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Fifteen transgenic lines were obtained from 217 injections. In this initial set 

of strains, we noticed that some constructs were overrepresented. Four of the 

integrated lines contained an integration of Pmex-5::GFP::H2B::PEST::cul-4 

3ʹUTR.  Three of the integrated lines contained Pmex-5::GFP::H2B::PEST::lin-26 

3ʹUTR.  Two of the integrated lines contained Pmex-5::GFP::H2B::PEST::mbk-2 

3ʹUTR. Two more of the integrated lines contained Pmex-

5::GFP::H2B::PEST::mex-3 3ʹUTR. Additional two of the integrated lines 

contained Pmex-5::GFP::H2B::PEST::atg-4.2 3ʹUTR. Of the fifteen recovered 

lines, we obtained seven unique reporters. To prevent recovering multiple copies 

of the same strain, we then reduced the size of the library to include just the 

remaining nine constructs from our library of sixteen. In additional 52 injections, 

we obtained six additional independent lines, resulting in four additional unique 

reporter strains. In total, we were able to generate eleven unique transgenic 

strains in 269 injections. These are listed in Table 3.1.   

The rate of successful injections giving wild-type moving transformants 

was higher than the rate of integration steps. In the total of 269 attempted 

injections, 93 gave rise to wild-type moving transformant progeny.  Of these, 21 

contained a single copy of a transgenic construct.  As such, we estimate our 

successful injection rate to be 35%, the integration rate to be approximately 23%, 

and the unique strain recovery rate (per successful injection for our relatively 

small library of sixteen reporters) to be ~11%.  While overall success is still 

limited by successful injection rate (governed by the ability of the injector), the 
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overall rate of recovery of unique reporters represents a large improvement over 

previous benchmarks (Frøkjaer-Jensen et al., 2012; 2008).  

 

Expression patterns of GFP in the integrants 
	
	

Having established new lines, we then used direct fluorescence imaging of 

the germline to determine the expression patterns of the transgenic reporter 

strains. Three out of the twenty-one lines we generated did not show GFP 

fluorescence, presumably due to germline transgene silencing (Kelly et al., 

1997).  The eighteen remaining strains prepared by library MosSCI showed GFP 

expression in the germline and/or embryos. As expected, the pattern of 

expression varied with the identity of the 3ʹUTR.  The expression patterns are 

summarized in Figure 3.3.  

 

Pan germline expression: Some 3´UTR reporters showed pan-germline 

expression, including ets-4, usp-14, hbl-1, lin-26 and cwn-1.  Reporter expression 

was observed in the distal region of the germline, in mitotic progenitor cells, as 

well as in the syncytial region, in the germline bend, in oocytes, and in embryos.  

We note that the hbl-1 reporter expression was faint in all regions of the 

germline.  In four of the five reporters (usp-14, lin-26, hbl-1, and cwn-1), no 

expression was observed in sperm, consistent with the findings of Seydoux and 

co-workers that suggests sperm expression is governed via transcriptional 

regulation at the promoter, rather than post-transcriptionally through 3´UTR level 
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(Merritt et al., 2008).  In direct contrast, ets-4 reporter expression remained 

strong in sperm (n=12/23), suggesting that at least some 3´UTRs can direct 

retention of sperm specific expression.  

 

The set-2 pattern:  We also studied the pattern of a set-2 3ʹUTR that was 

integrated using standard reporter MosSCI, rather than the library approach 

presented here. set-2 3ʹUTR showed faint GFP expression in the distal end 

followed by an increased expression in the syncytial region, which then 

decreased around the recellularization region and oocytes. As with ets-4, the 

GFP expression remained strong in sperm (n=11/15), providing a second 

example of a 3´UTR that can direct expression of a reporter in male gametes. 

 

Oocyte repression:  Other 3´UTR reporters, such as atg-4.2, cul-4, him-14 

and set-6, and mbk-2 showed strong expression in the syncytial region of the 

gonad and in embryos but little or no expression in oocytes. atg-4.2 and cul-4 

showed GFP expression in the distal mitotic zone followed by increased 

expression in the syncytial region, and decreased expression around the 

recellularization region and in early oocytes. Weak expression in oocytes 

appeared to increase as the oocytes neared the spermatheca. In contrast, set-6 

and him-14 3´UTR reporters showed no increase in oocyte expression in 

maturing oocytes. Interestingly, set-6 reporter also showed GFP expression in 
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sperm (n=10/17). Only the mbk-2 reporter showed a complete lack of expression 

in oocytes.   

 

Oocyte-and embryo-specific expression:  The mex-3 3ʹUTR reporter is 

unique in that it showed strong GFP expression in the oocytes, with expression 

peaking in the most mature oocytes.  Little or no expression was observed in the 

distal germline or in the syncytial region.  Expression was also observed in the 

anterior cells of early embryos, but not in the posterior, consistent with the 

patterned expression of endogenous MEX-3 (Draper et al., 1996).  

 

Out of the eleven 3ʹUTR reporter strains we studied, endogenous protein 

expression patterns are known for LIN-26, MEX-3, MBK-2 and SET-2. Antibody 

staining experiments showed that SET-2 and MEX-3 endogenous patterns match 

our reported patterns. MEX-3 is seen in the oocytes and anterior cells of two and 

four cell stage embryos matching our GFP reporter pattern (Bowerman et al., 

1997; Draper et al., 1996). SET-2 is observed strongly in the mid-pachytene 

region of the germline but also in pharynx, neurons and intestines (Xu and 

Strome, 2001). We do not expect to observe somatic expression with our 

reporters, which include a germline specific promoter. No sperm expression was 

reported. For MBK-2, antibody staining was reported at the cortex of developing 

oocytes and in cytoplasm of embryos; however, we have not seen reporter 

expression in the oocytes of the mbk-2 3ʹUTR reporter strain (Stitzel et al., 2007). 
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These differences could be due to transcriptional regulation by the endogenous 

promoter used, or due to post-translational regulation. LIN-26, on the other hand, 

is endogenously expressed in the somatic gonad and hypodermal cells of 

embryos and larvae of all stages; however, germline expression pattern was not 

reported (Labouesse et al., 1996). Endogenous protein expression patterns have 

not been published for ATG-4.2, CUL-4, HIM-14, ETS-4 SET-6, and USP-14. 
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Figure	3.3	GFP	expression	patterns	of	integrated	3´UTR	strains	

A:	Schematic	of	the	C.	elegans	germline.	The	syncytial	region	of	nuclei	in	the	distal	arm	
of	the	gonad,	the	oocytes,	sperm,	and	embryos	in	the	uterus	are	shown.	B:	
Representative	images	of	single	copy	integrated	reporter	strains	that	express	GFP	under	
the	control	of	different	3'UTRs.	C:	A	table	summarizing	the	GFP	expression	patterns	of	
the	reporter	strains	in	different	parts	of	the	germline	and	embryos.		Gray	bars	denote	
expression.		The	number	of	animals	imaged	is	indicated	to	the	right.	
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Targeted RNAi screening of transgenic reporter strains  
	
	
We wished to identify RNA-binding proteins that directly or indirectly control the 

expression pattern of the new 3´UTR reporter strains. We chose a subset of 

reporter strains that have distinct patterns of GFP expression to study further by 

RNAi knockdown studies. The strains we chose to investigate carry the atg-4.2 

3ʹUTR, cul-4 3ʹUTR, set-2 3´UTR, set-6 3ʹUTR, mex-3 3ʹUTR, or ets-4 3ʹUTR.  In 

addition to their interesting patterns of expression, these 3ʹUTRs also contain 

binding motifs for RBPs with important roles in germline development and early 

embryogenesis. We wanted to identify which RNA-binding proteins contribute to 

the varying patterns of GFP expressions in the reporter strains.  We looked for 

expression pattern changes under oma-1;oma-2 RNAi, daz-1 RNAi pos-1 RNAi, 

and control treatments. We chose to knockdown these transcripts because they 

encode germline expressed RNA-binding proteins that have an easy to score 

phenotype. oma-1;oma-2 RNAi, and daz-1 RNAi lead to sterility and pos-1 RNAi 

leads to embryonic lethality (Detwiler et al., 2001; Karashima et al., 2000; Tabara 

et al., 1999). 

