-4, which is an essential component of RNA polymerase II 

transcription machinery. Therefore, OMA-1 can act as a transcriptional repressor 
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in one-cell embryos by sequestering this factor in the cytoplasm and changing its 

cellular localization (Guven-Ozkan et al., 2008).  

OMA-1 and OMA-2 have two CX8CX5CX3H type tandem zinc finger (TZF) 

domains found in the mammalian homolog tristetraprolin (TTP) (Blackshear, 

2002; Lai et al., 1999). C. elegans has a number of TZF proteins, as described 

earlier, including MEX-5 and POS-1 that have been shown to bind mRNAs in a 

sequence-specific manner (Farley et al., 2008; Pagano et al., 2007). By analogy, 

OMA-1 and OMA-2 may function during oocyte maturation by regulating specific 

target maternal mRNAs at the oocyte-to-embryo transition since a common 

theme observed in regulation of the transition in different species is post-

transcriptional regulation of maternal mRNAs. Consistent with this hypothesis, a 

number of mRNA’s that are repressed through OMA-1/2 mediated mechanisms 

have been identified. These include nos-2, a C. elegans Nanos homolog, and 

mei-1, a katanin subunit, and zif-1, a subunit of E3 ubiquitin ligase (Guven-Ozkan 

et al., 2010; Li et al., 2009; Subramaniam and Seydoux, 1999). Whether the 

identified targets of OMA-1/2 are directly or indirectly regulated by these factors 

is not known yet. The pleiotropic phenotype of OMA-1/2 knockdown suggests 

that these proteins have multiple targets in the oocytes. Additionally, the absence 

of any delay between oocyte maturation and fertilization in C. elegans makes the 

oocyte-to-embryo transition very fast (~20 minutes). This suggests that tight 

regulation of multiple maternal mRNAs governs this dramatic transition in early 

development.  
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Scope of This Thesis 

 

The overall goal of the research presented in this thesis was to 

understand how OMA-1/2 contributes to regulation of oocyte-to-embryo transition 

through post-transcriptional regulation of maternal mRNAs. The first step I took to 

characterize OMA-1/2 mediated regulation of various mRNA targets was to 

determine the targets that are directly bound and functionally regulated by OMA-

1/2. In Chapter II, I present my work to define the RNA-binding sequence 

specificity of OMA-1/2 and my identification of a novel regulatory target of OMA-1 

activity: glp-1. In Chapter III, I present our approach to improve the rate of 

making transgenic worm strains. I used this approach to generate and 

characterize several new 3´UTR reporter lines, revealing specific patterns of 

reporter expressions in the germline. I used the new strains to perform a targeted 

RNAi screen that allowed me to identify additional mRNA targets of OMA-1/2 

which will ultimately help us gain insight into regulation of a complex 

developmental event, oogenesis.  
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CHAPTER II: RNA RECOGNITION BY THE C. ELEGANS OOCYTE 

MATURATION DETERMINANT OMA-1 
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Summary 

	
Background: OMA-1 is required for oocyte maturation in C. elegans and may 

function by regulating maternal mRNAs. 

Results: SELEX and biochemical studies reveal that OMA-1 binds with high 

affinity UA(A/U) motifs.  Reporter experiments demonstrate that OMA-1 regulates 

glp-1 via its 3ʹ UTR in live worms.  The glp-1 mRNA encodes the C. elegans 

homolog of Notch, required for early cell fate specification events. 

Conclusion: OMA-1 is a sequence specific RNA-binding protein that represses 

important maternally supplied mRNAs during oocyte maturation via direct binding 

to the 3ʹ UTR. 

Significance: Identification of key OMA-1 regulatory targets will help reveal its 

important contribution to establishment of the maternal load of mRNAs during 

oogenesis. 
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Abstract 

	
Maternally supplied mRNAs encode proteins that pattern early embryos in 

many species.  In the nematode Caenorhabditis elegans, a suite of RNA-binding 

proteins regulates expression of maternal mRNAs during oogenesis, the oocyte-

to-embryo transition, and early embryogenesis. To understand how these RNA-

binding proteins contribute to development, it is necessary to determine how they 

select specific mRNA targets for regulation. OMA-1 and OMA-2 are redundant 

proteins required for oocyte maturation—an essential part of meiosis that 

prepares oocytes for fertilization. Both proteins have CCCH-type tandem zinc 

finger (TZF) RNA-binding domains. Here, we define the RNA-binding specificity 

of OMA-1, and demonstrate that OMA-1/2 are required to repress the expression 

of a glp-1 3ʹUTR reporter in developing oocytes. OMA-1 binds with high affinity to 

a conserved region of the glp-1 3ʹUTR previously shown to interact with POS-1 

and GLD-1, RNA-binding proteins required for glp-1 reporter repression in the 

posterior of fertilized embryos.  Our results reveal that OMA-1 is a sequence 

specific RNA-binding protein required to repress expression of maternal 

transcripts during oogenesis, and suggest that interplay between OMA-1 and 

other factors for overlapping binding sites helps to coordinate the transition from 

oocyte to embryo. 
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Background and Significance 

	
Post-transcriptional regulation of maternal mRNAs governs gene 

regulation during oogenesis and early embryogenesis in metazoans (Farley and 

Ryder, 2008; Moore, 2005; Schier, 2007). Genetic studies have identified several 

RNA-binding proteins required for regulation of maternally supplied mRNAs 

during oogenesis, the oocyte to embryo transition, and early embryogenesis 

(Colegrove-Otero et al., 2005; Lee and Schedl, 2006). RNA-binding proteins are 

important during oocyte development as oocytes of metazoans are loaded with 

translationally repressed maternal RNAs (de Moor et al., 2005; Spirin, 1966; 

Standart, 1992). During the oocyte to embryo transition, RNA-binding proteins 

regulate their cognate RNA targets to coordinate events such as axis formation 

and cell fate specification (de Moor et al., 2005). 

Oocyte maturation is the complex process that prepares oocytes for 

fertilization (Masui, 2001; Masui and Clarke, 1979; McCarter et al., 1999). 

Metazoan sexual reproduction requires meiosis to produce fertile oocytes. 

Meiotic divisions in the oocytes must be completed before zygote formation. 

Therefore, precise regulation of meiosis during oocyte development is necessary 

to couple meiotic events to fertilization events. An evolutionarily conserved 

feature of oocyte development is meiotic arrest, which prepares the oocyte for 

fertilization (Greenstein, 2005). During oocyte maturation, meiotic arrest is 

released, (McCarter et al., 1999; Yamamoto et al., 2006) the nuclear envelope 
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breaks down (McCarter et al., 1999), and the cortical cytoskeleton rearranges 

morphologically (McCarter et al., 1999). Caenorhabditis elegans provides a 

powerful system to study oocyte maturation due to its transparent body, 

established cellular lineage and easy genetic manipulation (Brenner, 1974). The 

oocyte proximal to the spermatheca receives a maturation signal from the sperm 

prior to ovulation and subsequent fertilization (Miller et al., 2001). This cycle is 

repeated approximately every 23 minutes (Kimble and Crittenden, 2007; 

McCarter et al., 1999). Although the hallmark events of oocyte maturation are 

well understood morphologically, the molecular mechanisms governing these 

events are poorly understood.  

During oogenesis, oocytes are loaded with translationally repressed 

RNAs.  Expression of these RNAs must be coordinated in time and space to 

ensure correct patterning of the embryo.   Genetic studies have identified several 

RNA-binding proteins required for regulation of maternally supplied mRNAs 

during oogenesis, the oocyte to embryo transition, and early embryogenesis 

(Colegrove-Otero et al., 2005; Lee and Schedl, 2006). In order to regulate 

expression of their cognate mRNA targets, these RBPs must be capable of 

selecting their targets from a complex pool of mRNA sequences. 

The putative RNA binding proteins OMA-1 and OMA-2 are redundantly 

required for oocyte maturation (Detwiler et al., 2001; Shimada et al., 2002). They 

are expressed in maturing oocytes with the highest level present in the oocyte 
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embryos. The gonad arm fills with a higher number of oocytes as compared to 

wild-type worms. In addition, the oocytes of these worms are larger than wild-

type oocytes (Detwiler et al., 2001). 

OMA-1 and OMA-2 have two CCCH type tandem zinc finger (TZF) 

domains typified by the mammalian homolog tristetraprolin (TTP). TTP has two 

CX8CX5CX3H motifs that bind to AU-rich elements (AREs) of the mRNA encoding 

the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) (Blackshear, 

2002). Each finger binds one UAUU motif, and the binding event promotes the 

turnover of the mRNA and leads to regulation of the immune response (Lai et al., 

1999). C. elegans expresses a number of TZF proteins that regulate oogenesis 

(OMA-1, OMA-2, MOE-3) (Detwiler et al., 2001; Shimada et al., 2002) or 

embryogenesis (MEX-5/6, POS-1, MEX-1 and PIE-1) (Farley and Ryder, 2008; 

Mello et al., 1992; Moore, 2005; Schier, 2007; Schubert et al., 2000; Tabara et 

al., 1999). Of these, MEX-5 and POS-1 have been shown to bind to RNA with 

high affinity (Colegrove-Otero et al., 2005; Farley et al., 2008; Lee and Schedl, 

2006; Pagano et al., 2007).  In contrast, MEX-1 and PIE-1 are proposed to 

function as transcription factors that bind to DNA (de Moor et al., 2005; Guedes 

and Priess, 1997; Seydoux et al., 1996; Spirin, 1966; Standart, 1992; Tenenhaus 

et al., 2001). 

OMA-1 and OMA-2 are proposed to function during oocyte maturation by 

regulating specific target maternal mRNAs at the oocyte to embryo transition. 

Consistent with this hypothesis, OMA-1 and OMA-2 are required to repress mei-
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1, zif-1 and nos-2 translation. The mei-1 gene encodes a katanin (a 

heterodimeric microtubule severing protein) subunit. Genetic studies showed 

mei-1 is necessary for meiotic spindle formation; in the absence of mei-1 function 

meiosis fails (Clark-Maguire and Mains, 1994a; 1994b; de Moor et al., 2005). The 

zif-1 gene, on the other hand, encodes a subunit of the E3 ubiquitin ligase 

complex. ZIF-1 is required in embryos for proper asymmetric segregation of cell 

fate regulators through zif-1 dependent proteolysis (DeRenzo et al., 2003; 

Guven-Ozkan et al., 2010; Masui, 2001; Masui and Clarke, 1979; McCarter et al., 

1999).  nos-2 is a Nanos homolog and is required for primordial germ cell 

development (Subramaniam and Seydoux, 1999). OMA-2 was shown to repress 

nos-2 translation by interacting with its 3ʹUTR through a UGCUAAUAAU 

sequence element (Jadhav et al., 2008). How OMA-1/2 represses mei-1, zif-1 

and nos-2 mRNA translation, or whether OMA-1 regulates additional maternal 

transcripts, is not known.  We set out to define the RNA-recognition properties of 

OMA-1/2 in order to gain insight as to how mRNA targets are selected for 

regulation. 

 

Experimental Procedures 

OMA-1 expression and purification 

The sequence encoding amino acids 1-182 of OMA-1 was cloned into 

pMal-ac (New England Biolabs). This construct was transformed into BL21(DE3) 

cells. The protein was then expressed after inducing the cells with 1 mM 
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isopropyl 1-thio-β-D-galactopyranoside (IPTG) and 100 µM zinc acetate 

(Zn(OAc)2) for 3 hours, at 37°C.  The protein was expressed with an N-terminal 

maltose-binding protein (MBP) tag. The cells were then lysed in 200 mM NaCl, 

50 mM Tris pH 8.8, 2 mM dithiothreitol (DTT), 100 µM Zn(OAc)2 and EDTA-free 

protease inhibitor tablet. OMA-1 was then purified using an amylose (New 

England Biolabs) affinity column. Protein fractions were eluted in lysis buffer 

supplemented with 10 mM maltose, Fractions containing OMA-1 fusion were 

dialyzed into Q-column buffer (20 mM NaCl, 50 mM Tris pH 8.8, 2 mM (DTT), 

100 µM Zn(OAc)2). After dialysis, purification was followed by HiTrap Q at 4°C. 

Elution of the protein fractions was achieved by a salt gradient ranging from a low 

salt buffer (20 mM NaCl, 50 mM Tris pH 8.8, 2 mM dithiothreitol (DTT), 100 µM 

Zn(OAc)2 ) to a high salt buffer (1 M NaCl, 50 mM Tris pH 8.8, 2 mM dithiothreitol 

(DTT), 100 µM Zn(OAc)2). Final purification was done using a source 15Q (GE 

Healthcare) ion exchange column at 4°C. Elution was achieved through the same 

salt gradient as in the HiTrap Q column purification. Pure fractions were 

determined by Coomassie-stained SDS-PAGE and purified OMA-1 was dialyzed 

into storage buffer (25 mM Tris, pH 8.0, 25 mM NaCl, 2 mM DTT, 100µM 

Zn(OAc)2) and stored at 4°C. 

