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ABSTRACT 

Small RNAs are single-stranded, 18–36 nucleotide RNAs that can be categorized 

as miRNA, siRNA, and piRNA. miRNA are expressed ubiquitously in tissues and 

at particular developmental stages. They fine-tune gene expression by regulating 

the stability and translation of mRNAs. piRNAs are mainly expressed in the 

animal gonads and their major function is repressing transposable elements to 

ensure the faithful transfer of genetic information from generation to generation. 

My thesis research focused on the biogenesis of miRNAs and piRNAs using both 

experimental and computational strategies. 

The biogenesis of miRNAs involves sequential processing of their 

precursors by the RNase III enzymes Drosha and Dicer to generate 

miRNA/miRNA* duplexes, which are subsequently loaded into Argonaute 

proteins to form the RNA-induced silencing complex (RISC). We discovered that, 

after assembled into Ago1, more than a quarter of Drosophila miRNAs undergo 

3′ end trimming by the 3′-to-5′ exoribonuclease Nibbler. Such trimming occurs 

after removal of the miRNA* strand from pre-RISC and may be the final step in 

RISC assembly, ultimately enhancing target messenger RNA repression. 

Moreover, by developing a specialized Burrow-Wheeler Transform based short 

reads aligner, we discovered that in the absence of Nibbler a subgroup of 

miRNAs undergoes increased tailing—non-templated nucleotide addition to their 

3′ ends, which are usually associated with miRNA degradation. Therefore, the 3′ 
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trimming by Nibbler might increase miRNA stability by protecting them from 

degradation. 

In Drosophila germ line, piRNAs associate with three PIWI-clade 

Argonaute proteins, Piwi, Aub, and Ago3. piRNAs bound by Aub and Ago3 are 

generated by reciprocal cleavages of sense and antisense transposon transcripts 

(a.k.a., the “Ping-Pong” cycle), which amplifies piRNA abundance and degrades 

transposon transcripts in the cytoplasm. On the other hand, Piwi and its 

associated piRNA repress the transcription of transposons in the nucleus. We 

discovered that Aub- and Ago3-mediated transposon RNA cleavage not only 

generates piRNAs bound to each other, but also produces substrates for the 

endonuclease Zucchini, which processively cleaves those substrates in a 

periodicity of ~26 nt and generates piRNAs that predominantly load into Piwi. 

Without Aub or Ago3, the abundance of Piwi-bound piRNAs drops and 

transcriptional silencing is compromised. Our discovery revises the current model 

of piRNA biogenesis. 
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History of small RNA 
Small RNA-mediated silencing, also known as RNA interference (RNAi), was first 

described as “co-suppression” in early 1990s. In an effort to alter the color of the 

flowers, plant scientists introduced into petunia an extra copy of chalcone 

synthase (CHS)—a critical enzyme in the pigmentation process. Unexpectedly, 

the exogenous CHS turned out to suppress the endogenous allele and produced 

totally or partially white flower (van der Krol et al., 1990; Napoli et al., 1990). 

Detailed analysis revealed that the messenger RNA (mRNA) of the endogenous 

CHS was reduced dramatically. A similar phenomenon was later observed in 

fungus (Romano and Macino, 1992) and fruit fly (Pal-Bhadra et al., 1997). 

Nonetheless, the molecular mechanism of co-suppression remained elusive. In 

1998, Fire and colleagues reported that double-stranded RNA (dsRNA), when 

injected into C. elegans, mediates the silencing of endogenous genes with 

homolog sequences (Fire et al., 1998). This phenomenon is called RNA 

interference and later found to be operational in many organisms as well as in 

human cells. In the past decade, scientists have made enormous progress 

elucidating the mechanism of RNAi—those exogenous dsRNAs are converted 

into ~21 nucleotide (nt) short RNAs, which guide a group of proteins to form the 

RNA-induced silencing complex (RISC) and repress messenger RNAs (mRNAs) 

through sequence complementarity. Interestingly, the endogenous counterpart of 

RNAi exists in many species and is first described in C.elegans in 1993 (Lee et 

al., 1993; Wightman et al., 1993). To date, three categories of endogenous small 
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RNAs have been well characterized. They include microRNAs (miRNAs), 

endogenous small interfering RNAs (endo-siRNAs), and PIWI-interacting RNAs 

(piRNAs). 