OMA-1 and OMA-2 are tandem zinc-finger RNA-binding proteins 

redundantly required for oocyte maturation. The phenotype of oma-1;oma-2 

RNAi knockdown is more than 90% penetrant when performed by the feeding 

method.  Knockdown of oma-1 and oma-2 by RNAi leads to oocytes with 

increased size, a greater number of oocytes in the gonad arm, and sterility 
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(Detwiler et al., 2001; R. Lin, 2003).  Knockdown in atg-4.2 3ʹUTR, ets-4 3ʹUTR, 

cul-4 3ʹUTR, set-6 3ʹUTR, mex-3 3ʹUTR led to a strong increase in the 

expression of GFP in oocytes.  In contrast, knockdown had no effect on the set-2 

3ʹUTR reporter (Figure 3.4).  The results suggest that OMA-1 and OMA-2 

repress expression of atg-4.2, ets-4, cul-4, and set-6 in oocytes.  It is not clear 

why or how the set-2 retains oocyte repression in oocytes.  We suspect it is likely 

to be repressed by a different pathway.   

DAZ-1 is an RNA-binding protein required for oogenesis (Otori et al., 

2006). Knockdown of DAZ-1 results in absence of oocytes and sterility. The daz-

1 RNAi-induced phenotype is 70-80% penetrant by the feeding method. Worms 

cultured under daz-1 RNAi conditions contain an abundance of non-cellularized 

nuclei around the germline bend, where oocytes normally form. This then leads 

to an absence of oocytes in the proximal region of the gonad arm. daz-1 RNAi 

was performed in strains carrying the atg-4.2 3ʹUTR, ets-4 3ʹUTR, cul-4 3ʹUTR, 

set-6 3ʹUTR, mex-3 3ʹUTR and set-2 3ʹUTR reporters. We observed a change 

only in the reporter strain containing the set-2 3ʹUTR. This strain does not 

express GFP around the loop region under wild-type conditions but when treated 

with daz-1 RNAi there was a strong increase in GFP expression in the 

recellularization/loop region (Figure 3.4).  The results suggest that set-2, in 

contrast to atg-4.2, ets-4, cul-4, set-6, and mex-3, is regulated by DAZ-1, directly 

or indirectly. 



	

	 99	

POS-1 is another tandem zinc-finger RNA-binding protein that is required 

for the development of the posterior in the embryos. RNAi knockdown of this 

protein leads to embryonic lethality. The phenotype of pos-1 RNAi knockdown 

was about 80% penetrant. pos-1 RNAi knockdown did not show a change in the 

reporter expression in the germline and oocytes for any of the strains tested.  In 

contrast, pos-1 knockdown has been previously shown to lead to expression of a 

glp-1 3ʹUTR reporter in all cells of an early embryo. The data suggest that POS-1 

does not regulate many genes that harbor a putative POS-1 binding site, as has 

been previously suggested (Farley and Ryder, 2012). 
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Conclusions 

	
In this study, we have shown that the rate of generating transgenic strains 

can be improved using an adaptation to the MosSCI technique. Injecting a library 

of transgenic constructs reduced the total time consumed to make nineteen 

independent lines by three- to four-fold in our hands. This was achieved through 

stochastic integration of transgenic constructs for every successful injection. It is 

not yet clear if increasing the library size further will further improve the success 

rate. We used this approach to make new UTR reporter lines, revealing for the 

first time that specific UTRs can drive reporter expression in sperm. We also 

used new strains in a targeted RNAi screen which revealed new regulatory 

connections between RNA-binding proteins and mRNAs. 

 

Regulation by OMA-1/2 
	
	

There are different ways OMA-1/2 could mediate repression of the 3´UTR 

reporters developed in our study. OMA-1/2 could be directly binding and 

repressing translation or indirectly regulating transgene expression through 

antagonistic interactions with other proteins.  

OMA-1 and OMA-2 repressed protein expression of most of the 3´UTR 

reporter transgenes we studied. This supports the hypothesis that OMA-1 might 

be a general repressor of translation during oocyte development and maturation 

(Kaymak and Ryder, 2013). The mRNAs that were regulated by OMA-1/2 encode 
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proteins that influence a diverse array of biological phenomena, like ATG-4.2, 

ETS-4, CUL-4, SET-6 and MEX-3. atg-4.2 encodes a homolog of human 

autophagic cysteine protease that does not have an obvious RNAi phenotype 

(Wu et al., 2012). ETS-4 is a transcription factor that regulates aging 

(Thyagarajan et al., 2010). CUL-4 is a cullin ubiquitin ligase that prevents re-

replication of DNA (Zhong et al., 2003). set-6 is predicted to encode an H3K9 

methyltransferase that regulates transcription (Andersen and Horvitz, 2007). 

mex-3 encodes a KH-domain RNA-binding protein that specifies the anterior of 

the embryo (Draper et al., 1996). As oocytes develop in the gonad arm, there is 

no autophagy, transcription, embryonic cell-fate determination or bulk DNA 

replication going on. This can be a reason why the mRNAs are kept in a silent 

state through OMA-1/2 acting as the major regulator or one of the 

intercommunicating regulators. 

By contrast, oma-1, oma-2 RNAi did not repress the translation of the set-

2 3´UTR reporter transgene. set-2 is a histone methyltransferase that can be 

involved in modifiying histones during chromatin remodeling which is required for 

the tight regulation of gene expression in sperm development (Simonet et al., 

2007).  Intriguingly, DAZ-1 appears to regulate translation of the set-2 3ʹUTR. 

DAZ-1 is required for meiotic progression and formation of oocytes in the 

germline of C. elegans (Karashima et al., 2000). The RNA-binding specificity of 

DAZ-1 is not known, but its mammalian homolog DAZL (DAZ-like) binds 

stretches of polyU sequences with G or C bases distributed throughout 



	

	 103	

((G/CUn)n) (Venables et al., 2001). DAZ-1 represses set-2 3ʹUTR at the 

recellularization/loop region of the germline. set-2 is a methyltransferase that is 

required for proper germline development (Simonet et al., 2007). It is not yet 

clear why this UTR is repressed by DAZ-1, but not OMA-1/2. More work is 

needed to understand why some transcripts are repressed by OMA-1/2 in 

oocytes, yet others are repressed by DAZ-1.  