In Vitro RNA Selection 

RNA library design and in vitro selection protocols were adapted from a 

protocol described previously (Pagano et al., 2009).  The initial double stranded 

DNA library was amplified from the template 5’- GGGAAGATCTCGACCAGAAG-
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(N30)-TATGTGCGTCTACATGGATCCTCA with a forward (5’ –

CGGAATTCTAATACGACTCACTATAGGGAAGATCTCGACCAGAAG - 3’) and 

reverse (5’ – TGAGGATCCATGTAGACGCACATA - 3’) primer pair using three 

cycles of PCR. Binding reactions of the RNA pools to OMA-1 were performed in 

200 µL of selection buffer (50 mM Tris, pH 8.0, 100 mM NaCl, 0.01 mg/ml tRNA, 

0.01% Igepal CA-630, 2mM DTT, 100 uM Zn(OAc)2.  Between 5-800 nM of 

purified MBP-OMA-1(1-182) was equilibrated with the pool of RNA sequences in 

selection buffer for 1 hour. Then OMA-1 was immobilized on amylose resin (New 

England Biolabs).  At each round of selection, lowering the protein concentration 

from 800nM, to 200 nM, 20 nM, and 5 nM successively increased the stringency. 

OMA-1 bound to RNA was eluted from amylose resin with 10 mM maltose in 

selection buffer, at room temperature.  Selected RNA was phenol/chloroform 

extracted, ethanol precipitated and resuspended in 10 µL of TE buffer.  RNA was 

then reverse transcribed and amplified with 15 rounds of PCR using the 

SuperScript III One-Step RT-PCR kit with Platinum Taq (Invitrogen).  The new 

DNA pool was then in vitro transcribed to generate the next RNA pool that will 

enter the following round of selections. We performed 4 rounds of selection.  The 

DNA was cloned using StrataClone PCR cloning kit (Stratagene). 

Preparation of Fluorescently Labeled RNA 

Synthesized oligonucleotides (Integrated DNA Technologies) were 3’-end labeled 

with fluorescein 5-thiosemicarbazide (Invitrogen) as previously described 

(Pagano et al., 2011).  



	

	 55	

Electrophoretic Mobility Shift Assay 

Electrophoretic mobility shift experiments and data analysis were carried 

out as previously described with a few modifications (Farley et al., 2008; Pagano 

et al., 2011; 2007).  Varying concentrations of purified OMA-1 were equilibrated 

with 3 nM of labeled RNA in equilibration buffer (0.01% IGEPAL, 0.01 mg/ml 

tRNA, 50 mM Tris, pH 8.0, 100 mM NaCl, 2mM DTT, 100uM Zn(OAc)2) for 3 

hours.  Samples were loaded on a 5% native, slab polyacrylamide gel in 1X TB 

buffer (89 mM Tris and 89 mM Boric acid, pH 8.3). The gels were run in 1 X TB 

buffer for 120 minutes at 120 volts and at 4°C.  The gels were then scanned 

using a fluor-imager (Fujifilm FLA-5000) with a blue laser at 473 nm. 

oma-1;oma-2 RNAi knockdown 

We knockdown oma-1 and oma-2 using the RNAi feeding method 

(Kamath et al., 2003). We cloned the oma-1 and oma-2 open reading frames 

(ORFs) into the RNAi feeding vector construct L4440 by TA cloning, as 

previously described (Kamath et al., 2003). These clones were then transformed 

into HT115(DE3) cells. Once these cells were grown to OD600 = 0.4, the cells 

were induced with 1 mM isopropyl 1-thio-β-D-galactopyranoside (IPTG) at a final 

concentration of 0.4 mM for 4 hours. The cultures with the oma-1 RNAi feeding 

construct and oma-2 RNAi feeding construct were concentrated 10- fold and 

mixed at equal proportions. The mixed culture was the seeded onto NGM plates 

that contain 1mM IPTG and 100 µg/ml Ampicillin. Worms were then bleached 

onto these plates and maintained at 25°C for 2 days before imaging. As a control 
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food, we used HT115 strain bacteria transformed with the empty RNAi feeding 

construct vector, L4440. 

Imaging of worm strains 

Worms at the appropriate age were picked on to 2% agarose pads in 0.4 

mM levamisole. DIC and GFP fluorescence images were taken using an oil-

immersion 40X objective on Zeiss Axioscope 2 plus microscope (Carl Zeiss, 

Jena, Germany). Confocal images were also taken using an oil-immersion 40X 

objective on Leica DMIRE2 microscope (Leica, Wetzlar, Germany).  

Quantifications of the GFP pixel intensities were performed as described 

previously (Farley and Ryder, 2012; Wright et al., 2010) with minor changes. We 

used a 20 pixel-wide segmented line that passes through the nuclei of the 

oocytes to determine the average pixel intensity across this line.
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Results 

OMA-1 binds with limited affinity to RNA sequences recognized by POS-1, 

MEX-5, and TTP  

	
To assess OMA-1 RNA-binding specificity, we first determined the ability 

of purified recombinant OMA-1 to bind sequences recognized by its mammalian 

homolog TTP, and by two nematode family members MEX-5 and POS-1. We 

performed quantitative fluorescent electrophoretic mobility shift assays (F-EMSA) 

to measure the apparent binding affinity of purified recombinant OMA-1 to the 

fragment of an AU rich element (ARE13) from the 3ʹUTR of TNF-α mRNA 

(recognized by TTP) (Blackshear et al., 2005; Lai et al., 1999); the POS-1 

recognition element (PRE) from the 3ʹUTR of mex-3 mRNA (recognized by POS-

1) (Farley et al., 2008), and polyuridine-30 RNA (recognized by MEX-5) (Pagano 

et al., 2007). OMA-1 binds with moderate affinity to the TNF-α ARE13 (Figure 

2.2a) and the PRE (Figure 2.2b), and it binds weakly to polyuridine-30 RNA 

(Figure 2.2c).  However, the affinity of OMA-1 for all three sequences is weaker 

than the affinity of each sequence for its cognate RNA-binding protein (Figure 

2.2d).  OMA-1 binds 90-fold more weakly to TNF-α ARE13 RNA compared to 

TTP, about 3-fold weaker to PRE compared to POS-1, and more than 30-fold 

weaker to polyuridine-30 compared to MEX-5 (Figure 2.2d).  We conclude that 

while OMA-1 is capable of binding to RNA sequences with variable affinity, its 
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specificity is not likely to be the same as previously investigated members of the 

TZF RNA-binding protein family. 

To determine whether OMA-1 binds RNA with identical specificity as POS-

1, but with lower affinity, we measured OMA-1 binding to three PRE mutants 

(A3C, U4C, and G10C) that reduce POS-1 binding by >1 kcal/mol (Farley et al., 

2008).  OMA-1 binding is not affected by the A3C and G10C mutations.  By 

contrast, the U4C mutant binds OMA-1 with reduced affinity (ΔΔG° = 1.2 

kcal/mol) (Figure 2.2e).  We conclude that while OMA-1 is capable of binding to 

RNA sequences with variable affinity, its specificity is not the same as previously 

investigated members of the TZF RNA-binding protein family. 
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Figure	2.2	OMA-1	is	a	sequence-specific	RNA-binding	protein	

(a)	Fluorescent	electrophoretic	mobility	gel	shift	assay	(F EMSA)	with	the	AU rich	
element	of	TNF a	mRNA	(ARE13)	and	OMA 1.	The	gel	is	shown	with	the	bound	and	free	
RNA	species	labeled.	Data	is	fit	to	the	Hill	equation.		Values	reported	are	the	average	
and	standard	deviation	of	three	independent	experiments.	(b)	Fluorescent	
electrophoretic	mobility	gel	shift	assay	with	the	POS 1	binding	sequence	(PRE)	and	
OMA 1.	OMA 1	shows	weak	binding	to	this	sequence.	(c)	Fluorescent	electrophoretic	
mobility	gel	shift	assay	is	done	with	the	poly(U) 30,	which	binds	MEX 5,	and	OMA 1,	as	
described	in	(a).	(d)	Table	comparing	the	relative	binding	affinities	of	OMA 1	to	the	
RNA	sequences	recognized	by	TTP,	MEX 5	and	POS 1	with	respect	to	their	cognate	
proteins.	(e)	OMA 1	binds	to	variants	of	POS 1	Recognition	Element	(PRE)	differently	
than	POS 1.	Each	bar	shows	the	change	in	standard	free	energy	change	(ΔΔG°)	caused	
by	the	mutation	shown	on	the	x axis.	The	binding	affinity	of	OMA 1	to	these	variants	
was	measured	by	fluorescent	electrophoretic	mobility	gel	shift	assay	(F EMSA).	This	
binding	affinity	is	then	compared	to	the	binding	affinity	of	OMA 1	to	the	PRE	to	
calculate	the	ΔΔG°.	
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OMA-1 SELEX 
	
	

We hypothesized that OMA-1 binds to RNA with specificity that is different 

from MEX-5, POS-1, and TTP. To identify sequences that bind OMA-1 with high 

affinity, we performed an in vitro selection (systematic evolution of ligands by 

exponential enrichment: SELEX) (Tuerk and Gold, 1990) using synthesized RNA 

sequences that contain 30 randomized bases, as described previously (Pagano 

et al., 2009). In the first round of selection, we equilibrated the starting pool with a 

fragment of OMA-1 that includes the RNA-binding domain (amino acids 1-182) 

fused to an N-terminal maltose binding protein (MBP) tag. This fusion protein 

was immobilized on an amylose resin and unbound RNA sequences were 

washed away. The bound RNA sequences were eluted and amplified to generate 

a new library of RNA sequences for the next round of selection (Figure 2.3a). F-

EMSA was used to monitor the progress of selection. Our results reveal that 

RNA produced after the fourth round of selection is enriched for sequences that 

bind OMA-1 compared to the starting pool (data not shown). To identify the 

sequences within pool 4, we cloned cDNA generated from RNA sequences 

enriched in this pool and sequenced 69 clones. Of these, 48 contain extended 

repeats of motif UAA. Two additional sequences were recovered with seven and 

five copies, respectively. These sequences also contain UAA elements. All but 

one of the remaining individual sequences also contained UAA elements. Eight 

of these sequences contain UAU motifs as well, which comprise a portion of the 
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TTP and POS-1 recognition motifs (Figure 2.3b) (Brewer et al., 2004; Farley et 

al., 2008).	

 
Figure	2.3			In	vitro	selection	to	identify	high	affinity	binding	sequences	of	OMA-1	

(a)	Schematic	of	SELEX	(b)	List	of	69	DNA	sequences	that	were	recovered	from	the	selection.	
The	sequences	and	their	respective	copy	number	are	also	shown.	These	sequences	are	
enriched	in	UAA	and	UAU	repeats	which	are	shown	in	bold	and	underlined.		
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To determine whether OMA-1 binds to the recovered aptamer sequences, 

we performed quantitative F-EMSA binding assays with RNA sequences that 

were recovered most frequently (Figure 2.4a). Our results showed that OMA-1 

binds with highest affinity to the aptamer sequence with the highest number of 

UAA elements (Figure 2.4b). Binding of OMA-1 to the RNA sequence with 

repeated motifs results in a Hill coefficient (nH) of 3.5 ± 0.5. This suggests that 

this interaction between OMA-1 and UAA rich RNA sequences is cooperative. To 

test whether the UAA elements in these sequences are responsible for OMA-1 

binding, we mutated the UAA motifs to CCC and tested the effect of this mutation 

on binding affinity. We chose seq10 as a representative sequence. Replacing the 

tandem UAA sequences to CCC in aptamer mseq10 lead to a significant 

decrease in the binding affinity of OMA-1 (8-fold decrease). We also tested 

binding of OMA-1 to another variant of seq10 where a UAA element is retained in 

the center (Figure 2.4b). Together, the data show that OMA-1 binds with high 

affinity to UAA-rich RNA.  
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OMA-1 binds to multiple fragments of the glp-1 3ʹ UTR 
	
	

GLP-1 is the C. elegans homolog of Notch.  It is required for anterior cell 

fate specification in the early embryo and mitotic proliferation of progenitor cells 

in the germline (Crittenden et al., 1994; Evans et al., 1994).  The mRNA that 

encodes glp-1 is found throughout the germline, including oocytes, and in all cells 

of the early embryo (Evans et al., 1994).  Several RNA-binding proteins have 

been shown to contribute to the asymmetric pattern of GLP-1 expression (Farley 

and Ryder, 2012; Lublin and Evans, 2007; Wright et al., 2010), but the identity of 

the factor that represses GLP-1 protein production in maturing oocytes is not 

known. 

The glp-1 3ʹ UTR is densely packed with UA(A/U) motifs, suggesting that 

OMA-1 may bind to this transcript and repress its translation in oocytes. To 

determine whether OMA-1 binds to the glp-1 3ʹ UTR directly, we constructed 

non-overlapping RNA fragments that span the 3ʹ UTR. Each RNA is 

approximately 30 nucleotides in length. OMA-1 binds to multiple fragments of the 

glp-1 3ʹ UTR. OMA-1 binds to fragments 1, 6, and 7 with highest affinity, 

comparable to the affinity of OMA-1 for the selected aptamer sequences. 

