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Figure 3.7 Expression of PS-modeled mutations disrupts NE morphology 

and ultrastructure  



132 
 

(A-B) Wing position in (A) control flies, showing normal wing position and (B) 

LamC-E174K, lamC/+ flies showing a “wings up” phenotype.  

(C) Quantification of landing height in 4- and 21-day old adults.  

(F-K) Larval body wall muscle nuclei labeled with anti-LamC or anti-LamDm0, 

and anti-DFz2C antibody from (F) BG487-Gal4/+ control; (G) LamC-WT, lamC/+; 

Arrows denote LamC/DFz2C foci; Arrowheads denote abnormal LamC blebs. 

(H) LamC-E174K, lamC/+; (I) lamC null mutant; (J) LamC-WT, lamC; and (K) 

LamC-r564c, lamC.  Arrows point to DFz2C/LamC foci, and arrowheads to blebs.  

(D,E) Quantification of the number of DFz2C/LamC foci at body wall muscles 

normalized to BG487/+ controls in the indicated genotypes in a (D) lamC/+ or (E) 

lamC null mutant background.  

(L,M) Quantification of the percentage of body wall muscle nuclei containing 

more than 10 blebs at the NE in the indicated genotypes (L) in a lamC/+ 

heterozygous background and (M) in a lamC null mutant background. Control is 

BG487/+ in both graphs. 

(N-R) TEM of larval body wall muscle nuclei from (N) LamC-WT, lamC; (O-Q) 

LamC-E174K, lamC; and (R) LamC-r564c, lamC. White arrows denote 

megaRNP granules; White arrowheads denote empty blebs; Black arrows denote 

thickened lamina; Black arrowheads denote thickened lamina at the neck of 

blebs.  

*p<0.05 **p<0.01 ***p<0.001 Error bars= SEM  



133 
 

N (left to right)= C: 81, 78, 83, 166, 83, 85, 89; D, E, L, M(number of 

hemisegments/number of nuclei) D: 21/1137,21/1026,24/1248; 

E:17/958,13/666,17/951,19/977; L: 20/1155, 20/1106, 20/1035, 12/647; 

M:26/1500,14/720,23/1274,19/1079,16/829. 

Calibration bar is 5.5 µm for F-K, 1.4 µm for P and 0.4µm for N, O, Q, R 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



134 
 

 

Figure 3.8 Nuclear foci at larval body wall muscles and S2 cells, and NMJ 

phenotypes 

(A-C) Larval body wall muscle nuclei labeled with antibodies to LamC and DFz2C 

in (A) LamC-E174K, lamC/+  (B-C) LamC-r564c, lamC.  Arrows denote DFz2C 

positive puncta associated with LamC blebs.  
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(D-F) S2 cells labeled with antibodies to LamC expressing (D) LamC-WT, (E) 

LamC-E174K or (F) LamC-r564c. Top panels represent single confocal slices 

and bottom panels are Z-projections. Arrowheads denote normal LamC foci; 

Arrows denote abnormal LamC blebs. 

(G-K) Transmission electron micrographs (TEM) of S2 cell nuclei expressing (G) 

LamC-WT, and (H,K) LamC-r564c and (I,J) LamC-E174K. White arrows denote 

megaRNP granules; White arrowheads denote empty blebs; Black arrows denote 

thickened lamina; Black arrowheads denote thickened lamina at the neck of 

blebs. 

(L) Schematic representation of NE-budding in wild type, PS-modeled LamC 

mutations and torsin mutations (see text for detailed description).   

(M-N) Percentage of nuclei with (M) NE blebs and (N) normal NE foci. 

(O-Q) Larval NMJs double labeled with antibodies to HRP and DLG in (O) lamC 

null; (P) LamC-WT, lamC; and (Q) LamC-r564c, lamC. Insets in the first column 

are shown at high magnification (O2-Q2). Arrows denote ghost boutons, devoid 

of postsynaptic DLG. 

(R) Quantification of ghost bouton number normalized to total bouton number.  

N (left to right)= M,N: 89, 45, 88; R:34, 16, 20, 17, 22. 