 

Sperm retention driven by the set-2, ets-4 and set-6 3ʹUTR  
 
  
The Seydoux lab previously reported that promoters are necessary and sufficient 

for sperm expression for sperm-expressed reporter transgenes, while the 3´UTR 

sequence is dispensible for expression in sperm (Merritt et al., 2008). Here we 

show an exception to this finding where the 3´UTR of set-2, ets-4 and set-6 

drives strong GFP expression in the sperm. Understanding how and why this 

3´UTR enables expression in sperm may lead to new insights in sperm specific 

gene expression patterns.  Moreover, we propose that incorporation of the set-2 

or ets-4 3´UTR into a transgenic construct could provide a useful tool to enable 

studying the effect of driving expression of specific gene products in sperm. One 

way we propose these 3´UTR’s allow transgene expression in sperm is that 

translation may be enabled in sperm due to the absence of a repressor acting on 

these UTRs at this specific location.  
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CHAPTER IV: DISCUSSION 
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In the research described in this dissertation, my aim was to understand 

how OMA-1/2 bind and regulate their cognate mRNA targets at the oocyte-to-

embryo transition. Knowing the site where OMA-1/2 bind on their targets is the 

first step in identifying direct mRNA targets regulated by OMA-1/2. Therefore, I 

first set out to determine the RNA-binding sequence specificity of OMA-1 and 

showed that it binds UA(A/U) elements with high affinity. This sequence is similar 

to the binding sequence of TTP, which is UAUUUAUU (Lai et al., 1999), yet the 

binding affinity of OMA-1 to this sequence is about 50 fold weaker. Similarly, 

OMA-1 binds weakly to POS-1 and MEX-5 motifs, revealing that its specificity is 

different from paralogs expressed in C. elegans.  

 

OMA-1 Sequence Specificity 

 

It is likely that differences in primary sequence and structure account for 

the variance in RNA recognition properties. The NMR structure of the zinc finger 

domain of TIS11d, a mammalian TZF protein, showed that each finger folds into 

a similar conformation that binds to UAUU. The RNA binding specificity was 

proposed to come from hydrogen bonding of the protein backbone to the 

Watson-Crick edges of the bases. In addition, side chains of conserved aromatic 

amino acids lead to stacking interactions with the RNA bases which are essential 

for RNA recognition (Hudson et al., 2004). It was reported that an amino acid in 
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each finger, termed the “discriminator” residue, accounts for the difference 

specificity between TTP and MEX-5.  In TTP, the discriminator residue is a 

glutamate in both fingers.  In the NMR structure, the side chain carboxylate 

accepts a hydrogen bond from the N6-exocylic amine of an adenosine in the 

motif UAUU.  In MEX-5, which binds to RNA with relaxed specificity, the 

corresponding amino acid is a lysine in finger 1 and an arginine in finger 2, 

predicted to form non-specific backbone ionic interactions at the expense of the 

base specific hydrogen bonds found in Tis11D.  Mutagenesis experiments 

confirm the importance of each amino acid to binding specificity (Kaymak et al., 

2010; Pagano et al., 2007). POS-1 has small hydrophobic residues at the 

corresponding positions and binds to RNA with different specificity compared to 

that of Tis11D and MEX-5 (PRE = UAU2 3RDN1 3G). It is not clear how the 

discriminator residues contribute to POS-1 RNA recognition. OMA-1 and OMA-2 

have a basic residue in finger 1 and small hydrophobic residue in finger 2. 

Hence, a hybrid specificity between POS-1 and MEX-5 was expected (Pagano et 

al., 2007). In line with this expectation, we showed that the RNA binding 

sequence specificity of OMA-1 is neither as relaxed as that of MEX-5 nor as 

specific as the POS-1 recognition element.  The motif observed (UA(A/U)) bears 

some similarity to the 5ʹ-portion of the PRE. More work, including structure 

determination of the OMA-1, POS-1, and MEX-5 RNA-bound complexes is 

required to fully assess this hypothesis. 
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How UA(A/U) elements help selection of mRNAs by OMA-1 for regulation 

is not fully understood. We observed that the abundance of UA(A/U) elements is 

not sufficient to determine mRNA targets regulated by OMA-1. Hence, how OMA-

1 recognizes a sequence and consequently result in a functional outcome; such 

as repression, is not clear. The sequence specificity of OMA-1 has low 

information content. This suggests that OMA-1 regulates multiple transcripts or 

additional factors are required for selection of its mRNA targets among a 

complex pool of RNA sequences. In this dissertation I show that OMA-1’s 

apparent binding affinity cooperatively increases as the number of OBMs (OMA-1 

binding motifs) increases, suggesting that multiple OBMs are required to achieve 

a high apparent binding affinity to mRNAs.  Possibly, multiple OBMs are required 

to achieve regulation as well. Consistent with this hypothesis, in Chapter II, I 

showed that OMA-1 and OMA-2 mediate glp-1 repression in the oocytes. There 

are 28 OBMs the 3ʹ-UTR of glp-1 and mutation of sequences in the 3ʹ-UTR of 

glp-1 corresponding to OBM1, OBM3, and a double mutation of OBM1 and 

OBM3 in previous studies did not lead to activation of the glp-1 reporter in 

oocytes (Farley and Ryder, 2012). Perhaps OBMs function with some 

redundancy to ensure glp-1 repression. 
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OMA-1 Target Selectivity 

 

We do not understand how OMA-1 selects mRNAs from a pool of RNA 

sequences it can interact with for a functional regulation. We do not also know 

whether the targets of OMA-1 identified thus far are regulated directly or 

indirectly by OMA-1. In the case of glp-1 mRNA, we were not able to map a site 

that is necessary and sufficient for OMA-1 mediated repression in the oocytes. 

Other known targets of OMA-1 did not also provide a site through which a 

regulation is conferred. Identifying additional mRNA targets that are regulated by 

OMA-1 and analyzing the context of the OBMs in an effort to identify sites 

necessary and sufficient for regulation may provide more insight into RNA-

recognition properties of OMA-1. 

It is possible that there might be a longer consensus sequence recognized 

by OMA-1 or OMA-1 might be acting through multiple UA(A/U) elements to 

achieve target selectivity. Understanding the context of OBMs in mRNAs that are 

associated with OMA-1 in vivo can provide additional information on the role of 

OMA-1’s sequence specificity. High-throughput sequencing of the crosslinked 

fragments (HITS-CLIP) (Licatalosi et al., 2008) or Photoactivatable-

Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) 

(Hafner et al., 2010) can identify mRNAs associated with OMA-1 in mature 

oocytes and one-cell embryos, where OMA-1 is expressed. Motifs that are in 
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common among the mRNAs that are enriched in immunoprecipitations can then 

be studied to investigate OMA-1 binding sites. When a similar approach was 

used to see whether a motif longer than the OBM was enriched in OMA-1 

interacting mRNAs, no such motif was identified (Spike et al., 2014b). The 

OBMs, however, were slightly enriched in mRNAs that significantly interact with 

OMA-1, when compared to C. elegans 3´UTRs with similar lengths (Spike et al., 

2014b). This study was based on mRNAs enriched in RNA-immunoprecipitation 

experiments without crosslinking. Performing this analysis upon crosslinking will 

be valuable because in a crosslinking and immunoprecipitation experiment, 

ultraviolet irradiation will be used to form covalent crosslinks between protein-

RNA complexes that are in direct contact in intact cells. The cross-linked 

complexes can then be enriched by antibody purification under stringent 

conditions (Hafner et al., 2010; Ule et al., 2006). PAR-CLIP provides an increase 

in the efficiency of crosslinking. In this method, 4-thiouridine (4-SU) is 

incorporated into transcripts (Hafner et al., 2010). It was shown that 4-SU 

containing transcripts crosslinked more efficiently upon UV 365 nm irradiation 

compared to the conventional 254 nm irradiation.  As long as the modification of 

uridines does not interfere with OMA-1 binding to its target transcripts, RNA 

recovery can be improved using PAR-CLIP. Moreover, crosslinked sites show a 

T to C transition after sequencing (Hafner et al., 2010). Therefore, analyzing 

mutations in the recovered transcript can identify the position of crosslinking. 