Fragments 1 and 6 have four UA(A/U) motifs, while fragment 7 has three.  OMA-

1 binds with moderate affinity to fragments 3, 8, 9, 10, and 11, which contain two 

or three UA(A/U) motifs. Very weak binding is observed to fragments 2, 4, and 5, 
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which have one or no motifs present. As such, the affinity of each fragment 

correlates with the number of UA(A/U) motifs present, with the highest affinity 

fragments containing four motifs (Figure 2.5a). As with the selected aptamers, 

binding to the glp-1 3ʹ UTR fragments exhibits positive cooperativity when 

multiple UA(A/U) motifs are present (for example, fragment 6: nH = 2.2).  The 

results are consistent with the SELEX results that suggest UA(A/U) motifs, which 

we now term OMA-1 binding motifs (OBMs), are required for high affinity OMA-1 

binding. 

 Fragment 6 corresponds to a sequence that is evolutionarily conserved 

across nematode species and contains overlapping functional binding sites for 

POS-1 and GLD-1, RBPs required for glp-1 silencing in embryos (Farley and 

Ryder, 2012; Marin and Evans, 2003; Ryder et al., 2004).  As such, we decided 

to investigate the contribution of UA(A/U) motifs to OMA-1 binding to this 

fragment in more detail (Figure 2.5b).   
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 We performed quantitative EMSA to determine the effect of mutating each 

UA(A/U) motif singly and in combinations to the OMA-1 binding affinity. Mutating 

each motif in isolation reduces the affinity by 3- to 5-fold (Table 2.1). Mutating 

three motifs causes a 15-fold decrease in the binding affinity.  The two variants of 

the triple mutation (Triple1 and Triple2) show the same decrease in the binding 

affinity. Mutating all four of the motifs leads to a 25-fold decrease in OMA-1 

binding affinity (Table 2.1).  

 

Table 2. 1 Binding affinities of OMA-1 to variants of the glp-1 3´UTR where the 
OMA-1 binding motifs are mutated 
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embryos, but was not observed in the proximal germline or in oocytes, as has 

been previously reported (Farley and Ryder, 2012). When the reporter strain was 

treated with oma-1, oma-2 RNAi food, we observed a strong increase in GFP 

fluorescence in the oocytes (88%, n = 27), (Figure 2.7). We assessed 

knockdown effectiveness by verifying that embryos were not present, that 

reduced number of eggs were layed, that oocytes were larger, and that there 

were greater numbers of oocytes stacked in the gonad arm, hallmarks of the 

oma-1, oma-2 phenotype. The data demonstrate that OMA-1 and OMA-2 are 

required to repress GLP-1 expression in the oocytes. 
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Conclusion 

	
 In this study we demonstrated that the motif recognized by OMA-1 is 

different from those recognized by the related proteins TTP, POS-1, and MEX-5. 

From the in vitro selection, we showed that OMA-1 binds to UA(A/U) repeat 

sequences.  

The relatively low information content of the OBM suggests that 1) many 

transcripts are regulated by OMA-1 or 2) additional factors may influence 

selection of its mRNA targets. In this study we show that multiple OBMs are 

required to achieve a high apparent binding affinity to mRNAs.  It is possible that 

multiple OBMs are required to achieve regulation.  

There are 28 OBMs in the 3ʹUTR of glp-1.  Interestingly, analyzing the 3ʹ 

UTR of the putative mRNA targets zif-1 and mei-1 revealed that there are 27 

OBMs in the zif-1 3ʹ-UTR and 9 OBMs in the mei-1 3ʹUTR. These OBMs are 

densely clustered in the zif-1 3ʹ-UTR  but more scattered in the mei-1 3ʹUTR. 

These OBMs could be the sites of regulation by OMA-1 in these mRNA targets.  

 

glp-1 regulation by OMA-1 
	
	

Our data also shows that OMA-1 regulates the translation of glp-1 in 

oocytes. Many RNA-binding proteins have been shown to regulate glp-1 mRNA 

post-transcriptionally. During oogenesis, PUF-5, PUF-6 and PUF-7 repress glp-1 

in early stage oocytes (Lublin and Evans, 2007). It was previously suggested that 
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OMA-1 and OMA-2 might repress glp-1 in late stage oocytes as these proteins 

are abundant RNA-binding proteins in the maturing oocytes (Lublin and Evans, 

2007). Here we have shown that OMA-1 and OMA-2 do in fact repress glp-1 

during oogenesis and oocyte to embryo transition.  
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CHAPTER III: EFFICIENT GENERATION OF TRANSGENIC REPORTER 

STRAINS AND ANALYSIS OF EXPRESSION PATTERNS IN 

CAENORHABDITIS ELEGANS USING LIBRARY MOSSCI 
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Abstract 

Background: In C. elegans, germline development and early embryogenesis 

rely on post-transcriptional regulation of maternally transcribed mRNAs. In many 

cases, the 3ʹUTR is sufficient to govern the expression patterns of these 

transcripts. Several RNA-binding proteins are required to regulate maternal 

mRNAs through the 3´UTR. Despite intensive efforts to map RNA-binding 

protein-mRNA interactions in vivo, the biological impact of most binding events 

remains unknown. Reporter studies using single copy integrated transgenes are 

essential to evaluate the functional consequences of interactions between RNA-

binding proteins and their associated mRNAs.  

Results: In this report, we present an efficient method of generating reporter 

strains with improved throughput by using a library variant of MosSCI 

transgenesis. Furthermore, using RNA interference, we identify the suite of RBPs 

that control the expression pattern of five different maternal mRNAs.  

Conclusions: The results provide a generalizable and efficient strategy to 

assess the functional relevance of protein-RNA interactions in vivo, and reveal 

new regulatory connections between key RNA-binding proteins and their 

maternal mRNA targets.  
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Background and Significance 

	
Spatial and temporal regulation of gene expression is crucial to the 

differentiation of tissues and organs. Cell fate specification, axis formation, 

cleavage and cell division rely upon regulated expression of important gene 

products at the right place at the right time. Changes in gene expression patterns 

can be regulated at the level of transcription, splicing, nuclear export, localization, 

translation or stability of mRNAs and proteins (Lasko, 2003; Melton, 1987; 

Moore, 2005; Thompson and Wickens, 2007; Wickens et al., 2000). 

In early embryogenesis, there is little or no active transcription in the 

zygotic nucleus (Batchelder et al., 1999; Leatherman and Jongens, 2003; 

Newport and Kirschner, 1982; Tadros and Lipshitz, 2009); hence post-

transcriptional regulation of maternal mRNAs by RNA-binding proteins plays a 

critical role in several systems (Colegrove-Otero et al., 2005; Farley and Ryder, 

2008; Spirin, 1966). There are many examples that illustrate this point. In 

Drosophila melanogaster, repression of hunchback mRNA by Nanos and 

Pumilio, and repression of caudal mRNA by Bicoid, is required for anterior-

posterior axis formation (Dean et al., 2002). The spatial pattern of translation and 

repression is mediated by elements present in the 3ʹ untranslated regions 

(3ʹUTRs) of target transcripts.  In Xenopus laevis, cyclinB1 mRNA must be kept 

translationally repressed in immature oocytes (Barkoff et al., 1998; de Moor and 

Richter, 1999). The RNA binding protein CPEB acts through the 3ʹUTR binding 

elements to mediate this repression until oocyte maturation. In Caenorhabditis 
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elegans, sexual fate of gametogenesis relies on post-transcriptional regulation of 

fem-3 mRNA. Repression of fem-3 by FBF-1 and FBF-2 RNA-binding proteins is 

required for the switch from spermatogenesis to oogenesis to occur after the L4 

to adult molt in the hermaphroditic worm (Zhang et al., 1997). These examples 

highlight the key conserved role of post-transcriptional regulation of maternal 

transcripts during metazoan development. 

  C. elegans germline development is an excellent model system to study 

post-transcriptional regulation (Brenner, 1974). Development can be monitored in 

real time by light microscopy because the animal is transparent. Gene regulation 

can also be visualized in live nematodes using fluorescent reporter proteins 

(Chalfie et al., 1994), During oogenesis, transcription ceases when the oocytes 

enter prophase arrest. Transcription is not activated until the four-cell stage 

embryo, and then only in the somatic blastomeres (Blackwell and Walker, 2006; 

Seydoux et al., 1996; Seydoux and Fire, 1994; Walker et al., 2007). Therefore, 

maternal mRNAs transcribed by the germ cell nuclei must be controlled in the 

germline, in oocytes, and early embryos to regulate complex events of meiosis, 

oogenesis and early cell divisions in the embryo (Ahringer, 1997; Farley and 

Ryder, 2008; Seydoux, 1996; Stitzel and Seydoux, 2007). Specific RNA-binding 

proteins (RBPs) regulate the timing and localization of maternal mRNA 

translation and this regulation is conferred through specific elements in 3ʹUTR of 

maternal mRNAs (de Moor et al., 2005; Evans and Hunter, 2005).  
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The importance of the 3ʹUTR to regulation of maternal transcripts in the C. 

elegans germline is well established (Ahringer et al., 1992; Marin and Evans, 

2003; Merritt et al., 2008; Mootz et al., 2004; Wickens et al., 2002; Zhang et al., 

1997).  Seydoux and coworkers showed that the 3ʹUTR is sufficient to govern the 

expression patterns of most maternal transcripts in the germline and early 

embryos (Merritt et al., 2008). Reporter transgenes expressing GFP under the 

control of a pan-germline promoter and a gene-specific 3ʹUTR recapitulated the 

expression pattern of the endogenous protein in 24 out of 30 of transgenes. In 

contrast, patterned expression was not observed in the reporter strains 

containing a gene-specific promoter and an unregulated 3ʹUTR  

There are a number of RNA-binding proteins required for regulation of 

maternal mRNAs in the germline and early embryos. Examples include GLD-1, 

PUF-5/6/7, FBF-1/2, POS-1, OMA-1, MEX-3, MEX-5/6 (Detwiler et al., 2001; 

Farley and Ryder, 2012; Francis et al., 1995b; Huang et al., 2002; Jones et al., 

1996; Kaymak and Ryder, 2013; Lublin and Evans, 2007; Marin and Evans, 

2003; Pagano et al., 2009; Ryder et al., 2004; Schubert et al., 2000; Shimada et 

al., 2002; Spike et al., 2014b; Tabara et al., 1999; Wickens et al., 2002; Zhang et 

al., 1997). Published studies have identified candidate regulatory targets and/or 

identified RNA sequence motifs recognized by each of these proteins (Bernstein 

et al., 2005a; Farley et al., 2008; Farley and Ryder, 2012; Kaymak and Ryder, 

2013; Pagano et al., 2009; 2007; Ryder et al., 2004; Spike et al., 2014b). For 

example, POS-1 and GLD-1 regulate the expression of glp-1 mRNA in the 
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posterior of the early embryo through association with motifs in the 3´UTR 

(Farley and Ryder, 2012).  Similarly, MEX-3 regulates nos-2 translation in 

somatic cells of the early embryo through direct association with motifs present in 

the 3´UTR (Pagano et al., 2009).  FBF regulates expression of cki-2, fem-3, and 

gld-1 translation through direct 3´UTR interactions as well (Kalchhauser et al., 

2011; Wright et al., 2010).  However, the complete network of RNA interactions 

has not been established for most of these proteins, nor is it clear whether 

binding leads to regulation in all cases. Transgenic reporter studies are required 

to evaluate the biological consequence of binding.  

There are a few different methods of generating transgenic C. elegans 

lines. The first requires introduction of DNA through microinjection into the 

germline (Mello and Fire, 1995; Mello et al., 1991). DNA introduced in this 

manner forms an extrachromosomal array that is passed to the progeny of the 

injected animal.  This method does not generate a stably inheritable line, unless 

genomic integration is induced through DNA damage caused by ionizing 

radiation or UV exposure. A disadvantage of this method is germline silencing of 

transgenes due to the presence of repetitive copies of the transgene in the array 

(Kelly et al., 1997; Mello and Fire, 1995; Mello et al., 1991).  A more recent 

method is biolistic transformation (Praitis et al., 2001). This results in integration 

of the transgene, hence stable inheritance, but the integration site is 

approximately random, and often there are multiple integration events, making it 

difficult to compare reporter expressions between strains. The most recent 
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advancement, termed Mos1-mediated single copy integration (MosSCI) was 

developed by Jorgensen and colleagues (Frøkjaer-Jensen et al., 2012; 2008).  In 

this method, DNA is microinjected into the germline, and site specific integration 

is induced through site specific DNA double strand break induction followed by 

homologous recombination.  The major advantage of this method is that a single 

copy integration is generated at a predetermined chromosomal location. This 

method has been widely adopted to generate transgenic reporter strains where 

comparison of reporter expression patterns under different conditions is needed.  

Despite these improvements, MosSCI remains a time consuming approach that 

requires microinjection by a skilled microscopist.  

In this study, we adapted the MosSCI method to simultaneously inject a 

library of transgenes into the gonad. We show that integration selects individual 

reporters from the injected pool, yielding numerous single copy integrants of 

different reporters. This approach has increased the efficiency of obtaining 

transgenic lines through limiting the number of injections necessary. We used 

this approach to generate twenty-one transgenic lines, including eleven unique 

3´UTR reporter strains. We then performed a candidate RNAi screen using a 

subset of these strains to identify RBPs that control the pattern of expression. 