*p<0.05; **p<0.01; ***p<0.001. Error bars= SEM. Calibration bar is 7.5 µm for A-

C, 10 µm for D-F, 0.7 µm for G, 0.5 µm for H,J,K and 0.4 µm for I, 45 µm for O1-

Q1, 7 µm for O2-Q2. 
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Exosomes and Drosophila NMJ development  
 

Wg, a Drosophila Wnt protein, is secreted by motor neuron terminal in an activity-

dependent manner, to serve bidirectional roles in controlling both the presynaptic 

and postsynaptic development of Drosophila larval NMJ (Ataman et al., 2008; 

Packard et al., 2002). A recent study from the Budnik lab demonstrated that the 

transfer of Wg at the larval NMJ is mediated by Evi, a multipass transmembrane 

protein (Korkut et al., 2009). Further study discovered that Evi, when expressed 

in S2 cells, is present in exosomes purified from the S2 cell culture (Koles et al., 

2012). Immuno-EM verified that Evi is present in MVBs at presynaptic boutons, 

where the exosomes initially form (Koles et al., 2012). These studies together 

suggest that the transfer of Wg at the larval NMJ is likely though Evi-containing 

exosomes.  

One question pertains to the identify of other exosomal proteins at the larval NMJ. 

In Chapter 2 of this thesis we demonstrate that another protein, Syt4, is 

transferred from pre- to the postsynapse.  Knockdown of Syt4 presynapticaly 

completely eliminates Syt4 signal from both the pre- and postsynpase, 

suggesting the postsynaptic Syt4 is exclusively derived from the presynaptic 

motor neuron. Presynaptic expression of Rab11DN, a dominant negative form of 

Rab11 able to block Evi-containing exosome release from both S2 cells and 

motor neurons (Koles et al., 2012), inhibits the secretion of Syt4 from presynaptic 

boutons. Immuno-EM further demonstrated the presence of Syt4 at exosomes 
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purified from HA-tagged Syt4-ovexpressing S2 cells. These results further 

support the hypothesis that Syt4 is transferred from motor neuron to the muscle 

compartment likely through exosomes. In Chapter 2 of this thesis, the 

relationship between Sy4 and Evi was further investigated. Both exogenous and 

endogenous Syt4 co-immunoprecipates with EviGFP, suggesting these two 

proteins form a biochemical complex. Immunofluorescence staining, however, 

demonstrated that Syt4 and Evi only partially colocalize with each other at the 

NMJ. The trans-synaptic transfer of Syt4 is not affected in evi mutant, while Evi 

transfer is not affected in syt4 null mutant, indicating Syt4 and Evi are not 

mutually required for their secretion. Moreover, our data showed that at most 

13.2% of exosomes purified from S2 cells cotransfected with tagged Syt4 and Evi 

contain the signals of both proteins.  These evidences strongly indicate that Syt4 

and Evi, though both present in exosomes, are likely sorted into different 

exosome populations.  Indeed, studies from other groups have illustrated the 

heterogeneity of exosome population (Colombo et al., 2014). Depending on the 

cell types and tissue origins, exosomes may contain different components.  Our 

study raises the possibility that even a single cell type may secret exosomes 

containing different components.  

One interesting question in the field of exosomes is how exosomes are taken up 

by the recipient cells. So far there has been evidence supporting either their 

direct fusion with the plasma membrane of recipient cell or their endocytosis by 
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the recipient cells. In the latter case, the endocytosed exosomes are sorted into 

endosomes. Endosomes may eventually fuse with lysosomes resulting in 

degradation of the exosome, or the exosome can be fused with endosomal 

membrane and release its contents within the cell.  Syt4 has a transmembrane 

domain at its N-terminus and two C2 domains at its C-terminus (Chapman, 2008). 