That is, clusters of sequence reads that show a high frequency of T to C 
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mutations represent the crosslinking sites. The stringent purification conditions 

and knowledge of the crosslinking sites can narrow the list of mRNA targets that 

are directly in contact with OMA-1.  

In addition to providing information on where OMA-1 can bind to in mRNA 

transcripts, these methods will also identify in vivo mRNA targets. Future work on 

investigating regulation of these targets will shine light on the function of OMA-1 

and OMA-2 in oocyte maturation. The mRNA targets of OMA-1 identified so far 

are known to function in diverse developmental pathways. Targets I have 

identified throughout the work described in this thesis are: glp-1, atg-4.2, ets-4, 

cul-4, set-6, and mex-3. Others have also identified mRNAs that show a strong 

OMA-1/2 dependent de-repression of reporter expression oocytes. These 

mRNAs are: nos-2, zif-1, mom-2, cdc-25.3, rnp-1, and rnf-5 (Guven-Ozkan et al., 

2010; Jadhav et al., 2008; Oldenbroek et al., 2012; Spike et al., 2014b). Table 

4.1 summarizes the full-range of various functions of OMA-1/2 targets in the 

germline and embryos. 
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Table 4.1 List of targets of OMA-1 and their known functions. 

Gene Known Function References 

glp-1 Notch homolog required for germline mitotic to meiosis 
switch and anterior formation in embryos 

(Austin and 
Kimble, 1987) 

atg-4.2 Autophagic cysteine protease homolog (Wu et al., 2012) 

cul-4 Cullin ubiquitin ligase that prevents DNA re-replication (Zhong et al., 
2003) 

ets-4 Transcription factor participating in regulation of aging (Thyagarajan et 
al., 2010) 

mex-3 KH-domain RBP required for anterior cell-fate 
specification 

(Draper et al., 
1996) 

set-6 Methyltransferase involved in regulation of 
transcription 

(Andersen and 
Horvitz, 2007) 

mom-2 Wnt pathway ligand required for endodermal cell fate 
specification 

(Rocheleau et al., 
1997) 

nos-2 Nanos homolog required for primordial germ cell 
development 

(Subramaniam and 
Seydoux, 1999) 

rnp-1 RBP required for regulating the switch from 
spermatogenesis to oogenesis. 

(Maeda et al., 
2001) 

rnf-5 E3 ubiquitin ligase required for migration of cells at  
distal end of germline 

(Didier et al., 
2003) 

cdc-25.3 Phosphatase controlling oocyte growth Ashcroft et al., 
1998 

zif-1 E3 ubiquitin ligase involved in maternal protein 
degradation pathways 

(DeRenzo and 
Seydoux, 2004) 

 

 These mRNA targets are not directly related to the oocyte maturation 

defect phenotypes observed in oma-1;oma-2 (RNAi) worms. Their repression 

might be a general function of OMA-1/2 as a translational repressor. As oocytes 

develop in the gonad arm, there is no ongoing autophagy, transcription, 

embryonic cell-fate determination, maternal protein degradation or bulk DNA 

replication. This can be a reason why some of these mRNAs (glp-1, atg-4.2, ets-

4, cul-4, set-6, mex-3, nos-2, zif-1) are kept in a silent state through OMA-1/2 

acting as the major regulator or one of the intercommunicating regulators. 

However, the phenotype observed in the absence of OMA-1/2 is not intuitively 
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described by the repression of the mRNA targets of OMA-1/2 that are identified 

so far.  

 

Model for OMA-1/2 Mediated RNA Regulation 

	
There are multiple ways OMA-1/2 could repress expression from the 

3ʹUTR reporters developed in our study. OMA-1/2 could be directly binding and 

repressing translation.  Consistent with this hypothesis, each of the UTRs contain 

multiple UA(A/U) motifs recognized by OMA-1 (Table 4.2).  
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Table 4.2 List of target mRNAs of OMA-1 and the number of UA(A/U) elements in 
their 3´UTRs 

Gene 
Number of 
UA(A/U) 
elements 

glp-1 28 
atg-4.2 9 
cul-4 10 
ets-4 48 

mex-3 35 
set-6 28 

mom-2 20 
nos-2 19 
rnp-1 14 
rnf-5 18 

cdc-25.3 12 
zif-1 27 

 

OMA-1/2 could also be indirectly regulating transgene expression through 

competitive or cooperative interactions between multiple regulatory proteins. As 

shown in Spike et al., there are multiple proteins that associate with OMA-1/2  

suggesting that OMA-1/2 are functioning as ribonucleoprotein (RNP) complexes 

(Spike et al., 2014b; 2014a). The context of OMA-1/2 RNP could affect their 

regulatory activity. Indeed, regulation of one of the targets of OMA-1/2, cdc-25.3, 

was studied in detail and it was shown that OMA-1 acts antagonistically with a 

TRIM-NHL protein, LIN-41, to repress cdc-25.3 in oocytes. cdc-25.3 encodes for 

a tyrosine phosphatase that participates in activating oocyte maturation by 

activating a cyclin dependent kinase, CDK-1 (Kumagai and Dunphy, 1991). 

Therefore, repression of cdc-25.3 by OMA-1/2 in oocytes might seem 
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contradictory to the role of OMA-1 and OMA-2 in promoting oocyte maturation. 

An antagonistic model between OMA-1 and LIN-41 explained this discrepancy 

(Spike et al., 2014a). LIN-41 also regulates cdc-25.3 and prevents precocious 

meiotic maturation by repressing cdc-25.3 in immature oocytes. In maturing 

oocytes, however, LIN-41 must be degraded for proper maturation. This is where 

OMA-1/2 mediated regulation promotes oocyte meiotic maturation. One 

possibility is that OMA-1/2 participate in degradation of LIN-41 by activating 

CDK-1, a factor that is required for elimination of LIN-41 in mature oocytes (Spike 

et al., 2014a). This can be achieved either by repressing negative target mRNA 

regulators of CDK-1 or by directly inhibiting LIN-41. This would suggest an 

interplay between OMA-1 and other proteins to select specific targets for 

regulation. Detailed analysis of other mRNA targets of OMA-1/2 can provide 

additional models for the role of translational regulation by OMA-1/2 in oocyte 

maturation. Another mRNA target of OMA-1/2, rnp-1, is involved in proper 

oogenesis by regulating sperm-to-oocyte switch. Its repression in developing 

oocytes is not directly related to regulation of oocyte maturation. A similar 

mechanistic analysis can point to a biological relevance of this target to the 

oocyte maturation defective phenotype.  