microRNA Biogenesis 

miRNAs are mainly transcribed by RNA Polymerase II either from independent 

transcriptional unit or from the introns of protein coding genes (Figure 1.1; Lee et 

al., 2004; Cai et al., 2004; Borchert et al., 2006). Those primary miRNAs (pri-

miRNA) contain one or multiple stem-loops that harbor the future miRNAs. In the 

nucleus, pri-miRNAs are recognized and processed into precursor miRNAs (pre-

miRNA) by the microprocessor complex, which consists of an RNase III enzyme 

Drosha and its partner protein DiGeorge syndrome critical region gene 8 

(DGCR8; named Pasha in fly; Lee et al., 2003; Denli et al., 2004; Gregory et al., 

2004; Han et al., 2004; Landthaler et al., 2004). Alternatively, a subset of 

miRNAs is produced from introns, which undergo lariat de-branching to produce 

pre-miRNAs (Ruby et al., 2007; Okamura et al., 2007). 
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Figure 1.1 
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Figure Legend 1.1. MicroRNA Biogenesis in Drosophila  
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Pre-miRNAs, which are 60–70 nt in length and form a stem-loop structure 

with 2-nt overhang at its 3′ end—a signature of RNase III product—, are then 

exported into the cytoplasm by Exportin-5 (called Ranbp21 in flies; Yi et al., 

2003; Bohnsack et al., 2004). In the cytoplasm, another RNase III enzyme Dicer, 

with the aid of its partner proteins—TAR RNA-binding protein 2 (TARBP2, also 

known as TRBP), protein kinase R-activating protein (PACT) in human, and 

Loquacious isoform PB (Loqs-PB) in flies— cleaves the pre-miRNA and liberates 

the miRNA/miRNA* duplex (Bernstein et al., 2001; Hutvagner, 2001; Grishok et 

al., 2001; Ketting et al., 2001; Jiang et al., 2005; Forstemann et al., 2005; Haase 

et al., 2005; Lee et al., 2006). With the aid of HSC70–HSP90 chaperone 

machinery, this duplex is loaded into an AGO protein (Iwasaki et al., 2010). 

Subsequent maturation steps expel the miRNA*, producing a mature RISC, 

which finds its target through sequence complementarity. 

microRNA-mediated Gene Regulation 

AGO divides the small RNA guide into functional domains: anchor, seed, central, 

3′ supplementary, and tail (Wee et al., 2012). The seed region—2nd–7th nt of the 

small RNA—is pre-organized by AGO in a quasi-helical structure that pre-pays 

the entropic penalty in nucleic acid pairing (Parker et al., 2009). Such pre-

organized structure initiates the binding of RISC to the mRNA target and 

determines the specificity (Bartel, 2004; Bartel, 2009). A single mutation in the 

seed region can abolish target regulation (Haley and Zamore, 2004). The seed 

pairing between miRNA and target induces a structural rearrangement of AGO 
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proteins, allowing subsequent pairing between the 3′ complementary region—

13th–16th nt of the small RNA—and the target (Wang et al., 2008; Wang et al., 

2008; Wang et al., 2009b; Schirle and MacRae, 2012). Such pairing reduces the 

off-rate of RISC from the target and enhances target repression (Grimson et al., 

2007; Wee et al., 2012). 

miRNA target sequences tend to occur in the 3′ untranslated regions 

(UTRs) of mRNAs (Wightman et al., 1993; Lee et al., 1993; Pasquinelli et al., 

2000; Lai, 2002). Due to the short length of the seed region, more than half of 

genes in mammals are regulated by miRNAs (Farh et al., 2005; Stark et al., 

2005; Friedman et al., 2009). Plant miRNAs often trigger the cleavage of their 

targets due to their extensive complementarity (Llave et al., 2002; Tang et al., 

2003; German et al., 2008; Addo-Quaye et al., 2008). However, only a few 

animal miRNAs have sufficient complementarity to induce the cleavage by AGO 

proteins (Yekta, 2004). Therefore animal miRNAs deploy different strategies in 

target regulation. Mass spectrometry and ribosome profiling experiments suggest 

that the majority of miRNA-mediated protein decrease is caused by mRNA 

destabilization, instead of translational repression (Baek et al., 2008; Guo et al., 