The C-terminus of Syt4 is presumably localized within the exosomal lumen. In 

Chapter 2 we demonstrated that the secreted Syt4 controls a retrograde 

signaling pathway required for nascent presynaptic bouton formation. An early 

study showed that the retrograde function of Syt4 depends on its C2 domains 

(Yoshihara et al., 2005). This indicates that the Syt4-containing exosomes have 

to fuse with either plasma membrane or endosomal membrane to allow the C2 

domains to be exposed to the cytosol. There have been unpublished efforts in 

Budnik lab to establish the mechanisms by which exosomes release their 

contents using a GFP reconstitution method (Cabantous et al., 2005a; Feinberg 

et al., 2008; Pedelacq et al., 2006). Briefly, GFP is split into two fragments 

spGFP1-10 and spGFP11. Syt4 is tagged with spGFP11 at C-terminal and 

expressed in motor neuron, while the recipient muscle cells are labeled with 

spGFP1-10. Only when the C-terminal domain of Syt4 is exposed to the cytosol 

can spGFP11 and spGFP10 reconstitute fluorescent GFP. This method, however, 

suffered from high level of autofluorescence of spGFP1-10, which may mask the 

real reconstituted signal.  The key to overcome this obstacle will be to increase 
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the real/noise signal ratio, which can be achieved by either lowering the noise 

background or amplifying the real signal.  

The word exosome was continuously used in Chapter 2 to refer to the 

extracellular vesicles purified. However, with the improving understanding of the 

field, we now know that the vesicles we purified using ultracentrifugation were 

likely a heterogeneous population of different types of extracellular vesicles with 

possible contamination of protein aggregates. Currently, improved methods of 

exosome purification usually couple ultracentrifugation with sucrose gradient 

centrifugation to eliminate protein aggregates based on different density between 

protein and lipid. However, there is still no perfect method to isolate pure 

exosomes from a pool of extracellular vesicles with similar sizes.  

Immune-EM of exosomes isolated from S2 cells expressing HA-tagged Syt4 

demonstrated that Syt4 is sorted into exosomes (or exosome-like vesicles). 

Expression of Rab11DN in motor neuron, known to inhibit exosome release, 

largely reduced secretion of Syt4 from the presynaptic terminal suggesting the 

secretion of Syt4 is through exosomes. However, there is so far no direct 

evidence showing Syt4 is present in trans-synaptically travelling exosomes. The 

traditional EM can hardly preserve the vesical structure of exosome in situ due to 

the harsh fixation and dehydration conditions. High pressure freezing of the larval 

NMJ coupled with immune-EM might be able to catch Syt4-labeled exosomes at 

the synapse.   
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Syt4 dependent retrograde signal at NMJ development 
 

It has been demonstrated by independent groups that Syt4 is required for 

retrograde signaling at Drosophila central nervous system and NMJ.  (Barber et 

al., 2009; Yoshihara et al., 2005).  In Chapter 2, we first showed that the 

alteration of presynaptic structure and function, induced by spaced stimulation, 

requires retrograde signaling. Inhibition of postsynaptic depolarization blocked 

activity-induced nascent bouton formation and miniature EJP potentiation.  We 

then demonstrated that the activity-induced synaptic structural and functional 

enhancement requires Syt4. New bouton formation and miniature EJP 

potentiation upon spaced stimulation is largely abolished in the syt4 null mutant. 

This defect is rescued by expressing Syt4 either postsynaptically or 

presynaptically, as postsynaptic Syt4 is exclusively derived from presynase. It 

would be interesting to see if blocking the postsynaptic depolarization in a syt4 

null mutant with presynaptic Syt4 rescue would have normal or abolished activity-

induced synaptic alterations.  If the activity-induced nascent bouton formation 

and miniature EJP potentiation are disrupted, it will be consistent with the idea 

that Syt4 is the mediator of retrograde signaling at the NMJ.  

What could be the retrograde signal? One known retrograde signal at the larval 

NMJ is BMP signaling, in which Gbb is secreted by the muscle and activates Wit/ 
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Tkv/Sax tetrameric receptor complex on motor neuron surface. This further 

triggers phosphorylation and nuclear translocalization of Mad/Medea complex 

(Keshishian and Kim, 2004), which promotes the transcription of Trio, a Rho GEF. 