A list of OMA-1 interacting proteins has been identified using mass 

spectrometry. Most abundantly interacting proteins were involved in translational 

regulation mechanisms. The list contained translational repressors such as IFET-

1, an eIF4E-binding protein (Sengupta et al., 2013), translational activators, such 
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as GLD-2, a poly(A) polymerase subunit ( Wang et al., 2002) and other RBPs, 

such as OMA-2, PUF-5,  POS-1, GLD-1 and MEX-3 (Detwiler et al., 2001; 

Draper et al., 1996; Jones et al., 1996; Lublin and Evans, 2007; Tabara et al., 

1999). As discussed in Chapter I, translational repression mechanisms through 

eIF4E-BP’s is a conserved mechanism seen in oogenesis of multiple species. It 

is likely that C. elegans may also employ a similar mechanistic approach in 

oocyte repression. IFET-1 was shown to be crucial to germline development and 

was proposed to act as a general translational repressor (Sengupta et al., 2013). 

IFET-1 was also shown to contribute to repression of targets OMA-1,  such as 

mom-2 and zif-1 (Guven-Ozkan et al., 2010; Oldenbroek et al., 2013), further 

supporting a model of 4E-BP mediated translational repression mechanism by 

OMA-1 (Spike et al., 2014b). Ribosome profiling in the presence and absence of 

OMA-1/2 can also highlight the role of these proteins in translational repression 

by showing the percentage of mRNAs that are repressed via the OMA proteins. 

Translational activation of maternal mRNAs upon fertilization by poly(A) 

polymerases is also a commonly seen mechanism of activation mRNAs required 

for cell-fate specification events in early embryos. In several cases, mRNAs are 

kept in a stable, deadenylated state in oocytes but are then activated by 

polyadenylation at the correct developmental time (Jacobson and Favreau, 1983; 

Mangus et al., 2003). There is no evidence of translational activation of mRNAs 

by OMA-1 yet; but GLD-2, along with its RNA-binding partner RNP-8, was shown 

to be a wide-range regulator of oogenesis (Kim et al., 2010).  Since OMA-1 is 



	

	 117	

involved in coordinating oocyte maturation with the cellular events occurring at 

the oocyte-to-embryo transition, it is possible that OMA-1 may act with GLD-2 to 

selectively activate translation of mRNAs by changing poly(A) tail length of 

mRNAs required for completion of maturation or early embryogenesis.  

Interaction of OMA-1 with other RBPs that are required for oogenesis and 

early embryogenesis suggests yet another model of regulation. The findings 

presented in this thesis suggest that OMA-1 can be acting through clusters of 

overlapping binding sites. glp-1 mRNA repression by OMA-1 is supportive of this 

hypothesis. As shown previously, regulation of glp-1 is spatially and temporally 

regulated (Marin and Evans, 2003; Ogura et al., 2003; Lublin and Evans, 2007; 

Farley and Ryder, 2012). glp-1 gain of function mutation leads to a tumorous 

germline due to excessive proliferation of mitotic germ cells (Berry et al., 1997). 

To prevent ectopic expression of GLP-1, the mRNA is tightly regulated by 

multiple RNA-binding proteins such as GLD-1, POS-1, PUF-5/6/7 and OMA-1/2 

(Farley and Ryder, 2012; Lublin and Evans, 2007; Marin and Evans, 2003; Ogura 

et al., 2003). In the germline, GLD-1 represses glp-1 in the syncytial region, PUF-

5/6/7 take over around the loop region. Regulation is then handed over to OMA-1 

and OMA-2. OMA-1 and OMA-2 repress glp-1 in late stage oocytes where the 

other RNA-binding proteins are not present. At the oocyte to embryo transition, 

OMA-1 is marked for degradation by phosphorylation. This leads to a rapid 

degradation of OMA-1 at one-cell stage embryo. Thus, as OMA-1 is degraded, it 

might hand-off the regulation of glp-1 to embryonic RNA-binding factors. It was 
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shown that in the embryos, this regulation is via a conserved cluster of 

overlapping binding sites through which POS-1 and GLD-1 compete for binding. 

This is plausible as the POS-1 and GLD-1 binding sites that are overlapping with 

OBMs will be accessible upon OMA-1 and OMA-2 degradation. Interestingly, all 

novel targets of OMA-1 I identified, except ets-4, also have glp-1-like cluster of 

overlapping binding sites in their 3´UTRs (Figure 4.1). 

 



	

	 119	

 

  

Figure	4.1	Cluster	of	predicted	binding	sites	for	RNA-binding	proteins	in	the	targets	of	
OMA-1	

glp 1	3´UTR	contains	a	dense	cluster	of	predicted	binding	sites	for	FBF,	GLD 1,	POS 1,	MEX
3.	Top	panel	shows	the	glp 1	3´UTR	as	annotated	in	the	UCSC	genome	browser.	The	region	
highlighted	in	pink	denotes	the	cluster	of	predicted	RBP	binding	sites	(black	bars).	Below	
the	image	of	the	glp 1	3´UTR	are	the	clusters	of	binding	sites	present	in	the	3´UTR’s	of	the	
mRNA	targets	that	are	repressed	by	OMA 1/2.	All	targets,	except	ets 4,	show	a	densely	
populated	cluster.	The	images	are	exported	from	UCSC	genome	browser	created	by	the	
Genome	Bioinformatics	Group	of	UC	Santa	Cruz.	
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Dissecting functionally related targets of OMA-1/2 in oocytes 

 

Using an RNA-centric approach, biotinylated capture oligos can be used 

to select mRNA targets that show OMA-1 mediated regulation. Similar to the 

interactome capture assay developed by the Hentze lab (Castello et al., 2012; 

Marraffini et al., 2013), crosslinking of protein complexes interacting with the 

specific 3´UTRs prior to immunoprecipitation will allow identification of proteins 

associated with the transcripts by mass spectrometry. Subsequently, 

investigating overlapping sets of regulated mRNA targets for functionally related 

groups of proteins might provide more information on molecular functions of 

OMA proteins. Such analysis will also help us understand the molecular 

mechanisms behind OMA-1 gene regulation. For example, if IFET is present as a 

co-purifying protein for a group of transcripts repressed by OMA-1, it might point 

to a repression of translational machinery. However, if for another group of 

transcripts associated with OMA-1 co-purifies with GLD-2, a translational 

activator, those mRNAs will be candidates for activation during oocyte-to-embryo 

transition.  

To conclude, OMA-1 and OMA-2 likely prevent premature expression of 

mRNAs involved in embryonic cell fate pattering events prior to fertilization.  The 

relatively relaxed RNA-binding specificity of OMA-1 suggests that it binds to 

many mRNAs.  As such, OMA-1 could be a general repressor of mRNA 
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translation in oocytes.  Alternatively, OMA-1 directed regulation could require 

additional factors that alter or enhance its RNA binding specificity. In that case, 

competitive or cooperative interactions between OMA-1 and other proteins that 

bind overlapping binding sites regulate target mRNAs. Future work will 

distinguish between these possibilities, and define the mechanism of OMA-1 

mediated repression. 