2010), although translational repression might also exist and precede mRNA 

degradation for a subset of targets (Bazzini et al., 2012). 

microRNA Turnover 

Binding to an mRNA target not only leads to the degradation of that mRNA, but 

also reduces the stability of the miRNA itself, especially when the miRNA pairs 
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with a target with a high complementarity (Krutzfeldt et al., 2005; Chatterjee and 

Grosshans, 2009). Two distinct classes of modification associate with miRNA 

degradation—“tailing” and “trimming” (Ameres et al., 2010). Tailing describes 

non-templated nucleotide addition to the 3′ ends of miRNAs and trimming refers 

to the 3′-to-5′ exonucleolytic resection of miRNA from its 3′ end. The detailed 

mechanism and function of tailing and trimming remain elusive, but it is 

hypothesized that target binding induces a structural rearrangement of Ago-

miRNA complex that releases the 3′ end of miRNA from the PAZ domain and 

makes it more accessible to the tailing enzyme (nucleotidyl transferase). 

Target-directed small RNA tailing is restricted to miRNAs in Drosophila. 

piRNAs in mice, siRNAs and piRNAs in flies, and miRNAs in plants are 2′-O-

methylated at their 3′ end by methyltransferase Hen1. Such modification prevents 

tailing and protects miRNAs from target-induced degradation, because they often 

have extensive complementarity with their targets (Saito et al., 2007; Horwich et 

al., 2007; Ameres et al., 2011). 

piRNA 

piRNAs are single-stranded, 23–36 nucleotide RNAs that act as guides for an 

animal-specific class of Argonaute proteins, the PIWI proteins. The first 

piRNAs—derived from the Suppressor of Stellate locus in Drosophila 

melanogaster testes—were discovered in 2001 (Aravin et al., 2001). Although 

the authors noted the larger size of those “rasiRNAs” (repeat-associated 

siRNAs), piRNAs were not recognized until 2006 as a distinct class of small 
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interfering RNAs (siRNAs) that derive from single-stranded, rather than double-

stranded RNA (dsRNA), precursors (Vagin et al., 2006; Saito et al., 2006; Girard 

et al., 2006; Aravin et al., 2006). It was their association with PIWI, but not AGO, 

proteins and their independence from Dicer that finally distinguished piRNAs 

from siRNAs. Moreover, while siRNAs are expressed ubiquitously, piRNAs are 

predominantly found in animal gonads and are thought to be indispensable for 

fertility. 

piRNA Classification and Evolution 

piRNAs can be divided into four classes according to their origins and functions. 

The best-studied class corresponds to repeat-associated piRNAs, which silence 

transposons in insects and mice (Figure 1.2). The second class of piRNAs 

originates from the 3′ UTRs of mRNAs. Examples of such mRNA-derived piRNAs 

include piRNAs in the ovarian, somatic, follicle cells of flies and in the pre-

pachytene, meiotic spermatocytes of mice. How mRNA-derived piRNAs are 

made or what they do is unknown. The third class, exemplified by pachytene 

piRNAs in the mouse testis, derives from intergenic, long non-coding RNAs 

(lncRNAs). Their targets and function are also elusive. Nonetheless, these three 

classes of piRNAs are highly conserved and have been found in Cnidaria 

(Nematostella vectensis) and Porifera (Amphimedon queenslandica; Grimson et 

al., 2008). The final piRNA class is Caenorhabditis-specific. Worm piRNAs—

called 21U RNAs—cooperate with 22G siRNAs to repress “non-self” RNA 

transcription via histone methylation (Ruby et al., 2006; Lee et al., 2012).  
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Figure 1.2 
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Figure Legend 1.2. Classification of piRNAs 

piRNAs can be classified into three groups based on their origins. The precursors 

of transposon-derived piRNAs are typically transcribed from both genomic 

strands and produce both sense and antisense piRNAs. In contrast, mRNA-

derived piRNAs are always sense to the mRNA from which they are processed. 