Trio controls presynaptic bouton development via regulating synaptic actin 

cytoskeleton remodeling. Littleton group discovered that BMP signaling 

molecules are required for activity-dependent synaptic growth (Piccioli and 

Littleton, 2014). Spaced stimulation-induced nascent bouton formation is blocked 

in the wit mutant and in larvae expressing Gbb targeting dsRNA in the muscle 

(Piccioli and Littleton, 2014). It remains unclear whether BMP signaling could be 

the retrograde signaling downstream of Syt4. Spaced stimulation of syt4 null 

larvae with muscle overexpression of Gbb might help to address this possibility. If 

Gbb is the signaling molecule downstream of Syt4 function, overexpression of 

Gbb in muscle should at least partially restore the new bouton formation upon 

spaced stimulation.  

 

A Drosophila model of Progeroid Syndrome 
 

In Chapter 3, we described a transgenic fly model expressing LamC-E174K 

mutant, which corresponds to LaminA/C-E159K mutation identified from one 

progeroid syndrome (PS) patient. In this fly model, we focused on the adult 

indirect flight muscle (IFM), which is the biggest muscle in adult fly controlling 
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flight behavior and wing position. We observed accelerated accumulation of 

ubiquitin-positive protein aggregates, progressive mitochondrial and muscle 

degeneration and decline in flight ability. Are these phenotypes also observed in 

mouse models and human patients? 

Several progeria mice lines have been reported displaying poor muscle 

development, muscle atrophy and locomotion defects.  Mice carrying 

LMNAL530P/L530P mutation, which was initially generated to model AD-EDMD, 

displayed very similar phenotypes as HGPS patients including retarded growth, 

early death, loss of subcutaneous fat, decreased bone density, heart pathology. 

Hypoplasia and/or atrophy of cardiac muscle, as well as mild to moderate 

degeneration of skeletal muscle from several regions were observed in 

LMNAL530P/L530P mice (Mounkes et al., 2003). Zmpste24-deficient mice 

(Zmpste24−/−), a widely used model for HGPS since Zmpste24 is required for 

processing prelaminA to yield mature LaminA, exhibited muscle weakness, hind 

limb dragging and inability to hold onto a grid when placed upside down (Bergo 

et al., 2002). Tissue analysis done in an independently generated Zmpste24-/- 

line showed abnormal and dystrophic muscle fibers in paravertebral region, 

deltoid and quadriceps muscle (Pendas et al., 2002).  Pronounced vascular 

smooth muscle loss, skeletal muscle atrophy and wasting are also commonly 

seen in HGPS patients (Goldman et al., 2004) and PS patients carrying LMNA 

point mutations (Garg et al., 2009; Liang et al., 2009). 
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Mitochondrial defects are also found in HGPS patients and progeria mouse 

models. Fibroblasts from HGPS patient showed defective ATP synthesis and 

downregulation of ETC (electron transport chain) components, which can be 

rescued by farnesyltransferase inhibitors (Rivera-Torres et al., 2013). Similar 

defects were also observed in progerin knockin mice and Zmpste24-/- mice 

(Rivera-Torres et al., 2013). Increased mitochondrial fragmentation and elevated 

ROS level were observed in HGPS fibroblasts as well as HGPS iPSC-derived 

smooth muscle cells (Xiong et al., 2016).  

These phenotypic similarities among different organisms and systems suggest 

that our Drosophila model of progeroid syndrome can be useful in the study of 

this complicated premature aging disease. However, this fly model of human 

diseases may suffer from a lack of directly-comparable tissues and different 

developmental processes. For example, it would be difficult to study bone 

infarction, typically seem in HGPS patient, in Drosophila as insects evolved a 

very different skeletal system. Metamorphosis also introduces extra complexity in 

the study of developmental aspects of disease.  Nevertheless, the simple 

genetics and powerful molecular genetic tools available make it easier to 

decipher the disease mechanisms.  

 

Nuclear envelope budding in mammalian systems 
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The endogenous nuclear envelope (NE) budding pathway was discovered in 

Drosophila larval NMJ (Speese et al., 2012). In Chapter 2, we demonstrated PS-

modeled LamC mutants result in defective NE-budding and premature aging 

related phenotypes. One obvious question is whether NE-budding pathway exists 

in human (and/or other mammals) and if so, how it is affected in 

progeria/progeroid patients.  