Function of OMA-1/2 in Embryos 

	
OMA-1 and OMA-2 are also abundant in one-cell embryos but their 

function in embryos has not been studied in detail. A model for the role of OMA-

1/2 in embryos suggest these proteins act as transcriptional repressors by 

sequestering TAF-4, an essential component of transcription machinery, in the 

cytoplasm (Guven-Ozkan et al., 2008). However, high-throughput sequencing 

experiments, such as global transcription activity profiling, to determine the 

percentage of OMA-1 mediated transcriptional repression have not been 

performed yet. There is also evidence that OMA-1/2 may act as translational 

repressors in embryos as well. mei-1, a katanin subunit, is repressed in embryos 

for proper mitotic spindle assembly (Clark-Maguire and Mains, 1994b; 1994a; Li 

et al., 2009). In one-cell embryos, OMA-1 and OMA-2 may directly be involved in 

repressing mei-1. It is intriguing that OMA-1 might have different roles in oocytes 

or embryos and might regulate different targets in different cellular contexts. It is 

possible to isolated oocytes and one-cell embryos separately to assess different 
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functions of OMA-1 in different developmental environments during oocyte-to-

embryo transition. For enrichment of one-cell embryos Piano and Rajewsky 

developed a method that enriches for one-cell embryos expressing OMA-1 

(Stoeckius et al., 2009). A GFP reporter strain harboring the endogenous 

promoter of oma-1 fused to the oma-1 coding sequence which is fused to GFP 

(P(oma-1)::oma-1::GFP:: oma-1 3´UTR) is available and OMA-1 encoded by the 

strain is functional. Stoeckius et al. used this strain to collect precisely one-cell 

staged embryos using fluorescence activated cell sorting (eFACS) as highest 

level of GFP seen in mature oocytes and one-cell embryos. They have analyzed, 

by flow cytometry, mixed staged embryos extracted from adult hermaphrodites of 

the OMA-1::GFP strain. A population of embryos expressing high GFP signals 

was selected for sorting in FACS. This yielded 70% enrichment in one-cell 

staged embryos. RIP-SEQ experiments can then be applied to these embryos to 

characterize the DNA and/or mRNA targets.  

A disadvantage of studies that identify mRNAs that associate with RNA-

binding proteins is that they do not show which targets are direct targets that are 

regulated by OMA-1. They can only show where OMA-1 can bind to in the mRNA 

but not necessarily regulate. To identify and validate functionally regulated 

mRNAs, reporter studies are crucial. In Chapter III, I discuss in detail how we 

improved the technology to generate reporter strains and how this technology, 

combined with the ease of performing RNAi studies in C. elegans, led to 

identification of five new regulatory targets of OMA-1. Other interacting partners 
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were also identified along with an interesting sperm expression pattern. These 

patterns are discussed in detail in Chapter III.  

Library MosSCI 

	
In Chapter III, we showed that adapting the MosSCI method for generating 

single copy integrated transgenic strains to a library format increased our rate in 

generating reporter strains. The success rate of transgenesis is limited by the 

number of successful injections and by the extent of transgene integration. The 

rate of successful injections will vary between different injectors. The recent 

development of a microfluidic device to automate the injection procedure could 

help improve the number of successful injections (Gilleland et al., 2010). In this 

work, we used the direct insertion method of MosSCI. The extent of integration 

can be improved through the use of different promoters driving Mos1 

transposase expression. For example, use of the eft-3 promoter has been shown 

to increase the rate of transformation presumably by increasing the extent of 

Mos1 transposon excision (Frøkjaer-Jensen et al., 2012). With this improvement, 

fewer injections may be sufficient to generate a number of strains after random 

integrations at the heat-shock step.   

Obtaining transgenic strains at an increased rate will be advantageous in 

multiple ways. Library injection may be adapted to CRISPR-based approaches to 

make targeted mutations (Friedland et al., 2013; Jinek et al., 2012; H. Kim et al., 

2014). In an endogenous genomic locus of interest, a set of randomized 
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insertions/deletions can be introduced through injection of a library of guide 

RNAs targeted for that locus. Using multiple CRISPR guides per injection can 

help ensure a mutation in the gene of interest, as has recently been shown in 

zebrafish (Gagnon et al., 2014).  

In this study, we used library MosSCI to make 3ʹUTR reporters but this 

method could easily be adapted to make different promoter reporters or protein 

fusions to help define other aspects of regulatory biology, including transcription 

regulation and protein modification. A mutagenesis or deletion library analysis 

would help identify key cis-regulatory elements that control transcription 

regulation patterns critical to somatic differentiation in later stages of 

embryogenesis, after zygotic gene activation. Library MosSCI can also be used 

to rapidly generate mutants within a single UTR of interest and screen mutant 

strains to help map functional elements in a regulatory region of a UTR of 

interest. Another potential application of this technology could derive from 

systematically analyzing protein variants. Transgenic strains can be used to 

rescue a mutant phenotype by overexpressing a wild-type copy of the mutant. In 

such a case, injecting a library of overlapping fragments of the gene 

simultaneously could help identify the fragment that is minimally sufficient for 

rescue.  
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Concluding Remarks 

 

The ability to generate transgenic strains in high yield will enable improved 

functional mapping of regulatory interaction networks between maternal mRNAs 

and RNA-binding proteins. Methods like CLIP, RIP-SEQ and PAR-CLIP identify 

interacting partners in vivo but may identify interactions that have no regulatory 

consequence. There are instances where an RNA-binding protein can play an 

active role in regulating a transcript through a binding site. In this case, the target 

site is necessary and sufficient for regulation. In other cases, the effect of an 

RNA-binding protein might be indirect or context dependent. In vivo studies with 

reporter strains carrying regulatory elements is necessary to distinguish between 

interactions of RNA-binding proteins that have a relevance to the regulation of an 

mRNA or not.  As we have done in this work, the study of transgenic reporter 

strains carrying different C. elegans 3´UTRs can be done by RNAi screening. 

High-throughput RNAi screens could identify additional RNA-binding proteins that 

regulate these reporter transgenes. Once regulatory partners are identified, the 

necessity and sufficiency of target sites can be tested using library MosSCI to 

identify binding sites that are functionally important. Ultimately, the utility of large 

data sets that yield high resolution contact maps will be defined by their 

predictive power in functional studies.  In order to keep pace, new technology to 

improve the output of functional studies in live animals is needed.  My work here 
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demonstrates a simple strategy to improve the throughput of C. elegans single 

copy transgene strain production, a key first step towards this goal. Using this 

strategy, we can expand on making more reporter strains carrying 3´UTRs 

bearing clusters of binding sites and identify more novel targets of OMA-1 

regulated by OMA-1. Alternatively, we can expand on generating strains carrying 

mutations in OMA-1-binding motifs of various RNA targets to identify functionally 

relevant binding sites. Ultimately, identifying the full range of direct targets of 

OMA-1/2 and understanding how they are regulated will illuminate mechanisms 

of regulation during oocyte-to-embryo transition.  