Such piRNAs often come from 3′ UTRs. Long non-coding RNAs (lncRNAs) 

produce piRNAs from the entire transcript. piRNA function is only well 

understood for transposon-derived piRNAs. 
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PIWI proteins 

Argonaute proteins lie at the center of all small RNA pathways. During animal 

evolution, Argonaute proteins have diverged into two clades: AGO proteins, 

which associate with miRNAs and siRNAs, and PIWI proteins, which bind 

piRNAs. Animals typically encode multiple PIWI-family members: most primates 

have four PIWI genes (PIWIL1–4), mice (Piwil1, Piwil2, Piwil4) and flies (piwi, 

aub, ago3) have three, and worms have two (prg-1, prg-2). Like most Argonaute 

proteins, even those in bacteria and archaea, both AGO and PIWI proteins 

possess highly conserved MID, PAZ and PIWI domains. The MID domain 

anchors the 5′ end and the PAZ anchors the 3′ end of the guide small RNA 

(Carmell et al., 2002; Hutvagner and Simard, 2008; Cenik and Zamore, 2011). 

Small RNAs guide Argonautes to their targets through Watson-Crick base pairing 

(Wee et al., 2012). With enough complementarity, the RNaseH-like structure of 

the PIWI domain cleaves the phosphodiester bond between the two nucleotides 

in the target RNA that base-pair with the 10th and 11th nucleotides of the small 

RNA guide (Liu et al., 2004; Song et al., 2004). The side-chains of conserved 

aspartic acid and histidine residues in the PIWI domain form a DDH catalytic triad 

that coordinates a magnesium ion proposed to activate a nucleophilic water 

molecule that breaks the phosphodiester bond. A subset of PIWI proteins, 

including Drosophila Piwi and mouse MIWI2 (officially PIWIL4) can repress 

transposon transcription by promoting histone or DNA methylation (Aravin et al., 

2007; Carmell et al., 2007; Kuramochi-Miyagawa et al., 2008; Sienski et al., 
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2012; Huang et al., 2013; Rozhkov et al., 2013; Le Thomas et al., 2013). 

Mutation of the catalytic triad of these proteins does not impair transposon 

silencing, yet their catalytic triad has been conserved in evolution, implying an 

undiscovered role for slicing by these PIWI proteins (Reuter et al., 2011; Saito et 

al., 2009; Sienski et al., 2012; Darricarrère et al., 2013). In worms, 21U piRNAs 

guide the PIWI protein PRG-1 to initiate silencing of “non-self” RNA transcription 

via 22G siRNAs, which enter the nucleus and direct methylation of histone H3 

lysine 9 (H3K9) (Bagijn et al., 2012; Lee et al., 2012; Shirayama et al., 2012). 

Tudor Proteins 

The gene tudor emerged in a genetic screen for flies that were grandchildless, 

like its namesake, the English Tudor royal family (Boswell and Mahowald, 1985). 

Tudor contains 11 Tudor (Tud) domains, which promote protein-protein 

interactions by folding into a β-barrel structure that binds (6-N,6-N) methyl-lysine 

and (6-N,6-N) methyl-arginine. Drosophila and mouse PIWI proteins have di-

methylated arginines on their N-termini, and Tudor proteins are believed to serve 

as scaffolds that organize the components of the piRNA pathway into functional 

units (Nishida et al., 2009; Kirino et al., 2009). More than ten fly and eight mouse 

Tudor proteins function in the piRNA pathway: loss of any Tudor protein leads to 

sterility as well as a distorted piRNA pool. For example, loss of tejas and spindle-

E eliminates most piRNAs in the Drosophila germline nurse cells but leave the 

somatic follicle cell piRNA pathway unaltered (Patil and Kai, 2010; Gonzalez-

Reyes et al., 1997). In contrast, female sterile (1) Yb (fs(1)Yb) acts only in the 
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somatic follicle cells (Szakmary et al., 2009). Other Tudor proteins are required in 

both somatic and germline cells: loss of vreteno causes a large decline in 

piRNAs in both tissues (Handler et al., 2011; Zamparini et al., 2011). While Tudor 

proteins are essential to the piRNA pathway, the detailed mechanisms by which 

these proteins function remain unknown. 