In situ hybridization using an oligo-dT probe demonstrated the presence of 

polyadenylated mRNA-enriched LaminA/C foci at the periphery of control human 

fibroblast nuclei (Figure 4.1A Ding et al., in preparation) similar to what has been 

observed in larval muscle (Speese et al., 2012). The number of 

poly(A)/LaminA/C foci is significantly decreased in HGPS fibroblasts (Figure 

4.1B,F Ding et al., in preparation).  In situ hybridization using specific probes 

further demonstrated the enrichment of mitofusin1 (Mfn1) and mitofusion2 (Mfn2) 

transcripts in LaminA/C foci in human fibroblasts (Ding et al., in preparation), 

consistent with our discovery of Marf mRNA present at LamC foci in Drosophila. 

In Chapter 3, we showed that Marf transcript levels significantly decrease in the 

PS-modeled LamC fly mutant. Consistent with this finding, both Mfn1 and Mfn2 

transcripts levels are significantly decreased in HGPS fibroblasts compared to 

control fibroblasts (Figure 4.1G, Ding et al., in preparation).  Similar electron 

dense granules present at perinuclear space have been observed by other 

groups long ago in mammalian systems including rabbit blastocytes and mouse 
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zygotes (Hadek and Swift, 1962; Szollosi and Szollosi, 1988) and by the Budnik 

group in human fibroblasts, Neuro2A, HEK293 and postnatal day 8 mouse brain 

(Ding et al., in preparation).  These findings suggest the existence of nuclear 

envelope budding pathway in a variety of tissues in mammalian tissues.  

 

Nuclear envelope budding and progeroid syndrome 
 

In human, A-type lamins are encoded by a single gene LMNA. LaminA and 

LaminC, the two major A-type lamin proteins, are produced through alternative 

splicing. One of laminopathies with the most striking symptoms is progeroid 

syndrome (PS), a premature aging disorder. The most well characterized form of 

PS is Hutchinson-Gilford progeria syndrome (HGPS), caused by a single 

mutation (C1824-T, G608G) on LMNA gene that introduces an aberrant spicing 

site which leads to deletion of a proteolytic site. This cleavage site is essential for 

removal of the farnnesylated C-terminus of prelaminA to form mature LaminA.  In 

addition to the HGPS mutation, there are more than twenty point mutations 

throughout the LMNA gene which also result in progeroid syndromes. These 

point mutations affect both LaminA and LaminC proteins. In Drosophila, the only 

A-type lamin is LamC which lacks the C-terminal CAAX motif, thus precluding the 

possibility to study the G608G silent mutation in human LaminA in Drosophila. 

However, in Chapter 3, we generated transgenic flies expressing LamC 
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mutations modeling missense point mutations found in progeroid syndromes. 

Muscle nuclei from these LamC mutant flies showed nuclear envelope blebbing 

phenotypes at both light and EM level. EM analysis demonstrated that electron 

dense granules can be found within some of the nuclear envelope blebs, while 

blebs devoid of granules are present at high frequencies. This indicates that 

these blebs could be abolished nuclear envelope budding sites. Differently from 

the torsin mutant, which displays stuck granules in perinuclear space, PS-

modeled LamC mutant megaRNP granules remain in the nucleoplasm. It was 

demonstrated previously that lamina needs to be dissociated before megaRNP 

or viral particle can reach INM and start the budding process (Marschall et al., 

2011; Speese et al., 2012). A possible explanation is these PS-modeled LamC 

mutations affect the conformation of the lamin protein, which prevents the 

phosphorylation and/or dissociation of the lamina. MegaRNPs either get 

degraded when trapped in the blebs or they are not loaded into the blebs at the 

first place. Regarding the blebs, however, other interpretations cannot be ruled 

out. It is possible that these blebs result simply from the deformation of nuclear 

envelope due to structural defects of lamina caused by mutated LamC. Indeed, 

there are many aspects of the nuclear envelope budding process remain unclear: 

What controls the initial formation of the megaRNPs? What are the signals that 

trigger the dissociation of the lamina? Why would the blebs still form when 

megaRNPs cannot reach the INM? What controls the curving of the nuclear 
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envelope during bleb formation?  Rigorous investigation of the budding 

machinery will be needed to answer these questions.  Nevertheless, PS-modeled 

LamC mutant showed increased ghost bouton number and decreased numbers 

of normal LamC/DFz2C foci, which support the model that FNI/NE-budding 

pathway is compromised in PS-modeled LamC mutants.   