The results provide an enhanced method to rapidly generate transgenic 

nematode reporter strains, and identify new regulatory connections between 

maternal RBPs and maternal mRNAs. 
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Experimental Procedures 

Cloning of reporter constructs 
	
The 3ʹUTR sequences were amplified from worm genomic DNA using UTR-

specific primers flanked with atB2R and attB3 sequences for Gateway cloning. 

BP Clonase II was then used to clone the sequences into pDONRP2RP3. 

Multisite gateway cloning was then used to fuse this donor construct with 

pCM1.111 (construct carrying the mex-5 promoter) and pBMF2.7 (construct 

carrying MODC PEST:GFP:H2B). LR Clonase II plus was used to integrate the 

fusion constructs into pCFJ150. Mutations of the glp-1 3ʹUTR reporter construct 

were introduced into the cloned pCFJ150 construct using Quickchange 

mutagenesis with Pfu Turbo.  

 

C. elegans microinjection 
	
MosSCI protocol (Frøkjaer-Jensen et al., 2008) was followed to generate the 

integrated lines with the adaptation described in this paper. A library of reporter 

constructs were injected at a concentration of 25ng/µl with mos-1 transposase 

(50 ng/µl), mCherry (2.5 ng/µl) and peel-1 (10 ng/µl) plasmids into the gonad of 

EG6699 un-coordinated strain at the young adult stage. Wild-type moving, 

surviving worms were screened by single-worm PCR using Pfu Ultra II to identify 

the integrated construct. 
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RNAi knockdown 
	

We knocked down oma-1;oma-2, daz-1 and pos-1 using the RNAi feeding 

method (Kamath, 2003). Using TA cloning, we cloned the all oma-1 and oma-2 

open reading frames (ORFs) into the vector L4440 and transformed the clones 

into HT115(DE3) cells. pos-1 and daz-1 RNAi feeding bacterial cells were 

obtained from the Ahringer library. At OD600 = 0.4, we induced the cells for four 

hours by adding 1 mM isopropyl 1-thio-β-D-galactopyranoside (IPTG) at a final 

concentration of 0.4 mM. After induction, the induced RNAi cultures were 

concentrated 10- fold and added onto NGM plates containing 1mM IPTG and 

100 µg/ml Ampicilin. Eggs obtained by bleaching adult worm strains were then 

plated onto RNAi plates and maintained at 25°C. The strains were imaged after 

52 hours. HT115 strain bacteria transformed with the empty vector L4440 was 

used as our control plate. 

 

Imaging of worm strains 
	
Young adult worms were placed onto 2% agarose pads in 0.4 mM levamisole. 

DIC and GFP fluorescence images of gonad arms were taken using a 40× oil 

immersion objective (Zeiss Axioscope 2 plus microscope).
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Results 

Library MosSCI 
	
	

Motif analysis predicts the presence of numerous RBP binding sites in 

3ʹUTRs (Farley et al., 2008; Keene, 2007; Pagano et al., 2007; Wright et al., 

2010). However, functional studies show that only some binding sites are 

capable of conferring regulatory activity in cells and animals (Evans et al., 1994; 

Farley and Ryder, 2012; Kalchhauser et al., 2011; Marin and Evans, 2003; 

Pagano et al., 2009; Wright et al., 2010).  We therefore sought a way to improve 

the throughput of functional studies using transgenic fluorescent reporters.  The 

improved MosSCI protocol of Jorgensen lab was used as a starting point for our 

experiments (Frøkjaer-Jensen et al., 2012). We reasoned that the integration 

step of transgenesis might select individual transgenes from a library of reporter 

plasmids co-injected into worms.  If so, then each injection could potentially 

create multiple transgenic progeny, each bearing a different integrated reporter 

transgene.  To test this hypothesis, we cloned sixteen different 3ʹUTRs fused to a 

pan-germline promoter (mex-5) and a destabilized GFP-histone H2B fusion 

(GFP::H2B::PEST domain) (Farley and Ryder, 2012; Frand et al., 2005). The 

identities of the 3ʹUTRs used in transgenic reporter constructs are listed in Table 

3.1. 
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Table 3.1 List of the 3´UTRs in the reporters that were successfully integrated and 
their genotypes 

3´ UTR strain Strain identifier Genotype 
 EG6699 ttTi5605 II; unc-119(ed3) III; oxEx1578 

atg-4.2 WRM10, WRM11 sprSi10[Pmex-5::MODC PEST:GFP:H2B:: atg-4.2 
3'UTR cb-unc-119(+)] II, unc-119(ed3) III 

cul-4 WRM12, WRM13, 
WRM14, WRM15 

sprSi11[Pmex-5::MODC PEST:GFP:H2B::cul-4 
3'UTR cb-unc-119(+)] II, unc-119(ed3) III 

cwn-1 WRM16 sprSi12[Pmex-5::MODC PEST:GFP:H2B::cwn-1 
3'UTR cb-unc-119(+)] II, unc-119(ed3) III 

ets-4 WRM17 sprSi13[Pmex-5::MODC PEST:GFP:H2B::ets-4 
3'UTR cb-unc-119(+)] II, unc-119(ed3) III 

hbl-1 WRM18 sprSi14[Pmex-5::MODC PEST:GFP:H2B::hbl-1 
3'UTR cb-unc-119(+)] II, unc-119(ed3) III 

lin-26 WRM19, WRM20, 
WRM21 

sprSi15[Pmex-5::MODC PEST:GFP:H2B::lin-26 
3'UTR cb-unc-119(+)] II, unc-119(ed3) III 

mbk-2 WRM22, WRM23 sprSi16[Pmex-5::MODC PEST:GFP:H2B::mbk-2 
3'UTR cb-unc-119(+)] II, unc-119(ed3) III 

mex-3 WRM24, WRM25 sprSi17[Pmex-5::MODC PEST:GFP:H2B::mex-3 
3'UTR cb-unc-119(+)] II, unc-119(ed3) III 

set-2 WRM26 sprSi18[Pmex-5::MODC PEST:GFP:H2B::set-2 
3'UTR cb-unc-119(+)] II, unc-119(ed3) III 

set-6 WRM27, WRM28, 
WRM29 

sprSi19[Pmex-5::MODC PEST:GFP:H2B::set-6 
3'UTR cb-unc-119(+)] II, unc-119(ed3) III 

usp-14 WRM30 sprSi20[Pmex-5::MODC PEST:GFP:H2B::usp-14 
3'UTR cb-unc-119(+)] II, unc-119(ed3) III 
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 Equal concentrations of each of the sixteen reporter constructs were 

mixed together into a single mixture. 25 ng/µl of this library mixture was injected 

into the C. elegans un-coordinated strain EG6699. Figure 3.1 shows a schematic 

of the injection method adapted from the MosSCI technique. 
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Figure	3.1	Schematic	of	the	library	MosSCI	method.	

A	library	of	transgenes	is	mixed	in	equal	amounts,	and	then	microinjected	into	the	
germline	of	the	parent	strain.		As	with	standard	MosSCI,	positive	transformants	are	
identified	by	unc 119	rescue,	which	restores	wild type	movement,	and	red	fluorescence	
in	the	pharynx	and	body	wall	muscle.		Integrants	are	recovered	by	heat shock	induction	
of	PEEL 1,	a	negative	selection	marker	which	kills	all	worms	that	have	not	lost	
extrachromosomal	array	formed	from	the	injected	plasmid	mixture.	
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 In addition to the library of sixteen 3´UTR reporter constructs, a positive 

selection marker (unc-119), two negative selection markers, peel-1 and mCherry, 

and a plasmid encoding the Mos1 transposase were also injected at the same 

time. The peel-1 gene is under the control of a heat-shock promoter but the 

mCherry and mos-1 transposase genes are constitutively expressed. Once 

injected, the transposase generates a double strand break at a specific location 

in chromosome II. This break is then repaired by homologous recombination with 

one of the injected reporter constructs, as each of the constructs are flanked by 

ends homologous to the break. If construct selection is stochastic, then it is 

possible to get a different reporter for each successful integration event. 

Successfully integrated animals must then be distinguished from worms 

that still carry an extrachromosomal array. Worms that do not lose the array will 

have mCherry red fluorescent marker in their pharynx. These worms will also 

carry the peel-1 plasmid. PEEL-1 is a toxin that will select against the 

transformants that are carrying an extrachromosomal array (Frøkjaer-Jensen et 

al., 2012; Seidel et al., 2011). When PEEL-1 expression was induced by heat 

shock at 34°C for two hours, worms harboring the array died. 

We then selected surviving worms and screened them and their progeny 

by PCR in order to identify which (if any) reporter construct had been integrated 

into the genome.  We performed single worm PCR using a homozygous 

population of each candidate line. Figure 3.2 shows representative PCR data for 

the integrated lines obtained. Direct sequencing of the PCR products using a 
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Fifteen transgenic lines were obtained from 217 injections. In this initial set 

of strains, we noticed that some constructs were overrepresented. Four of the 

integrated lines contained an integration of Pmex-5::GFP::H2B::PEST::cul-4 

3ʹUTR.  Three of the integrated lines contained Pmex-5::GFP::H2B::PEST::lin-26 

3ʹUTR.  Two of the integrated lines contained Pmex-5::GFP::H2B::PEST::mbk-2 

3ʹUTR. Two more of the integrated lines contained Pmex-

5::GFP::H2B::PEST::mex-3 3ʹUTR. Additional two of the integrated lines 

contained Pmex-5::GFP::H2B::PEST::atg-4.2 3ʹUTR. Of the fifteen recovered 

lines, we obtained seven unique reporters. To prevent recovering multiple copies 

of the same strain, we then reduced the size of the library to include just the 

remaining nine constructs from our library of sixteen. In additional 52 injections, 

we obtained six additional independent lines, resulting in four additional unique 

reporter strains. In total, we were able to generate eleven unique transgenic 

strains in 269 injections. These are listed in Table 3.1.   

The rate of successful injections giving wild-type moving transformants 

was higher than the rate of integration steps. In the total of 269 attempted 

injections, 93 gave rise to wild-type moving transformant progeny.  Of these, 21 

contained a single copy of a transgenic construct.  As such, we estimate our 

successful injection rate to be 35%, the integration rate to be approximately 23%, 

and the unique strain recovery rate (per successful injection for our relatively 

small library of sixteen reporters) to be ~11%.  While overall success is still 

limited by successful injection rate (governed by the ability of the injector), the 
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overall rate of recovery of unique reporters represents a large improvement over 

previous benchmarks (Frøkjaer-Jensen et al., 2012; 2008).  

 

Expression patterns of GFP in the integrants 
	
	

Having established new lines, we then used direct fluorescence imaging of 

the germline to determine the expression patterns of the transgenic reporter 

strains. Three out of the twenty-one lines we generated did not show GFP 

fluorescence, presumably due to germline transgene silencing (Kelly et al., 

1997).  The eighteen remaining strains prepared by library MosSCI showed GFP 

expression in the germline and/or embryos. As expected, the pattern of 

expression varied with the identity of the 3ʹUTR.  The expression patterns are 

summarized in Figure 3.3.  

 

Pan germline expression: Some 3´UTR reporters showed pan-germline 

expression, including ets-4, usp-14, hbl-1, lin-26 and cwn-1.  Reporter expression 

was observed in the distal region of the germline, in mitotic progenitor cells, as 

well as in the syncytial region, in the germline bend, in oocytes, and in embryos.  

We note that the hbl-1 reporter expression was faint in all regions of the 

germline.  In four of the five reporters (usp-14, lin-26, hbl-1, and cwn-1), no 

expression was observed in sperm, consistent with the findings of Seydoux and 

co-workers that suggests sperm expression is governed via transcriptional 

regulation at the promoter, rather than post-transcriptionally through 3´UTR level 
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(Merritt et al., 2008).  In direct contrast, ets-4 reporter expression remained 

strong in sperm (n=12/23), suggesting that at least some 3´UTRs can direct 

retention of sperm specific expression.  

 

The set-2 pattern:  We also studied the pattern of a set-2 3ʹUTR that was 

integrated using standard reporter MosSCI, rather than the library approach 

presented here. set-2 3ʹUTR showed faint GFP expression in the distal end 

followed by an increased expression in the syncytial region, which then 

decreased around the recellularization region and oocytes. As with ets-4, the 

GFP expression remained strong in sperm (n=11/15), providing a second 

example of a 3´UTR that can direct expression of a reporter in male gametes. 

 

Oocyte repression:  Other 3´UTR reporters, such as atg-4.2, cul-4, him-14 

and set-6, and mbk-2 showed strong expression in the syncytial region of the 

gonad and in embryos but little or no expression in oocytes. atg-4.2 and cul-4 

showed GFP expression in the distal mitotic zone followed by increased 

expression in the syncytial region, and decreased expression around the 

recellularization region and in early oocytes. Weak expression in oocytes 

appeared to increase as the oocytes neared the spermatheca. In contrast, set-6 

and him-14 3´UTR reporters showed no increase in oocyte expression in 

maturing oocytes. Interestingly, set-6 reporter also showed GFP expression in 
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sperm (n=10/17). Only the mbk-2 reporter showed a complete lack of expression 

in oocytes.   