When we started working on understanding the roles of OMA-1 and OMA-

1 in regulating oocyte to embryo transition, their roles were not well-defined. It 

was known that these proteins are redundantly required for oocyte maturation 

(Detwiler et al., 2001); however, the molecular mechanisms behind regulation of 

oocyte maturation was poorly understood. nos-2, mei-1 and zif-1 mRNAs were 

proposed to be regulated by OMA-1 and OMA-2 in developing oocytes (Jadhav 

et al., 2008; Li et al., 2009; Guven-Ozkan et al., 2010). This pointed towards the 

importance of the role of these proteins as post-transcriptional regulators in 

oocytes. We therefore set out to identify more mRNA targets of OMA-1 and 

OMA-2 and provide a mechanistic overview of how these proteins regulate 

oocyte maturation. As of today, us and others have identified and validated 12 

mRNA targets regulated by OMA-1 and OMA-2 (Kaymak and Ryder, 2013, Spike 

et al., 2014b). These targets were involved in diverse biological pathways hinting 
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to a role of OMA-1 and OMA-2 as general repressors during oocyte-to-embryo 

transition. In addition to novel mRNA targets, OMA-1 interacting proteins were 

also identified (Spike et al., 2014b). The identification of eIF4E-BP’s as 

translational repressor proteins interacting with OMA-1 provides a model 

whereby OMA-1 interacts with other proteins to achieve its target specificity and 

lead to a translational repressor. Expanding on how the novel targets of OMA-1 

are regulated mechanistically can now help us shine light on how OMA-1 and 

OMA-2 contribute to proper oocyte maturation and timely transitioning into and 

embryo.  
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 CHAPTER V: APPENDICES  
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Appendix A: Library MosSCI Mutagenesis 

 
Significant background and results 
 

We wondered if we could use library MosSCI to screen for mutants within 

a single UTR of interest.  We chose to study the C. elegans Notch receptor 

homolog, glp-1. glp-1 mRNA is present throughout the germline and embryos but 

the protein is expressed only at the distal end of the germline where it regulates 

the mitosis to meiosis switch and the anterior cells of the four-cell embryo where 

it specifies mesodermal cell fates (Austin and Kimble, 1987; Crittenden et al., 

1994; Evans et al., 1994).  

We are interested in glp-1 because at least five RNA-binding proteins 

(GLD-1, POS-1, MEX-3, PUF-5/6/7, OMA-1/2) that repress the glp-1 mRNA are 

known (Farley and Ryder, 2012; Lublin and Evans, 2007; Marin and Evans, 

2003; Ogura et al., 2003; Pagano et al., 2009; Ryder et al., 2004). The region of 

the UTR sequence that is sufficient for regulation has been mapped. When in 

vitro transcribed, capped and polyadenylated mRNAs encoding ß-galactosidase 

and containing deletions of the glp-1 3ʹUTR were injected into worm gonads, a 

region of the UTR termed the spatial control region (SCR) was found to be 

necessary to confer the endogenous GLP-1 pattern of expression in the LacZ 

reporter (Evans et al., 1994). To determine which region or regions of the SCR 

were sufficient for regulation, fragments of the SCR were added to an 

unregulated 3'UTR (unc-54) and the reporters were injected in the same LacZ 
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reporter design. A 34-nucleotide sub-region of this region was found to be 

sufficient to generate the glp-1 translation pattern. This region contained 

repression and de-repression elements found by mutational analysis in the LacZ 

reporters (Marin and Evans, 2003). The binding sites within this region that are 

sufficient for the repression have also been mapped. For example, POS-1 and 

GLD-1 repress glp-1 3ʹUTR through a conserved site of overlapping binding sites 

(Farley and Ryder, 2012). We wanted to examine this conserved site that has 

clusters of binding sites for the proteins repressing glp-1 mRNA to identify a 

mutation in a binding site that is sufficient to change the reporter expression 

pattern.  

We prepared a library of forty germline GFP reporters containing single 

nucleotide substitutions of the glp-1 3ʹUTR. We selected a contiguous forty-

nucleotide region containing well-characterized binding sites for GLD-1 and POS-

1.  Every single nucleotide in this stretch was mutated. Adenosines were mutated 

to cytidines, and thymidines were mutated to guanosines, or vice versa. Through 

~70 injections, we recovered strains that had incorporated six of the forty 

different mutations. These strains are listed in Table 5.1. 
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Table 5.1 List of glp-1 3´UTR reporter strains with introduced mutations 

 

We compared the GFP expression patterns of the reporter strains bearing 

a different point mutation in the glp-1 3ʹUTR to each other and to the wild-type 

reporter carrying no mutations in the UTR (Figure 5.1). There were no apparent 

expression differences observed between the recovered glp-1 mutant reporters 

and the wild-type GFP reporter, suggesting that the mutations do not disrupt a 

functional regulatory element.  By contrast, mutations that target GLD-1 or POS-

1 binding sites—previously generated by single reporter mosSCI—led to large 

changes in the germline and embryo (Farley and Ryder, 2012).  We conclude 

that library mosSCI can be used to rapidly generate mutant strains to help map 
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Appendix B: Analysis of Cluster of Binding Sites in neg-1 3´UTR 

Significant background and results 

The work described in this appendix appeared as part of the publication by 

Ahmed Elewa (Elewa, A., Shiriyama, M., Kaymak, E, Harrison, P.F., Powell, 

D.R., Du, Z., Chute, C.D., Woolf, H., Yi, D., Ishidate, T., Srivnivasan, J., Bao, 

Z.  Beilharz, T.H., Ryder, S.P., Mello, C.C.  (2015) POS-1 promotes endo-

mesoderm development by inhibiting the cytoplasmic deadenylation of neg-1 

mRNA.  Dev. Cell). Ahmed in the Mello lab characterized the neg-1 gene (Elewa 

et al., 2015). neg-1 was identified in a genetic screen as a suppressor of pos-1. 

pos-1 null mutants show a gutless phenotype and neg-1 was found to suppress 

the gutless phenotype and result in a properly differentiated endodermal and 

pharyngeal tissue in embryos (Elewa et al., 2015). 

Analysis of the neg-1 3´UTR showed that there is a cluster of overlapping 

binding sites for MEX-5, MEX-3 and POS-1 (named the RBP cluster) (Figure 

5.2A). RBP cluster is similar to the cluster we observed in the glp-1 3´UTR. I was 

involved in determining the contribution of these binding sites to the binding 

affinity of POS-1, MEX-5 and MEX-3. For this purpose, I first compared the 

binding of POS-1, MEX-5 and MEX-3 to the wild-type sequence with of the RBP 

cluster and a mutated version of this cluster. The mutated cluster contained 

disrupted binding sites for POS-1, MEX-5 and MEX-3 (Figure 5.2B, C). 