As discussed earlier, it is likely the NE-budding pathway is present in mammalian 

system as well; one question is whether NE-budding is affected in human 

progeroid syndrome? As shown above, polyadenylated mRNA-enriched 

LaminA/C foci are observed in control human fibroblasts, and the number of 

these foci is significantly decreased in HGPS fibroblasts (Figure 4.1 A,B,F Ding 

et al., in preparation), suggesting defective NE-budding in HGPS fibroblasts. 

Moreover, similar nuclear envelope blebs and nucleoplasmic islands either 

partially or completely devoid of megaRNP are observed in HGPS fibroblasts at 

the EM level (Figure 4.1C-E, Ding et al., in preparation). These data indicate that 

NE-budding pathway is likely affected in human HGPS patients.  

We demonstrated the NE-budding pathway is defective in the PS-modeled fly 

mutant, and the PS-modeled fly mutant has premature aging phenotypes. A 

pressing question is: does defective NE-budding contribute to these aging-

related phenotypes? In situ hybridization data showed that several nuclear 

encoded mitochondrial transcripts including Marf and ATP synthase subunits are 

present at LamC foci. The enrichment of Marf mRNA at foci was further verified 
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with RNP immunoprecipitation using anti-DFz2C antibody followed by qRT-PCR. 

We also showed the level of Marf transcripts is significantly decreased in PS-

modeled LamC mutant, consistent with defective NE-budding in the mutant. Marf, 

the Drosophila homolog of mitofusin, promotes mitochondrial fusion. PS-modeled 

LamC mutant fly exhibited highly fragmented mitochondria and collapsed cristae 

structure. Similar mitochondrial defects were also observed in fly with Marf-RNAi 

expressed in muscle. These data are consistent with the proposed model that 

defective NE-budding leads to loss of mitochondrial integrity through 

downregulation of cellular Marf levels.  Interesting, restoring Marf levels in PS-

modeled LamC mutant failed to rescue the mitochondrial defects, consistent with 

the finding that other mitochondrial transcripts like ATP synthase subunits are 

also localized at NE-budding sites.  

However, it is unlikely that impaired NE-budding is the only explanation for 

mitochondrial defects observed. Lamin is involved in a diversity of cellular 

functions ranging from nuclear mechanical support, chromatin organization to 

DNA replication and transcriptional regulation. Studies using human fibroblast 

and mouse models have raised several possible underlying mechanisms of 

progeria and/or progeroid syndromes. It is possible that different LaminA/C 

mutations may contribute to the disease through different pathways and/or 

combination of these pathways.  For example, nuclear pore complex (NPC) 

clustering has been observed in HGPS fibroblasts (Goldman et al., 2004).  
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However, no abnormal NPC morphology was observed in fibroblasts from 

progeroid patient carrying LMNA S143F mutation (Kandert et al., 2007).  

Whether the PS-modeled LamC mutations studied in Chapter 3 affect NPC 

functions, chromatin organizations and transcriptions, and whether these 

pathways may contribute to the mitochondrial and muscle phenotypes remain 

unclear.  

In Chapter 3, in order to differentiate NE-budding and NPC on their contribution 

to the mitochondrial phenotypes, we expressed DFz2-DN in the muscle as an 

alternative way to disrupt FNI/NE-budding pathway. Expression of DFz2C-DN 

results in similar but milder loss of mitochondrial cristae structure as PS-modeled 

LamC mutant at comparable ages. This supports the idea that it is likely NE-

budding instead of NPC that is involved in the mitochondrial phenotypes.  