 

Oocyte-and embryo-specific expression:  The mex-3 3ʹUTR reporter is 

unique in that it showed strong GFP expression in the oocytes, with expression 

peaking in the most mature oocytes.  Little or no expression was observed in the 

distal germline or in the syncytial region.  Expression was also observed in the 

anterior cells of early embryos, but not in the posterior, consistent with the 

patterned expression of endogenous MEX-3 (Draper et al., 1996).  

 

Out of the eleven 3ʹUTR reporter strains we studied, endogenous protein 

expression patterns are known for LIN-26, MEX-3, MBK-2 and SET-2. Antibody 

staining experiments showed that SET-2 and MEX-3 endogenous patterns match 

our reported patterns. MEX-3 is seen in the oocytes and anterior cells of two and 

four cell stage embryos matching our GFP reporter pattern (Bowerman et al., 

1997; Draper et al., 1996). SET-2 is observed strongly in the mid-pachytene 

region of the germline but also in pharynx, neurons and intestines (Xu and 

Strome, 2001). We do not expect to observe somatic expression with our 

reporters, which include a germline specific promoter. No sperm expression was 

reported. For MBK-2, antibody staining was reported at the cortex of developing 

oocytes and in cytoplasm of embryos; however, we have not seen reporter 

expression in the oocytes of the mbk-2 3ʹUTR reporter strain (Stitzel et al., 2007). 
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These differences could be due to transcriptional regulation by the endogenous 

promoter used, or due to post-translational regulation. LIN-26, on the other hand, 

is endogenously expressed in the somatic gonad and hypodermal cells of 

embryos and larvae of all stages; however, germline expression pattern was not 

reported (Labouesse et al., 1996). Endogenous protein expression patterns have 

not been published for ATG-4.2, CUL-4, HIM-14, ETS-4 SET-6, and USP-14. 
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Figure	3.3	GFP	expression	patterns	of	integrated	3´UTR	strains	

A:	Schematic	of	the	C.	elegans	germline.	The	syncytial	region	of	nuclei	in	the	distal	arm	
of	the	gonad,	the	oocytes,	sperm,	and	embryos	in	the	uterus	are	shown.	B:	
Representative	images	of	single	copy	integrated	reporter	strains	that	express	GFP	under	
the	control	of	different	3'UTRs.	C:	A	table	summarizing	the	GFP	expression	patterns	of	
the	reporter	strains	in	different	parts	of	the	germline	and	embryos.		Gray	bars	denote	
expression.		The	number	of	animals	imaged	is	indicated	to	the	right.	
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Targeted RNAi screening of transgenic reporter strains  
	
	
We wished to identify RNA-binding proteins that directly or indirectly control the 

expression pattern of the new 3´UTR reporter strains. We chose a subset of 

reporter strains that have distinct patterns of GFP expression to study further by 

RNAi knockdown studies. The strains we chose to investigate carry the atg-4.2 

3ʹUTR, cul-4 3ʹUTR, set-2 3´UTR, set-6 3ʹUTR, mex-3 3ʹUTR, or ets-4 3ʹUTR.  In 

addition to their interesting patterns of expression, these 3ʹUTRs also contain 

binding motifs for RBPs with important roles in germline development and early 

embryogenesis. We wanted to identify which RNA-binding proteins contribute to 

the varying patterns of GFP expressions in the reporter strains.  We looked for 

expression pattern changes under oma-1;oma-2 RNAi, daz-1 RNAi pos-1 RNAi, 

and control treatments. We chose to knockdown these transcripts because they 

encode germline expressed RNA-binding proteins that have an easy to score 

phenotype. oma-1;oma-2 RNAi, and daz-1 RNAi lead to sterility and pos-1 RNAi 

leads to embryonic lethality (Detwiler et al., 2001; Karashima et al., 2000; Tabara 

et al., 1999). 

OMA-1 and OMA-2 are tandem zinc-finger RNA-binding proteins 

redundantly required for oocyte maturation. The phenotype of oma-1;oma-2 

RNAi knockdown is more than 90% penetrant when performed by the feeding 

method.  Knockdown of oma-1 and oma-2 by RNAi leads to oocytes with 

increased size, a greater number of oocytes in the gonad arm, and sterility 
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(Detwiler et al., 2001; R. Lin, 2003).  Knockdown in atg-4.2 3ʹUTR, ets-4 3ʹUTR, 

cul-4 3ʹUTR, set-6 3ʹUTR, mex-3 3ʹUTR led to a strong increase in the 

expression of GFP in oocytes.  In contrast, knockdown had no effect on the set-2 

3ʹUTR reporter (Figure 3.4).  The results suggest that OMA-1 and OMA-2 

repress expression of atg-4.2, ets-4, cul-4, and set-6 in oocytes.  It is not clear 

why or how the set-2 retains oocyte repression in oocytes.  We suspect it is likely 

to be repressed by a different pathway.   

DAZ-1 is an RNA-binding protein required for oogenesis (Otori et al., 

2006). Knockdown of DAZ-1 results in absence of oocytes and sterility. The daz-

1 RNAi-induced phenotype is 70-80% penetrant by the feeding method. Worms 

cultured under daz-1 RNAi conditions contain an abundance of non-cellularized 

nuclei around the germline bend, where oocytes normally form. This then leads 

to an absence of oocytes in the proximal region of the gonad arm. daz-1 RNAi 

was performed in strains carrying the atg-4.2 3ʹUTR, ets-4 3ʹUTR, cul-4 3ʹUTR, 

set-6 3ʹUTR, mex-3 3ʹUTR and set-2 3ʹUTR reporters. We observed a change 

only in the reporter strain containing the set-2 3ʹUTR. This strain does not 

express GFP around the loop region under wild-type conditions but when treated 

with daz-1 RNAi there was a strong increase in GFP expression in the 

recellularization/loop region (Figure 3.4).  The results suggest that set-2, in 

contrast to atg-4.2, ets-4, cul-4, set-6, and mex-3, is regulated by DAZ-1, directly 

or indirectly. 
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POS-1 is another tandem zinc-finger RNA-binding protein that is required 

for the development of the posterior in the embryos. RNAi knockdown of this 

protein leads to embryonic lethality. The phenotype of pos-1 RNAi knockdown 

was about 80% penetrant. pos-1 RNAi knockdown did not show a change in the 

reporter expression in the germline and oocytes for any of the strains tested.  In 

contrast, pos-1 knockdown has been previously shown to lead to expression of a 

glp-1 3ʹUTR reporter in all cells of an early embryo. The data suggest that POS-1 

does not regulate many genes that harbor a putative POS-1 binding site, as has 

been previously suggested (Farley and Ryder, 2012). 
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Conclusions 

	
In this study, we have shown that the rate of generating transgenic strains 

can be improved using an adaptation to the MosSCI technique. Injecting a library 

of transgenic constructs reduced the total time consumed to make nineteen 

independent lines by three- to four-fold in our hands. This was achieved through 

stochastic integration of transgenic constructs for every successful injection. It is 

not yet clear if increasing the library size further will further improve the success 

rate. We used this approach to make new UTR reporter lines, revealing for the 

first time that specific UTRs can drive reporter expression in sperm. We also 

used new strains in a targeted RNAi screen which revealed new regulatory 

connections between RNA-binding proteins and mRNAs. 

 

Regulation by OMA-1/2 
	
	

There are different ways OMA-1/2 could mediate repression of the 3´UTR 

reporters developed in our study. OMA-1/2 could be directly binding and 

repressing translation or indirectly regulating transgene expression through 

antagonistic interactions with other proteins.  

OMA-1 and OMA-2 repressed protein expression of most of the 3´UTR 

reporter transgenes we studied. This supports the hypothesis that OMA-1 might 

be a general repressor of translation during oocyte development and maturation 

(Kaymak and Ryder, 2013). The mRNAs that were regulated by OMA-1/2 encode 
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proteins that influence a diverse array of biological phenomena, like ATG-4.2, 

ETS-4, CUL-4, SET-6 and MEX-3. atg-4.2 encodes a homolog of human 

autophagic cysteine protease that does not have an obvious RNAi phenotype 

(Wu et al., 2012). ETS-4 is a transcription factor that regulates aging 

(Thyagarajan et al., 2010). CUL-4 is a cullin ubiquitin ligase that prevents re-

replication of DNA (Zhong et al., 2003). set-6 is predicted to encode an H3K9 

methyltransferase that regulates transcription (Andersen and Horvitz, 2007). 

mex-3 encodes a KH-domain RNA-binding protein that specifies the anterior of 

the embryo (Draper et al., 1996). As oocytes develop in the gonad arm, there is 

no autophagy, transcription, embryonic cell-fate determination or bulk DNA 

replication going on. This can be a reason why the mRNAs are kept in a silent 

state through OMA-1/2 acting as the major regulator or one of the 

intercommunicating regulators. 

By contrast, oma-1, oma-2 RNAi did not repress the translation of the set-

2 3´UTR reporter transgene. set-2 is a histone methyltransferase that can be 

involved in modifiying histones during chromatin remodeling which is required for 

the tight regulation of gene expression in sperm development (Simonet et al., 

2007).  Intriguingly, DAZ-1 appears to regulate translation of the set-2 3ʹUTR. 

DAZ-1 is required for meiotic progression and formation of oocytes in the 

germline of C. elegans (Karashima et al., 2000). The RNA-binding specificity of 

DAZ-1 is not known, but its mammalian homolog DAZL (DAZ-like) binds 

stretches of polyU sequences with G or C bases distributed throughout 
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((G/CUn)n) (Venables et al., 2001). DAZ-1 represses set-2 3ʹUTR at the 

recellularization/loop region of the germline. set-2 is a methyltransferase that is 

required for proper germline development (Simonet et al., 2007). It is not yet 

clear why this UTR is repressed by DAZ-1, but not OMA-1/2. More work is 

needed to understand why some transcripts are repressed by OMA-1/2 in 

oocytes, yet others are repressed by DAZ-1.  

 

Sperm retention driven by the set-2, ets-4 and set-6 3ʹUTR  
 
  
The Seydoux lab previously reported that promoters are necessary and sufficient 

for sperm expression for sperm-expressed reporter transgenes, while the 3´UTR 

sequence is dispensible for expression in sperm (Merritt et al., 2008). Here we 

show an exception to this finding where the 3´UTR of set-2, ets-4 and set-6 

drives strong GFP expression in the sperm. Understanding how and why this 

3´UTR enables expression in sperm may lead to new insights in sperm specific 

gene expression patterns.  Moreover, we propose that incorporation of the set-2 

or ets-4 3´UTR into a transgenic construct could provide a useful tool to enable 

studying the effect of driving expression of specific gene products in sperm. One 

way we propose these 3´UTR’s allow transgene expression in sperm is that 

translation may be enabled in sperm due to the absence of a repressor acting on 

these UTRs at this specific location.  
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CHAPTER IV: DISCUSSION 
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In the research described in this dissertation, my aim was to understand 

how OMA-1/2 bind and regulate their cognate mRNA targets at the oocyte-to-

embryo transition. Knowing the site where OMA-1/2 bind on their targets is the 

first step in identifying direct mRNA targets regulated by OMA-1/2. Therefore, I 

first set out to determine the RNA-binding sequence specificity of OMA-1 and 

showed that it binds UA(A/U) elements with high affinity. This sequence is similar 

to the binding sequence of TTP, which is UAUUUAUU (Lai et al., 1999), yet the 

binding affinity of OMA-1 to this sequence is about 50 fold weaker. Similarly, 

OMA-1 binds weakly to POS-1 and MEX-5 motifs, revealing that its specificity is 

different from paralogs expressed in C. elegans.  

 

OMA-1 Sequence Specificity 

 

It is likely that differences in primary sequence and structure account for 

the variance in RNA recognition properties. The NMR structure of the zinc finger 

domain of TIS11d, a mammalian TZF protein, showed that each finger folds into 

a similar conformation that binds to UAUU. The RNA binding specificity was 

proposed to come from hydrogen bonding of the protein backbone to the 

Watson-Crick edges of the bases. In addition, side chains of conserved aromatic 

amino acids lead to stacking interactions with the RNA bases which are essential 

for RNA recognition (Hudson et al., 2004). It was reported that an amino acid in 
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each finger, termed the “discriminator” residue, accounts for the difference 

specificity between TTP and MEX-5.  In TTP, the discriminator residue is a 

glutamate in both fingers.  In the NMR structure, the side chain carboxylate 

accepts a hydrogen bond from the N6-exocylic amine of an adenosine in the 

motif UAUU.  In MEX-5, which binds to RNA with relaxed specificity, the 

corresponding amino acid is a lysine in finger 1 and an arginine in finger 2, 

predicted to form non-specific backbone ionic interactions at the expense of the 

base specific hydrogen bonds found in Tis11D.  Mutagenesis experiments 

confirm the importance of each amino acid to binding specificity (Kaymak et al., 

2010; Pagano et al., 2007). POS-1 has small hydrophobic residues at the 

corresponding positions and binds to RNA with different specificity compared to 

that of Tis11D and MEX-5 (PRE = UAU2 3RDN1 3G). It is not clear how the 

discriminator residues contribute to POS-1 RNA recognition. OMA-1 and OMA-2 

have a basic residue in finger 1 and small hydrophobic residue in finger 2. 