Nuage 

Animal germline cells feature a perinuclear structure termed nuage, French for 

“cloud,” reflecting its amorphous, electron-dense appearance under the electron 

microscope. In the fruit fly ovary, most germline piRNA pathway components 

localize to nuage, including the RNA helicases Vasa and Armitage, the PIWI 

proteins Aub and Ago3, as well as the Tudor proteins (Brennecke et al., 2007; 

Lim and Kai, 2007). The localization of piRNA pathway proteins within nuage 

builds on a foundation of Vasa: in vasa mutants, all known piRNA pathway 

proteins fail to localize to nuage. In tejas and spindle-E mutants, only Vasa 

remains in nuage, suggesting that the binding of Tejas and Spindle-E 

immediately follows the deposition of Vasa (Patil and Kai, 2010; Lim and Kai, 

2007). Topping off the structure are the PIWI proteins Aub and Ago3: no known 

piRNA pathway proteins depend on aub and ago3 to localize to nuage. 

In the mammalian testis—where piRNAs play an essential role in 

spermatogenesis—two different granular structures, “intermitochondrial cement” 

(also called the “pi-body”) and “chromatoid body” (also called “piP-body”) take the 

place of nuage (Aravin et al., 2009). In the embryonic testis, DDX4 (mammalian 
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Vasa), MILI (officially PIWIL2), TDRD1, and GASZ localize to the 

intermitochondrial cement. MIWI2, a PIWI protein found only in the embryonic 

and newborn testis, is found in a distinct granule containing HMG box protein 

MAELSTROM, TDRD9 (the homolog of Spindle-E), and many proteins that are 

components of P-bodies, somatic cytoplasmic granules involved in RNA-

degrading pathways such as nonsense-mediated decay (NMD) and miRNA-

guided mRNA repression. The chromatoid body first appears in spermatocytes 

during Meiosis I and contains MIWI (officially PIWIL1), MILI, DDX4, 

MAELSTROM, TDRD1, TDRD6, and some P-body components. The co-

localization of P-body components and PIWI proteins suggests that piRNAs are 

involved in mRNA turnover, but this idea remains to be tested. 

piRNA clusters 

The loci that give rise to piRNAs are not dispersed throughout the genome but 

rather are concentrated in specific piRNA “clusters” (Brennecke et al., 2007). The 

best-studied piRNA cluster is flamenco (flam), which was genetically defined as a 

locus required for transposon silencing long before the fly genome was 

sequenced or piRNAs were discovered (Pelisson et al., 1994; Prud'homme et al., 

1995; Robert et al., 2001). flamenco is predominantly, if not exclusively, active in 

the fly somatic follicle cells (Mohn et al., 2014). Disruption of flamenco leads to 

derepression of somatic transposons, including gypsy, which forms viral particles 

that invade the adjacent germline and, ultimately, cause sterility (Malone et al., 

2009). Early hypotheses assumed flamenco encoded a protein-coding gene, but 
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efforts to find protein-coding genes at the locus were fruitless. High-throughput 

sequencing of 18–30 nt RNAs demystified the identity of flamenco as a piRNA 

cluster that generates piRNAs from embedded transposon fragments, most of 

which are inserted in the antisense orientation. Therefore flamenco piRNAs are 

predominately antisense to transposon RNA. A P-element insertion in the 

flamenco promoter abolishes piRNA production from this ~180 kb locus, 

suggesting that a single transcript spans this region (Malone et al., 2009; Goriaux 

et al., 2014). This observation, together with the finding that piRNA production in 

flies needs neither Dicer-‐‑1 nor Dicer-‐‑2, led to the belief that piRNAs originate 

from single-stranded RNA precursors (Vagin et al., 2006). While flamenco 

produces piRNAs only from one strand (a “uni-strand” cluster), most germline 

piRNA clusters produce piRNAs from both strands (“dual-strand” clusters). Unlike 

uni-strand clusters, which exhibit canonical polymerase II transcriptional 

signatures including enrichment of di-methylated histone H3 lysine 4 (H3K4me2) 

at their promoters and 7-methylguanylate caps on the 5′ ends of their transcripts, 

dual-strand clusters lack those features and are enriched in the repressive 

H3K9me3 mark (Zhang et al., 2014b; Mohn et al., 2014). Interestingly, 

transcription of dual-strand clusters, but not uni-strand clusters, requires Rhino (a 

paralog of Heterochromatin Protein 1, HP1), Cutoff (a yeast Rai1-like protein), 

and Deadlock (Zhang et al., 2012; Zhang et al., 2014b; Mohn et al., 2014). 