However, we still cannot rule out the contribution of NPC in this process. More 

convincing evidences need to be provided to differentiate these two RNA export 

pathways. For example, does knockdown of Torsin, the AAA-ATPase that 

controls the release of megaRNP granules into perinuclear space, show the 

same mitochondrial defects? On the other hand, what if we block NPC export by 

knocking down components of NPC export pathway?  Without these data, it is 

hard to conclude whether either one or both of NPC and NE-budding pathways 

are involved.  
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Another question is: why would a transcript “choose” NE-budding over NPC as 

export method? What is the specialty of NE-budding compared to NPC export? 

Ultrastructural analysis showed that the average size of megaRNP granules is 

200nm, well beyond the diameter limit of NPC, suggesting megaRNP granules 

may contain extra-large quantity of mRNAs that cannot be exported by an NPC 

simultaneously (Speese et al., 2012). It has been shown previously that defective 

NE-budding leads to postsynaptic depletion of transcripts using NE-budding for 

export and increased ghost bouton number (Jokhi et al., 2013; Speese et al., 

2012). These RNP granules likely traffic along filaments composed of F-actin and 

nuclear associated Nesprin1 (dNesp1) from nucleus to postsynaptic region 

presumably for local translation (Packard et al., 2015). During larval development, 

body wall muscle volume increases by 100-fold within four to five days (Griffith 

and Budnik, 2006). To compensate for this muscle growth, the NMJ must expand 

rapidly, which requires a large local supply of specific mRNAs and/or proteins. 

NE-budding likely plays a crucial role in NMJ development by providing a bolus 

of RNAs in large amount to be targeted to the postsynapse in order to meet the 

need of rapid postsynaptic development.  This also suggests that NE-budding 

may be associated with developmental stages requiring high protein demands. 

Consistently, NE-budding has been found critical for Drosophila oocyte 

development (unpublished data, V. Jokhi). Similarly, the indirect flight muscle 

(IFM) is the largest muscle in the adult fly; it develops from myoblast 
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differentiation along larval thoracic muscle segments as template during pupal 

stage. The high energy consumption of flight muscle requires large numbers of 

mitochondria, which impose high demands on proper mitochondrial 

replenishment and maintenance. NE-budding might be responsible for the bulk 

supply of mitochondrial components. The progressive mitochondrial 

degeneration observed in PS-modeled LamC mutant could be caused by the 

quick run-down of the mitochondrial components due to the lack of supply via 

NE-budding.    

Finally, it remains unclear whether a certain transcript uses exclusively one of the 

two export ways or both of them for nuclear export. Are these two export pathway 

independent of each other or complimentary to each other? To fully answer these 

questions, one can isolate the megaRNP granule contents and perform RNAseq 

to identify the RNAs present at NE-budding sites, followed by bioinformatics 

study identifying specific sequence motifs that allow the transcript get exported 

through NE-budding.  On the other hand, one can block NPC using chemicals (or 

RNAi) inhibiting Crm1 or Nxf1 to block RNA export through NPC and examine 

whether a known NPC-exported RNA would switch to NE-budding for export.   

 

Wnt, mitochondria and aging  
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In Chapter 3, we demonstrated that the nuclear envelope (NE) budding pathway 

is involved in export of nuclear genome encoded mitochondrial transcripts that 

are important for mitochondrial dynamics.  NE-budding is regulated by the 

Wg/Frizzled nuclear import (FNI) pathway. Interestingly, several previous studies 