Hence, a hybrid specificity between POS-1 and MEX-5 was expected (Pagano et 

al., 2007). In line with this expectation, we showed that the RNA binding 

sequence specificity of OMA-1 is neither as relaxed as that of MEX-5 nor as 

specific as the POS-1 recognition element.  The motif observed (UA(A/U)) bears 

some similarity to the 5ʹ-portion of the PRE. More work, including structure 

determination of the OMA-1, POS-1, and MEX-5 RNA-bound complexes is 

required to fully assess this hypothesis. 
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How UA(A/U) elements help selection of mRNAs by OMA-1 for regulation 

is not fully understood. We observed that the abundance of UA(A/U) elements is 

not sufficient to determine mRNA targets regulated by OMA-1. Hence, how OMA-

1 recognizes a sequence and consequently result in a functional outcome; such 

as repression, is not clear. The sequence specificity of OMA-1 has low 

information content. This suggests that OMA-1 regulates multiple transcripts or 

additional factors are required for selection of its mRNA targets among a 

complex pool of RNA sequences. In this dissertation I show that OMA-1’s 

apparent binding affinity cooperatively increases as the number of OBMs (OMA-1 

binding motifs) increases, suggesting that multiple OBMs are required to achieve 

a high apparent binding affinity to mRNAs.  Possibly, multiple OBMs are required 

to achieve regulation as well. Consistent with this hypothesis, in Chapter II, I 

showed that OMA-1 and OMA-2 mediate glp-1 repression in the oocytes. There 

are 28 OBMs the 3ʹ-UTR of glp-1 and mutation of sequences in the 3ʹ-UTR of 

glp-1 corresponding to OBM1, OBM3, and a double mutation of OBM1 and 

OBM3 in previous studies did not lead to activation of the glp-1 reporter in 

oocytes (Farley and Ryder, 2012). Perhaps OBMs function with some 

redundancy to ensure glp-1 repression. 
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OMA-1 Target Selectivity 

 

We do not understand how OMA-1 selects mRNAs from a pool of RNA 

sequences it can interact with for a functional regulation. We do not also know 

whether the targets of OMA-1 identified thus far are regulated directly or 

indirectly by OMA-1. In the case of glp-1 mRNA, we were not able to map a site 

that is necessary and sufficient for OMA-1 mediated repression in the oocytes. 

Other known targets of OMA-1 did not also provide a site through which a 

regulation is conferred. Identifying additional mRNA targets that are regulated by 

OMA-1 and analyzing the context of the OBMs in an effort to identify sites 

necessary and sufficient for regulation may provide more insight into RNA-

recognition properties of OMA-1. 

It is possible that there might be a longer consensus sequence recognized 

by OMA-1 or OMA-1 might be acting through multiple UA(A/U) elements to 

achieve target selectivity. Understanding the context of OBMs in mRNAs that are 

associated with OMA-1 in vivo can provide additional information on the role of 

OMA-1’s sequence specificity. High-throughput sequencing of the crosslinked 

fragments (HITS-CLIP) (Licatalosi et al., 2008) or Photoactivatable-

Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) 

(Hafner et al., 2010) can identify mRNAs associated with OMA-1 in mature 

oocytes and one-cell embryos, where OMA-1 is expressed. Motifs that are in 
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common among the mRNAs that are enriched in immunoprecipitations can then 

be studied to investigate OMA-1 binding sites. When a similar approach was 

used to see whether a motif longer than the OBM was enriched in OMA-1 

interacting mRNAs, no such motif was identified (Spike et al., 2014b). The 

OBMs, however, were slightly enriched in mRNAs that significantly interact with 

OMA-1, when compared to C. elegans 3´UTRs with similar lengths (Spike et al., 

2014b). This study was based on mRNAs enriched in RNA-immunoprecipitation 

experiments without crosslinking. Performing this analysis upon crosslinking will 

be valuable because in a crosslinking and immunoprecipitation experiment, 

ultraviolet irradiation will be used to form covalent crosslinks between protein-

RNA complexes that are in direct contact in intact cells. The cross-linked 

complexes can then be enriched by antibody purification under stringent 

conditions (Hafner et al., 2010; Ule et al., 2006). PAR-CLIP provides an increase 

in the efficiency of crosslinking. In this method, 4-thiouridine (4-SU) is 

incorporated into transcripts (Hafner et al., 2010). It was shown that 4-SU 

containing transcripts crosslinked more efficiently upon UV 365 nm irradiation 

compared to the conventional 254 nm irradiation.  As long as the modification of 

uridines does not interfere with OMA-1 binding to its target transcripts, RNA 

recovery can be improved using PAR-CLIP. Moreover, crosslinked sites show a 

T to C transition after sequencing (Hafner et al., 2010). Therefore, analyzing 

mutations in the recovered transcript can identify the position of crosslinking. 

That is, clusters of sequence reads that show a high frequency of T to C 
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mutations represent the crosslinking sites. The stringent purification conditions 

and knowledge of the crosslinking sites can narrow the list of mRNA targets that 

are directly in contact with OMA-1.  

In addition to providing information on where OMA-1 can bind to in mRNA 

transcripts, these methods will also identify in vivo mRNA targets. Future work on 

investigating regulation of these targets will shine light on the function of OMA-1 

and OMA-2 in oocyte maturation. The mRNA targets of OMA-1 identified so far 

are known to function in diverse developmental pathways. Targets I have 

identified throughout the work described in this thesis are: glp-1, atg-4.2, ets-4, 

cul-4, set-6, and mex-3. Others have also identified mRNAs that show a strong 

OMA-1/2 dependent de-repression of reporter expression oocytes. These 

mRNAs are: nos-2, zif-1, mom-2, cdc-25.3, rnp-1, and rnf-5 (Guven-Ozkan et al., 

2010; Jadhav et al., 2008; Oldenbroek et al., 2012; Spike et al., 2014b). Table 

4.1 summarizes the full-range of various functions of OMA-1/2 targets in the 

germline and embryos. 
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Table 4.1 List of targets of OMA-1 and their known functions. 

Gene Known Function References 

glp-1 Notch homolog required for germline mitotic to meiosis 
switch and anterior formation in embryos 

(Austin and 
Kimble, 1987) 

atg-4.2 Autophagic cysteine protease homolog (Wu et al., 2012) 

cul-4 Cullin ubiquitin ligase that prevents DNA re-replication (Zhong et al., 
2003) 

ets-4 Transcription factor participating in regulation of aging (Thyagarajan et 
al., 2010) 

mex-3 KH-domain RBP required for anterior cell-fate 
specification 

(Draper et al., 
1996) 

set-6 Methyltransferase involved in regulation of 
transcription 

(Andersen and 
Horvitz, 2007) 

mom-2 Wnt pathway ligand required for endodermal cell fate 
specification 

(Rocheleau et al., 
1997) 

nos-2 Nanos homolog required for primordial germ cell 
development 

(Subramaniam and 
Seydoux, 1999) 

rnp-1 RBP required for regulating the switch from 
spermatogenesis to oogenesis. 

(Maeda et al., 
2001) 

rnf-5 E3 ubiquitin ligase required for migration of cells at  
distal end of germline 

(Didier et al., 
2003) 

cdc-25.3 Phosphatase controlling oocyte growth Ashcroft et al., 
1998 

zif-1 E3 ubiquitin ligase involved in maternal protein 
degradation pathways 

(DeRenzo and 
Seydoux, 2004) 

 

 These mRNA targets are not directly related to the oocyte maturation 

defect phenotypes observed in oma-1;oma-2 (RNAi) worms. Their repression 

might be a general function of OMA-1/2 as a translational repressor. As oocytes 

develop in the gonad arm, there is no ongoing autophagy, transcription, 

embryonic cell-fate determination, maternal protein degradation or bulk DNA 

replication. This can be a reason why some of these mRNAs (glp-1, atg-4.2, ets-

4, cul-4, set-6, mex-3, nos-2, zif-1) are kept in a silent state through OMA-1/2 

acting as the major regulator or one of the intercommunicating regulators. 

However, the phenotype observed in the absence of OMA-1/2 is not intuitively 
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described by the repression of the mRNA targets of OMA-1/2 that are identified 

so far.  

 

Model for OMA-1/2 Mediated RNA Regulation 

	
There are multiple ways OMA-1/2 could repress expression from the 

3ʹUTR reporters developed in our study. OMA-1/2 could be directly binding and 

repressing translation.  Consistent with this hypothesis, each of the UTRs contain 

multiple UA(A/U) motifs recognized by OMA-1 (Table 4.2).  
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Table 4.2 List of target mRNAs of OMA-1 and the number of UA(A/U) elements in 
their 3´UTRs 

Gene 
Number of 
UA(A/U) 
elements 

glp-1 28 
atg-4.2 9 
cul-4 10 
ets-4 48 

mex-3 35 
set-6 28 

mom-2 20 
nos-2 19 
rnp-1 14 
rnf-5 18 

cdc-25.3 12 
zif-1 27 

 

OMA-1/2 could also be indirectly regulating transgene expression through 

competitive or cooperative interactions between multiple regulatory proteins. As 

shown in Spike et al., there are multiple proteins that associate with OMA-1/2  

suggesting that OMA-1/2 are functioning as ribonucleoprotein (RNP) complexes 

(Spike et al., 2014b; 2014a). The context of OMA-1/2 RNP could affect their 

regulatory activity. Indeed, regulation of one of the targets of OMA-1/2, cdc-25.3, 

was studied in detail and it was shown that OMA-1 acts antagonistically with a 

TRIM-NHL protein, LIN-41, to repress cdc-25.3 in oocytes. cdc-25.3 encodes for 

a tyrosine phosphatase that participates in activating oocyte maturation by 

activating a cyclin dependent kinase, CDK-1 (Kumagai and Dunphy, 1991). 

Therefore, repression of cdc-25.3 by OMA-1/2 in oocytes might seem 
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contradictory to the role of OMA-1 and OMA-2 in promoting oocyte maturation. 

An antagonistic model between OMA-1 and LIN-41 explained this discrepancy 

(Spike et al., 2014a). LIN-41 also regulates cdc-25.3 and prevents precocious 

meiotic maturation by repressing cdc-25.3 in immature oocytes. In maturing 

oocytes, however, LIN-41 must be degraded for proper maturation. This is where 

OMA-1/2 mediated regulation promotes oocyte meiotic maturation. One 

possibility is that OMA-1/2 participate in degradation of LIN-41 by activating 

CDK-1, a factor that is required for elimination of LIN-41 in mature oocytes (Spike 

et al., 2014a). This can be achieved either by repressing negative target mRNA 

regulators of CDK-1 or by directly inhibiting LIN-41. This would suggest an 

interplay between OMA-1 and other proteins to select specific targets for 

regulation. Detailed analysis of other mRNA targets of OMA-1/2 can provide 

additional models for the role of translational regulation by OMA-1/2 in oocyte 

maturation. Another mRNA target of OMA-1/2, rnp-1, is involved in proper 

oogenesis by regulating sperm-to-oocyte switch. Its repression in developing 

oocytes is not directly related to regulation of oocyte maturation. A similar 

mechanistic analysis can point to a biological relevance of this target to the 

oocyte maturation defective phenotype.  

A list of OMA-1 interacting proteins has been identified using mass 

spectrometry. Most abundantly interacting proteins were involved in translational 

regulation mechanisms. The list contained translational repressors such as IFET-

1, an eIF4E-binding protein (Sengupta et al., 2013), translational activators, such 
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as GLD-2, a poly(A) polymerase subunit ( Wang et al., 2002) and other RBPs, 

such as OMA-2, PUF-5,  POS-1, GLD-1 and MEX-3 (Detwiler et al., 2001; 

Draper et al., 1996; Jones et al., 1996; Lublin and Evans, 2007; Tabara et al., 

1999). As discussed in Chapter I, translational repression mechanisms through 

eIF4E-BP’s is a conserved mechanism seen in oogenesis of multiple species. It 

is likely that C. elegans may also employ a similar mechanistic approach in 

oocyte repression. IFET-1 was shown to be crucial to germline development and 

was proposed to act as a general translational repressor (Sengupta et al., 2013). 

IFET-1 was also shown to contribute to repression of targets OMA-1,  such as 

mom-2 and zif-1 (Guven-Ozkan et al., 2010; Oldenbroek et al., 2013), further 

supporting a model of 4E-BP mediated translational repression mechanism by 

OMA-1 (Spike et al., 2014b). Ribosome profiling in the presence and absence of 

OMA-1/2 can also highlight the role of these proteins in translational repression 

by showing the percentage of mRNAs that are repressed via the OMA proteins. 