Upstream the RBP cluster there is a polyU sequence which is the predicted 

binding site for MEX-5. This region is named M5B. I did a fluorescence 
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polarization assay to determine the binding affinity of MEX-5 to M5B. As 

compared to the RBP cluster, MEX-5 bound weakly to M5B (Figure 5.2C, right 

panel).  
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Figure	5.2	Electrophoretic	gel	shift	assays	and	fluorescence	polarization	assays	of	POS-1,	
MEX-5	and	MEX-3	show	that	all	bind	RBP	

A.	Nucleotide	sequence	of	the	neg 1	3´UTR	showing	cluster	of	binding	sites	for	POS 1,	
MEX 5	and	MEX 3.		
B.	EMSAs	show	that	POS 1	binds	to	RBPc	WT	with	an	apparent	affinity	of	41	nM.	Mutating	
the	RBP	sequence	reduces	the	binding	affinity	dramatically.		
C.	Fluorescence	polarization	data	shows	that	MEX 3	binds	RBPc.	MEX 5	binding,	on	the	
right,	shows	that	MEX 5	also	can	bind	RBP	WT	and	M5B.	
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In vivo reporter studies with mutations in the MEX-5 and POS-1 binding 

sites within the RBP cluster showed that these sequences have functional 

relevance. Accordingly, we wanted to test whether POS-1 and MEX-5 compete 

each other. Competition assays showed that MEX-5 binds favorably to RBPc 

than POS-1 (Figure 5.3). 
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Downstream the RBP cluster, there is another region which contains 

overlapping binding sites for POS-1 and MEX-3. This region was named P1M3B. 

We then tested whether these proteins can bind to this cluster.  Gel shift assays 

showed that both proteins bind P1M3B. 

	  

Figure	5.3	MEX-3	and	POS-1	bind	P1M3B	in	vitro		

Electrophoretic	mobility	shift	assays	for	MEX 3	and	POS 1	are	shown	on	the	left.	The	graph	
of	fraction	bound	against	protein	concentration	is	on	the	right	showing	that	MEX 3	binds	
with	a	50	nM	affinity	and	POS 1	binds	with	a	16	nM	affinity.	
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Experimental procedure: 
 

Fluorescence anisotropy and electrophoretic mobility shift assays using 

purified recombinant MBP-tagged POS-1 (80-180), MEX-3 (45-205) and MEX-5 

(236-350) were done as described in Farley et al. 2008, Pagano et al. 2009 and 

Pagano et al. 2007, respectively. All RNA oligonucleotides used in 

this study were chemically synthesized and fluorescently labeled at the 3´end 

with fluorescein amidite (FAM) by Integrated DNA Technologies (IDT). 

Competition assays are set up similar to the EMSA assays as described in Farley 

et al, 2012. 550 nM of POS-1 (80-180) or 450 nM MEX-5 (236-350) was added to 

the RNA equilibration buffer to get 70% RNA bound complex. Then the 

corresponding competing protein was titrated to the reaction mixture at varying 

concentrations. After 3 hours of equilibration, the reaction mixture was run on a 

5% native polyacrylamide gel in 1X TB for 3 hours, at 120V. Quantifications were 

done by determining the pixel intensity of the RNA species bound by protein 

relative to the pixel intensity of total RNA species to give the fraction bound of 

RNA. The pixel intensities of each band were determined and background 

corrected by using Image Gauge (Fujifilm, Tokyo, Japan).   
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Appendix C: An RNA-Centered Approach to Determine Positively 

Interacting RNA-Binding Proteins and RNA Targets 

Significant background and results 
	

The work described in this appendix appeared as part of the publication by 

Alex Tamburino: Tamburino, A.M., Kaymak, E., Shrestha, S., Ryder, S.P. 

Walhout, A.J.M. (2015) PRIMA:  an RNA-centered protein-RNA interaction 

mapping assay (submitted). 

Alex in Marian Walhout’s lab has developed a technology to identify 

interacting RNA-binding proteins and their cognate 3´UTR targets. Since physical 

interaction between proteins and RNA result in a functional regulation, a 

secondary assay was necessary to validate the positive hit that are generated by 

the high-throughput assay, PRIMA (Tamburino et al., 2015) is a yeast based 

fluorescence assay that relies on increased translational efficiency of GFP upon 

a positive interaction between an RNA-binding protein and a 3´UTR sequence. 

Since we had generated 3´UTR reporter strains using library MosSCI, we wanted 

to combine PRIMA with our transgenic lines. PRIMA allowed us to prioritize the 

list of RNA-binding proteins we would like to test in an RNAi screen. I was 

involved in doing the RNAi experiments. As a proof of concept, Alex decided to 

use glp-1 3´UTR and nos-2 3´UTR, as these UTRs were studied extensively. The 

highest scoring interactions for the glp-1 3´UTR included the RNA-binding 

proteins: FBF-1/2, PUF-3, PUF-5 and POS-1. PUF-5 and POS-1 were already 

shown to repress glp-1 (Farley and Ryder, 2012; Lublin and Evans, 2007). In 
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contrast, PUF-3 was identified as a novel regulator of glp-1 (Figure 5.5A). Two of 

these, MEX-3 and POS-1, have already been shown to regulate nos-2. We were 

able to recapitulate this result in vivo The highest scoring interactions for the nos-

2 3´UTR included the RNA-binding proteins: MEX-3, POS-1, HRP-1, R09B3.2, 

ZTF-4 and PIE-1. One of these, MEX-3, has already been shown to regulate nos-

2 (Pagano et al., 2009) . We were able to recapitulate this result in vivo (Figure 

5.5B). 
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Figure	5.5	RNAi	experiments	to	test	the	in	vivo	regulation	of	glp-1	and	nos-2	3´UTRs	

A.	Using	transgenic	strains	expressing	GFP	under	the	control	of	glp 1	3´UTR	and	nos 2	
3´UTR,	bound	RNA binding	proteins	were	tested	for	regulatory	activity	using	RNAi	
knockdown.	puf 3	and	puf 5	RNAi	resulted	in	increased	expression	of	GFP	in	immature	
oocytes	of	glp 1	UTR	strain.		
B.	In	the	embryos,	pos 1	RNAi	resulted	in	ectopic	GFP	expression	in	the	cells	of	four cell	
embryo	of	the	glp 1	UTR	strain.	mex 3	RNAi	resulted	in	ectopic	GFP	expression	in	the	
cells	of	28+ cell	embryo	of	the	nos 2	UTR	strain.	
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Experimental procedure 
	
RNAi knockdown: The knockdowns were performed using the RNAi feeding 

method as described I Kamath et al., 2003. The open reading frames (ORFs) into 

the RNAi feeding vector construct L4440 and transformed into HT115(DE3) cells. 

The transformed colonies were grown to OD600 = 0.4 and induced with isopropyl 

1-thio-β-D-galactopyranoside (IPTG) at a final concentration of 0.4 mM for 4 

hours. After induction the 50 ml cultures were concentrated 10- fold and 50μl of 

the culture was added onto NGM plates containing 1mM IPTG and 100 μg/ml 

Ampicillin. After bleaching worms, eggs were plated onto these plates and kept at 

25°C for 2 days before imaging. HT115 strain bacteria transformed with the 

empty vector L4440 was used as the control RNAi. 

 

Imaging of worm strains: Worms were placed in 0.4 mM levamisole on to 2% 

agarose pads. Emryo dissections were done in M9 solution. DIC and GFP 

fluorescence images were taken on Zeiss Axioscope 2 plus microscope (Carl 

Zeiss, Jena, Germany) using an oil-immersion 40X objective. Confocal images 

were taken under 40X magnification using Leica DMIRE2 microscope (Leica, 

Wetzlar, Germany). 
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