have shown the functions of Wnt family proteins in regulating mitochondrial 

functions. Wnt5a ligand alters Drp1 phosphorylation status through non-

canonical Wnt/Ca2+ signaling pathway, allows the translocation of Drp1 to 

mitochondria and promotes mitochondrial fission without causing deleterious 

effects. This enhanced fission further promotes mitochondrial motility allowing 

translocation of mitochondria to dendritic spines in rat hippocampal neuron 

(Godoy et al., 2014).  An RNAi screening done in mouse C2C12 muscle cell lines 

identified several canonical Wnt signaling components as regulators of 

mitochondrial biogenesis. Wnt3a treatment of C2C12 activates mitochondrial 

biogenesis and oxidative phosphorylation, which can be inhibited by applying the 

Wnt signaling antagonist Dkk1 (Yoon et al., 2010). Moreover, Wnt3a exhibits a 

neuroprotective function through inhibition of the mitochondrial permeability 

transition pore opening induced by Amyloidβ, preventing the mitochondrial 

membrane potential dissipation and integrity loss (Arrazola et al., 2015).  In 

Chapter 3, we also showed that overexpression of DFz2-DN in muscle, which 

blocks Wg/Frizzled nuclear import pathway, led to defective mitochondrial cristae 
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structure.  Taken together, these studies suggest that Wnts are involved in 

several aspects of mitochondrial dynamics and functional regulation.  

Compared to numerous works on functions of Wnts during development, fewer 

studies have been done to understand the post-developmental functions of Wnt 

signaling. Nevertheless, several studies have linked Wnt signaling to the aging 

process. Finkel group uncovered enhanced Wnt activity in Klotho mice, a model 

deficient for Klotho which displays typical premature aging phenotypes including 

skin atrophy, infertility and reduced life span (Kuro-o et al., 1997). They 

demonstrated that Klotho interacts with Wnt3a in vitro and it functions as a Wnt 

signal antagonist.  Loss of Klotho leads to increased Wnt activity. Continuous 

Wnt exposure, although initially enhancing cell proliferation initially, results in 

marked decrease in cell proliferation over time, leading to stem cell depletion (Liu 

et al., 2007).   In the same year, another study reported increased myogenic to 

fibrogenic fate conversion of muscle stem cell in aged mice, which is associated 

with enhanced canonical Wnt signaling pathway in aged muscle and myogenic 

progenitor cells.  Inhibition of canonical Wnt signaling results in reduced fibrosis 

in aged muscle (Brack et al., 2007).  Together with a later report showing 

increased Wnt signaling in multiple tissues from aged mice, these studies 

suggest a pro-aging role of Wnt signaling. However, other evidence supporting 

an opposing model was also reported. Several studies have demonstrated that 

Wnt signaling promotes neurogenesis in the adult hippocampus through 
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regulation of neural stem cells proliferation and self-renewal (Kalani et al., 2008; 

Lie et al., 2005; Miranda et al., 2012). Downregulation of Wnt family members in 

astrocytes from aged animals was reported (Miranda et al., 2012).  A study 

performed in C. elegans showed that different Wnt molecules can have 

differential effects on the longevity of the worm (Lezzerini and Budovskaya, 

2014). These data suggest that the roles of Wnt signaling in aging can be 

complicated depending on the specific signaling pathway, the tissue and the 

organism.   

Drosophila Wg is expressed in a variety of cell types such as germline cells, 

intestinal stem cells and epithelial cells in adult flies (Kuwamura et al., 2012; 

Song and Xie, 2003). However, the functions of Wg in adult fly remain largely 

unexplored. The study in Chapter 3 suggests a potential post-developmental role 

of Wg signaling in the overall maintenance of wellness and the aging process.  
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Figure 4.1 Nuclear envelope budding in human fibroblasts (Ding et al., in 

preparation) 
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(A-B) Human fibroblasts from (A) control (P23) and (B) a HGPS patient (P24) 

labeled with a FISH oligo-d(T) probe, antibodies to LMNA, and Hoechst . Arrows 

indicate oligo-d(T) positive lamin foci.  Calibration bar is 3µm 

(C-E) TEM of human fibroblast nuclei from a HGPS patient. Black arrows point to 

areas of lamina-thickening; white arrows point to megaRNP granules; 

arrowheads point to the neck of NE protrusions. Asterisks indicate nucleoplasmic 

islands. Calibration bar is 0.4µm. 

(F) Quantification of number of LMNA/poly(A) RNA foci in human control and 

HGPS fibroblasts. N=(left to right): 99, 90.  Error bars =SEM. **p<0.01 

(G) Quantitative Real-time PCR of human Mfn1 and Mfn2 RNA levels in control 

and HGPS fibroblasts 
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