Translational activation of maternal mRNAs upon fertilization by poly(A) 

polymerases is also a commonly seen mechanism of activation mRNAs required 

for cell-fate specification events in early embryos. In several cases, mRNAs are 

kept in a stable, deadenylated state in oocytes but are then activated by 

polyadenylation at the correct developmental time (Jacobson and Favreau, 1983; 

Mangus et al., 2003). There is no evidence of translational activation of mRNAs 

by OMA-1 yet; but GLD-2, along with its RNA-binding partner RNP-8, was shown 

to be a wide-range regulator of oogenesis (Kim et al., 2010).  Since OMA-1 is 
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involved in coordinating oocyte maturation with the cellular events occurring at 

the oocyte-to-embryo transition, it is possible that OMA-1 may act with GLD-2 to 

selectively activate translation of mRNAs by changing poly(A) tail length of 

mRNAs required for completion of maturation or early embryogenesis.  

Interaction of OMA-1 with other RBPs that are required for oogenesis and 

early embryogenesis suggests yet another model of regulation. The findings 

presented in this thesis suggest that OMA-1 can be acting through clusters of 

overlapping binding sites. glp-1 mRNA repression by OMA-1 is supportive of this 

hypothesis. As shown previously, regulation of glp-1 is spatially and temporally 

regulated (Marin and Evans, 2003; Ogura et al., 2003; Lublin and Evans, 2007; 

Farley and Ryder, 2012). glp-1 gain of function mutation leads to a tumorous 

germline due to excessive proliferation of mitotic germ cells (Berry et al., 1997). 

To prevent ectopic expression of GLP-1, the mRNA is tightly regulated by 

multiple RNA-binding proteins such as GLD-1, POS-1, PUF-5/6/7 and OMA-1/2 

(Farley and Ryder, 2012; Lublin and Evans, 2007; Marin and Evans, 2003; Ogura 

et al., 2003). In the germline, GLD-1 represses glp-1 in the syncytial region, PUF-

5/6/7 take over around the loop region. Regulation is then handed over to OMA-1 

and OMA-2. OMA-1 and OMA-2 repress glp-1 in late stage oocytes where the 

other RNA-binding proteins are not present. At the oocyte to embryo transition, 

OMA-1 is marked for degradation by phosphorylation. This leads to a rapid 

degradation of OMA-1 at one-cell stage embryo. Thus, as OMA-1 is degraded, it 

might hand-off the regulation of glp-1 to embryonic RNA-binding factors. It was 
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shown that in the embryos, this regulation is via a conserved cluster of 

overlapping binding sites through which POS-1 and GLD-1 compete for binding. 

This is plausible as the POS-1 and GLD-1 binding sites that are overlapping with 

OBMs will be accessible upon OMA-1 and OMA-2 degradation. Interestingly, all 

novel targets of OMA-1 I identified, except ets-4, also have glp-1-like cluster of 

overlapping binding sites in their 3´UTRs (Figure 4.1). 
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Figure	4.1	Cluster	of	predicted	binding	sites	for	RNA-binding	proteins	in	the	targets	of	
OMA-1	

glp 1	3´UTR	contains	a	dense	cluster	of	predicted	binding	sites	for	FBF,	GLD 1,	POS 1,	MEX
3.	Top	panel	shows	the	glp 1	3´UTR	as	annotated	in	the	UCSC	genome	browser.	The	region	
highlighted	in	pink	denotes	the	cluster	of	predicted	RBP	binding	sites	(black	bars).	Below	
the	image	of	the	glp 1	3´UTR	are	the	clusters	of	binding	sites	present	in	the	3´UTR’s	of	the	
mRNA	targets	that	are	repressed	by	OMA 1/2.	All	targets,	except	ets 4,	show	a	densely	
populated	cluster.	The	images	are	exported	from	UCSC	genome	browser	created	by	the	
Genome	Bioinformatics	Group	of	UC	Santa	Cruz.	
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Dissecting functionally related targets of OMA-1/2 in oocytes 

 

Using an RNA-centric approach, biotinylated capture oligos can be used 

to select mRNA targets that show OMA-1 mediated regulation. Similar to the 

interactome capture assay developed by the Hentze lab (Castello et al., 2012; 

Marraffini et al., 2013), crosslinking of protein complexes interacting with the 

specific 3´UTRs prior to immunoprecipitation will allow identification of proteins 

associated with the transcripts by mass spectrometry. Subsequently, 

investigating overlapping sets of regulated mRNA targets for functionally related 

groups of proteins might provide more information on molecular functions of 

OMA proteins. Such analysis will also help us understand the molecular 

mechanisms behind OMA-1 gene regulation. For example, if IFET is present as a 

co-purifying protein for a group of transcripts repressed by OMA-1, it might point 

to a repression of translational machinery. However, if for another group of 

transcripts associated with OMA-1 co-purifies with GLD-2, a translational 

activator, those mRNAs will be candidates for activation during oocyte-to-embryo 

transition.  

To conclude, OMA-1 and OMA-2 likely prevent premature expression of 

mRNAs involved in embryonic cell fate pattering events prior to fertilization.  The 

relatively relaxed RNA-binding specificity of OMA-1 suggests that it binds to 

many mRNAs.  As such, OMA-1 could be a general repressor of mRNA 
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translation in oocytes.  Alternatively, OMA-1 directed regulation could require 

additional factors that alter or enhance its RNA binding specificity. In that case, 

competitive or cooperative interactions between OMA-1 and other proteins that 

bind overlapping binding sites regulate target mRNAs. Future work will 

distinguish between these possibilities, and define the mechanism of OMA-1 

mediated repression. 

Function of OMA-1/2 in Embryos 

	
OMA-1 and OMA-2 are also abundant in one-cell embryos but their 

function in embryos has not been studied in detail. A model for the role of OMA-

1/2 in embryos suggest these proteins act as transcriptional repressors by 

sequestering TAF-4, an essential component of transcription machinery, in the 

cytoplasm (Guven-Ozkan et al., 2008). However, high-throughput sequencing 

experiments, such as global transcription activity profiling, to determine the 

percentage of OMA-1 mediated transcriptional repression have not been 

performed yet. There is also evidence that OMA-1/2 may act as translational 

repressors in embryos as well. mei-1, a katanin subunit, is repressed in embryos 

for proper mitotic spindle assembly (Clark-Maguire and Mains, 1994b; 1994a; Li 

et al., 2009). In one-cell embryos, OMA-1 and OMA-2 may directly be involved in 

repressing mei-1. It is intriguing that OMA-1 might have different roles in oocytes 

or embryos and might regulate different targets in different cellular contexts. It is 

possible to isolated oocytes and one-cell embryos separately to assess different 



	

	 122	

functions of OMA-1 in different developmental environments during oocyte-to-

embryo transition. For enrichment of one-cell embryos Piano and Rajewsky 

developed a method that enriches for one-cell embryos expressing OMA-1 

(Stoeckius et al., 2009). A GFP reporter strain harboring the endogenous 

promoter of oma-1 fused to the oma-1 coding sequence which is fused to GFP 

(P(oma-1)::oma-1::GFP:: oma-1 3´UTR) is available and OMA-1 encoded by the 

strain is functional. Stoeckius et al. used this strain to collect precisely one-cell 

staged embryos using fluorescence activated cell sorting (eFACS) as highest 

level of GFP seen in mature oocytes and one-cell embryos. They have analyzed, 

by flow cytometry, mixed staged embryos extracted from adult hermaphrodites of 

the OMA-1::GFP strain. A population of embryos expressing high GFP signals 

was selected for sorting in FACS. This yielded 70% enrichment in one-cell 

staged embryos. RIP-SEQ experiments can then be applied to these embryos to 

characterize the DNA and/or mRNA targets.  

A disadvantage of studies that identify mRNAs that associate with RNA-

binding proteins is that they do not show which targets are direct targets that are 

regulated by OMA-1. They can only show where OMA-1 can bind to in the mRNA 

but not necessarily regulate. To identify and validate functionally regulated 

mRNAs, reporter studies are crucial. In Chapter III, I discuss in detail how we 

improved the technology to generate reporter strains and how this technology, 

combined with the ease of performing RNAi studies in C. elegans, led to 

identification of five new regulatory targets of OMA-1. Other interacting partners 
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were also identified along with an interesting sperm expression pattern. These 

patterns are discussed in detail in Chapter III.  

Library MosSCI 

	
In Chapter III, we showed that adapting the MosSCI method for generating 

single copy integrated transgenic strains to a library format increased our rate in 

generating reporter strains. The success rate of transgenesis is limited by the 

number of successful injections and by the extent of transgene integration. The 

rate of successful injections will vary between different injectors. The recent 

development of a microfluidic device to automate the injection procedure could 

help improve the number of successful injections (Gilleland et al., 2010). In this 

work, we used the direct insertion method of MosSCI. The extent of integration 

can be improved through the use of different promoters driving Mos1 

transposase expression. For example, use of the eft-3 promoter has been shown 

to increase the rate of transformation presumably by increasing the extent of 

Mos1 transposon excision (Frøkjaer-Jensen et al., 2012). With this improvement, 

fewer injections may be sufficient to generate a number of strains after random 

integrations at the heat-shock step.   

Obtaining transgenic strains at an increased rate will be advantageous in 

multiple ways. Library injection may be adapted to CRISPR-based approaches to 

make targeted mutations (Friedland et al., 2013; Jinek et al., 2012; H. Kim et al., 

2014). In an endogenous genomic locus of interest, a set of randomized 
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insertions/deletions can be introduced through injection of a library of guide 

RNAs targeted for that locus. Using multiple CRISPR guides per injection can 

help ensure a mutation in the gene of interest, as has recently been shown in 

zebrafish (Gagnon et al., 2014).  

In this study, we used library MosSCI to make 3ʹUTR reporters but this 

method could easily be adapted to make different promoter reporters or protein 

fusions to help define other aspects of regulatory biology, including transcription 

regulation and protein modification. A mutagenesis or deletion library analysis 

would help identify key cis-regulatory elements that control transcription 

regulation patterns critical to somatic differentiation in later stages of 

embryogenesis, after zygotic gene activation. Library MosSCI can also be used 

to rapidly generate mutants within a single UTR of interest and screen mutant 

strains to help map functional elements in a regulatory region of a UTR of 

interest. Another potential application of this technology could derive from 

systematically analyzing protein variants. Transgenic strains can be used to 

rescue a mutant phenotype by overexpressing a wild-type copy of the mutant. In 

such a case, injecting a library of overlapping fragments of the gene 

simultaneously could help identify the fragment that is minimally sufficient for 

rescue.  
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Concluding Remarks 

 

The ability to generate transgenic strains in high yield will enable improved 

functional mapping of regulatory interaction networks between maternal mRNAs 

and RNA-binding proteins. Methods like CLIP, RIP-SEQ and PAR-CLIP identify 

interacting partners in vivo but may identify interactions that have no regulatory 

consequence. There are instances where an RNA-binding protein can play an 

active role in regulating a transcript through a binding site. In this case, the target 

site is necessary and sufficient for regulation. In other cases, the effect of an 

RNA-binding protein might be indirect or context dependent. In vivo studies with 

reporter strains carrying regulatory elements is necessary to distinguish between 

interactions of RNA-binding proteins that have a relevance to the regulation of an 

mRNA or not.  As we have done in this work, the study of transgenic reporter 

strains carrying different C. elegans 3´UTRs can be done by RNAi screening. 

High-throughput RNAi screens could identify additional RNA-binding proteins that 

regulate these reporter transgenes. Once regulatory partners are identified, the 

necessity and sufficiency of target sites can be tested using library MosSCI to 

identify binding sites that are functionally important. Ultimately, the utility of large 

data sets that yield high resolution contact maps will be defined by their 

predictive power in functional studies.  In order to keep pace, new technology to 

improve the output of functional studies in live animals is needed.  My work here 
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demonstrates a simple strategy to improve the throughput of C. elegans single 

copy transgene strain production, a key first step towards this goal. Using this 

strategy, we can expand on making more reporter strains carrying 3´UTRs 

bearing clusters of binding sites and identify more novel targets of OMA-1 

regulated by OMA-1. Alternatively, we can expand on generating strains carrying 

mutations in OMA-1-binding motifs of various RNA targets to identify functionally 

relevant binding sites. Ultimately, identifying the full range of direct targets of 

OMA-1/2 and understanding how they are regulated will illuminate mechanisms 

of regulation during oocyte-to-embryo transition.  

When we started working on understanding the roles of OMA-1 and OMA-

1 in regulating oocyte to embryo transition, their roles were not well-defined. It 

was known that these proteins are redundantly required for oocyte maturation 

(Detwiler et al., 2001); however, the molecular mechanisms behind regulation of 

oocyte maturation was poorly understood. nos-2, mei-1 and zif-1 mRNAs were 

proposed to be regulated by OMA-1 and OMA-2 in developing oocytes (Jadhav 

et al., 2008; Li et al., 2009; Guven-Ozkan et al., 2010). This pointed towards the 

importance of the role of these proteins as post-transcriptional regulators in 

oocytes. We therefore set out to identify more mRNA targets of OMA-1 and 

OMA-2 and provide a mechanistic overview of how these proteins regulate 

oocyte maturation. As of today, us and others have identified and validated 12 

mRNA targets regulated by OMA-1 and OMA-2 (Kaymak and Ryder, 2013, Spike 

et al., 2014b). These targets were involved in diverse biological pathways hinting 
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to a role of OMA-1 and OMA-2 as general repressors during oocyte-to-embryo 

transition. In addition to novel mRNA targets, OMA-1 interacting proteins were 

also identified (Spike et al., 2014b). The identification of eIF4E-BP’s as 

translational repressor proteins interacting with OMA-1 provides a model 

whereby OMA-1 interacts with other proteins to achieve its target specificity and 

lead to a translational repressor. Expanding on how the novel targets of OMA-1 

are regulated mechanistically can now help us shine light on how OMA-1 and 

OMA-2 contribute to proper oocyte maturation and timely transitioning into and 

embryo.  
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 CHAPTER V: APPENDICES  
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Appendix A: Library MosSCI Mutagenesis 

 
Significant background and results 
 

We wondered if we could use library MosSCI to screen for mutants within 

a single UTR of interest.  We chose to study the C. elegans Notch receptor 

homolog, glp-1. glp-1 mRNA is present throughout the germline and embryos but 

the protein is expressed only at the distal end of the germline where it regulates 

the mitosis to meiosis switch and the anterior cells of the four-cell embryo where 

it specifies mesodermal cell fates (Austin and Kimble, 1987; Crittenden et al., 

1994; Evans et al., 1994).  

We are interested in glp-1 because at least five RNA-binding proteins 

(GLD-1, POS-1, MEX-3, PUF-5/6/7, OMA-1/2) that repress the glp-1 mRNA are 

known (Farley and Ryder, 2012; Lublin and Evans, 2007; Marin and Evans, 

2003; Ogura et al., 2003; Pagano et al., 2009; Ryder et al., 2004). The region of 

the UTR sequence that is sufficient for regulation has been mapped. When in 

vitro transcribed, capped and polyadenylated mRNAs encoding ß-galactosidase 

and containing deletions of the glp-1 3ʹUTR were injected into worm gonads, a 

region of the UTR termed the spatial control region (SCR) was found to be 

necessary to confer the endogenous GLP-1 pattern of expression in the LacZ 

reporter (Evans et al., 1994). To determine which region or regions of the SCR 

were sufficient for regulation, fragments of the SCR were added to an 

unregulated 3'UTR (unc-54) and the reporters were injected in the same LacZ 
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reporter design. A 34-nucleotide sub-region of this region was found to be 

sufficient to generate the glp-1 translation pattern. This region contained 

repression and de-repression elements found by mutational analysis in the LacZ 

reporters (Marin and Evans, 2003). The binding sites within this region that are 

sufficient for the repression have also been mapped. For example, POS-1 and 

GLD-1 repress glp-1 3ʹUTR through a conserved site of overlapping binding sites 

(Farley and Ryder, 2012). We wanted to examine this conserved site that has 

clusters of binding sites for the proteins repressing glp-1 mRNA to identify a 

mutation in a binding site that is sufficient to change the reporter expression 

pattern.  

We prepared a library of forty germline GFP reporters containing single 

nucleotide substitutions of the glp-1 3ʹUTR. We selected a contiguous forty-

nucleotide region containing well-characterized binding sites for GLD-1 and POS-

1.  Every single nucleotide in this stretch was mutated. Adenosines were mutated 

to cytidines, and thymidines were mutated to guanosines, or vice versa. Through 

~70 injections, we recovered strains that had incorporated six of the forty 

different mutations. These strains are listed in Table 5.1. 
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Table 5.1 List of glp-1 3´UTR reporter strains with introduced mutations 

 

We compared the GFP expression patterns of the reporter strains bearing 

a different point mutation in the glp-1 3ʹUTR to each other and to the wild-type 

reporter carrying no mutations in the UTR (Figure 5.1). There were no apparent 

expression differences observed between the recovered glp-1 mutant reporters 

and the wild-type GFP reporter, suggesting that the mutations do not disrupt a 

functional regulatory element.  By contrast, mutations that target GLD-1 or POS-

1 binding sites—previously generated by single reporter mosSCI—led to large 

changes in the germline and embryo (Farley and Ryder, 2012).  We conclude 

that library mosSCI can be used to rapidly generate mutant strains to help map 
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Appendix B: Analysis of Cluster of Binding Sites in neg-1 3´UTR 

Significant background and results 

The work described in this appendix appeared as part of the publication by 

Ahmed Elewa (Elewa, A., Shiriyama, M., Kaymak, E, Harrison, P.F., Powell, 

D.R., Du, Z., Chute, C.D., Woolf, H., Yi, D., Ishidate, T., Srivnivasan, J., Bao, 

Z.  Beilharz, T.H., Ryder, S.P., Mello, C.C.  (2015) POS-1 promotes endo-

mesoderm development by inhibiting the cytoplasmic deadenylation of neg-1 

mRNA.  Dev. Cell). Ahmed in the Mello lab characterized the neg-1 gene (Elewa 

et al., 2015). neg-1 was identified in a genetic screen as a suppressor of pos-1. 

pos-1 null mutants show a gutless phenotype and neg-1 was found to suppress 

the gutless phenotype and result in a properly differentiated endodermal and 

pharyngeal tissue in embryos (Elewa et al., 2015). 

Analysis of the neg-1 3´UTR showed that there is a cluster of overlapping 

binding sites for MEX-5, MEX-3 and POS-1 (named the RBP cluster) (Figure 

5.2A). RBP cluster is similar to the cluster we observed in the glp-1 3´UTR. I was 

involved in determining the contribution of these binding sites to the binding 

affinity of POS-1, MEX-5 and MEX-3. For this purpose, I first compared the 

binding of POS-1, MEX-5 and MEX-3 to the wild-type sequence with of the RBP 

cluster and a mutated version of this cluster. The mutated cluster contained 

disrupted binding sites for POS-1, MEX-5 and MEX-3 (Figure 5.2B, C). 

Upstream the RBP cluster there is a polyU sequence which is the predicted 

binding site for MEX-5. This region is named M5B. I did a fluorescence 
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polarization assay to determine the binding affinity of MEX-5 to M5B. As 

compared to the RBP cluster, MEX-5 bound weakly to M5B (Figure 5.2C, right 

panel).  
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Figure	5.2	Electrophoretic	gel	shift	assays	and	fluorescence	polarization	assays	of	POS-1,	
MEX-5	and	MEX-3	show	that	all	bind	RBP	

A.	Nucleotide	sequence	of	the	neg 1	3´UTR	showing	cluster	of	binding	sites	for	POS 1,	
MEX 5	and	MEX 3.		
B.	EMSAs	show	that	POS 1	binds	to	RBPc	WT	with	an	apparent	affinity	of	41	nM.	Mutating	
the	RBP	sequence	reduces	the	binding	affinity	dramatically.		
C.	Fluorescence	polarization	data	shows	that	MEX 3	binds	RBPc.	MEX 5	binding,	on	the	
right,	shows	that	MEX 5	also	can	bind	RBP	WT	and	M5B.	
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In vivo reporter studies with mutations in the MEX-5 and POS-1 binding 

sites within the RBP cluster showed that these sequences have functional 

relevance. Accordingly, we wanted to test whether POS-1 and MEX-5 compete 

each other. Competition assays showed that MEX-5 binds favorably to RBPc 

than POS-1 (Figure 5.3). 
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Downstream the RBP cluster, there is another region which contains 

overlapping binding sites for POS-1 and MEX-3. This region was named P1M3B. 

We then tested whether these proteins can bind to this cluster.  Gel shift assays 

showed that both proteins bind P1M3B. 

	  

Figure	5.3	MEX-3	and	POS-1	bind	P1M3B	in	vitro		

Electrophoretic	mobility	shift	assays	for	MEX 3	and	POS 1	are	shown	on	the	left.	The	graph	
of	fraction	bound	against	protein	concentration	is	on	the	right	showing	that	MEX 3	binds	
with	a	50	nM	affinity	and	POS 1	binds	with	a	16	nM	affinity.	
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Experimental procedure: 
 

Fluorescence anisotropy and electrophoretic mobility shift assays using 

purified recombinant MBP-tagged POS-1 (80-180), MEX-3 (45-205) and MEX-5 

(236-350) were done as described in Farley et al. 2008, Pagano et al. 2009 and 

Pagano et al. 2007, respectively. All RNA oligonucleotides used in 

this study were chemically synthesized and fluorescently labeled at the 3´end 

with fluorescein amidite (FAM) by Integrated DNA Technologies (IDT). 

Competition assays are set up similar to the EMSA assays as described in Farley 

et al, 2012. 550 nM of POS-1 (80-180) or 450 nM MEX-5 (236-350) was added to 

the RNA equilibration buffer to get 70% RNA bound complex. Then the 

corresponding competing protein was titrated to the reaction mixture at varying 

concentrations. After 3 hours of equilibration, the reaction mixture was run on a 

5% native polyacrylamide gel in 1X TB for 3 hours, at 120V. Quantifications were 

done by determining the pixel intensity of the RNA species bound by protein 

relative to the pixel intensity of total RNA species to give the fraction bound of 

RNA. The pixel intensities of each band were determined and background 

corrected by using Image Gauge (Fujifilm, Tokyo, Japan).   
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Appendix C: An RNA-Centered Approach to Determine Positively 

Interacting RNA-Binding Proteins and RNA Targets 

Significant background and results 
	

The work described in this appendix appeared as part of the publication by 

Alex Tamburino: Tamburino, A.M., Kaymak, E., Shrestha, S., Ryder, S.P. 

Walhout, A.J.M. (2015) PRIMA:  an RNA-centered protein-RNA interaction 

mapping assay (submitted). 

Alex in Marian Walhout’s lab has developed a technology to identify 

interacting RNA-binding proteins and their cognate 3´UTR targets. Since physical 

interaction between proteins and RNA result in a functional regulation, a 

secondary assay was necessary to validate the positive hit that are generated by 

the high-throughput assay, PRIMA (Tamburino et al., 2015) is a yeast based 

fluorescence assay that relies on increased translational efficiency of GFP upon 

a positive interaction between an RNA-binding protein and a 3´UTR sequence. 

Since we had generated 3´UTR reporter strains using library MosSCI, we wanted 

to combine PRIMA with our transgenic lines. PRIMA allowed us to prioritize the 

list of RNA-binding proteins we would like to test in an RNAi screen. I was 

involved in doing the RNAi experiments. As a proof of concept, Alex decided to 

use glp-1 3´UTR and nos-2 3´UTR, as these UTRs were studied extensively. The 

highest scoring interactions for the glp-1 3´UTR included the RNA-binding 

proteins: FBF-1/2, PUF-3, PUF-5 and POS-1. PUF-5 and POS-1 were already 

shown to repress glp-1 (Farley and Ryder, 2012; Lublin and Evans, 2007). In 
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contrast, PUF-3 was identified as a novel regulator of glp-1 (Figure 5.5A). Two of 

these, MEX-3 and POS-1, have already been shown to regulate nos-2. We were 

able to recapitulate this result in vivo The highest scoring interactions for the nos-

2 3´UTR included the RNA-binding proteins: MEX-3, POS-1, HRP-1, R09B3.2, 

ZTF-4 and PIE-1. One of these, MEX-3, has already been shown to regulate nos-

2 (Pagano et al., 2009) . We were able to recapitulate this result in vivo (Figure 

5.5B). 
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Figure	5.5	RNAi	experiments	to	test	the	in	vivo	regulation	of	glp-1	and	nos-2	3´UTRs	

A.	Using	transgenic	strains	expressing	GFP	under	the	control	of	glp 1	3´UTR	and	nos 2	
3´UTR,	bound	RNA binding	proteins	were	tested	for	regulatory	activity	using	RNAi	
knockdown.	puf 3	and	puf 5	RNAi	resulted	in	increased	expression	of	GFP	in	immature	
oocytes	of	glp 1	UTR	strain.		
B.	In	the	embryos,	pos 1	RNAi	resulted	in	ectopic	GFP	expression	in	the	cells	of	four cell	
embryo	of	the	glp 1	UTR	strain.	mex 3	RNAi	resulted	in	ectopic	GFP	expression	in	the	
cells	of	28+ cell	embryo	of	the	nos 2	UTR	strain.	
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Experimental procedure 
	
RNAi knockdown: The knockdowns were performed using the RNAi feeding 

method as described I Kamath et al., 2003. The open reading frames (ORFs) into 

the RNAi feeding vector construct L4440 and transformed into HT115(DE3) cells. 

The transformed colonies were grown to OD600 = 0.4 and induced with isopropyl 

1-thio-β-D-galactopyranoside (IPTG) at a final concentration of 0.4 mM for 4 

hours. After induction the 50 ml cultures were concentrated 10- fold and 50μl of 

the culture was added onto NGM plates containing 1mM IPTG and 100 μg/ml 

Ampicillin. After bleaching worms, eggs were plated onto these plates and kept at 

25°C for 2 days before imaging. HT115 strain bacteria transformed with the 

empty vector L4440 was used as the control RNAi. 

 

Imaging of worm strains: Worms were placed in 0.4 mM levamisole on to 2% 

agarose pads. Emryo dissections were done in M9 solution. DIC and GFP 

fluorescence images were taken on Zeiss Axioscope 2 plus microscope (Carl 

Zeiss, Jena, Germany) using an oil-immersion 40X objective. Confocal images 

were taken under 40X magnification using Leica DMIRE2 microscope (Leica, 

Wetzlar, Germany). 
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