Current evidence suggests that Rhino, Deadlock, and Cutoff form a complex that 

licenses dual-strand clusters to produce piRNAs by suppressing splicing or 
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polyadenylation and cleavage of their transcripts. The DEAD box protein UAP56 

then binds dual-strand-cluster transcripts and escorts them to nuclear periphery 

opposite nuage, where, it is proposed, they are transferred to the piRNA 

biogenesis machinery to be processed into mature piRNAs (Zhang et al., 2012). 

The biogenesis of 3′ UTR-derived piRNAs is also poorly understood. How 

the piRNA biogenesis machinery identifies certain mRNAs as its substrates 

remains one of the most mysterious questions in the field. Similarly, little is 

known about the biogenesis of intergenic piRNAs, which exist in mice but not in 

flies. The transcription factor A-MYB (MYBL1) regulates the transcription of many 

intergenic piRNA precursors in the mouse testis (Bolcun-Filas et al., 2011; Li et 

al., 2013). Of note, A-MYB also drives the transcription of many genes encoding 

piRNA pathway components, such as MIWI and TDRD1. But how these long 

non-coding transcripts, but not protein-coding transcripts, are processed to 

become mature piRNAs is largely unknown.  

The biogenesis of C. elegans piRNAs differs from that in flies and mice. 

The 21U piRNAs are each independently transcribed as capped, 26–29 nt small 

RNAs (Ruby et al., 2006). An 8-nt motif located ~40 nt upstream promotes their 

coordinated transcription. The maturation of 21U piRNAs begins with the removal 

of the cap and two nucleotides from the 5′ end of the pre-21U piRNA transcript 

and ends with the trimming and 2′-O-methylation of their 3′ ends. 
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piRNA Maturation and Function 

After transcription, piRNA primary transcripts (pri-piRNAs) are processed to 

mature piRNAs. One hypothesis suggests that a single-stranded 

endoribonuclease, Zucchini, cleaves pri-piRNAs to create piRNA intermediates 

bearing a 5′-monophosphate and 3′-hydroxyl ends. Without Zucchini, pri-piRNA 

transcripts accumulate and mature piRNAs decline. A UPF1-like helicase, 

Armitage, participates in piRNA biogenesis at this step but its function still 

remains mysterious (Olivieri et al., 2010; Haase et al., 2010). It is believed, with 

some experimental support, that piRNA intermediates are loaded into PIWI 

proteins, then trimmed by a 3′-to-5′ exonuclease to a length determined by the 

footprint of the PIWI protein (Kawaoka et al., 2011). 

Once bound to a piRNA, Piwi can enter the nucleus, where it is presumed 

to bind complementary nascent transposon transcripts. Piwi can then recruit 

histone methyltransferases that deposit the repressive H3K9me3 mark to 

establish heterochromatin and restrict transposon transcription (Klenov et al., 

2011; Sienski et al., 2012; Rozhkov et al., 2013; Le Thomas et al., 2013; Klenov 

et al., 2014). The mechanism employed by the germline piRNA pathway is more 

complex: the germline contains Piwi, Aub, and Ago3 and germline piRNAs mainly 

derive from dual-strand piRNA clusters and correspond to both sense and 

antisense transposon sequences. Curiously, Aub and Piwi seem to preferentially 

bind piRNAs in the antisense orientation while Ago3 tends to associate with 

sense piRNAs (Brennecke et al., 2007). Aub-bound antisense piRNAs typically 
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start with a 5′ uridine while Ago3-bound sense piRNAs often have adenosine as 

their tenth nucleotide. Complementarity between the first ten nucleotides of Aub- 

and Ago3-bound piRNAs led to the hypothesis that sense piRNAs are generated 

by target cleavage directed by antisense piRNAs, and vice versa (Figure 1.3A). 

Based on this, the Hannon and Siomi laboratories proposed the “Ping-Pong” 

model to explain the biogenesis of germline piRNAs in insects (Figure 1.3B; 

Brennecke et al., 2007; Gunawardane et al., 2007). In this model, maternally 

deposited or newly synthesized Aub-bound, antisense piRNAs initiate the Ping-

Pong cycle by cleaving transposon mRNA transcripts and generating sense-

oriented piRNA intermediates. The sense intermediates are loaded into Ago3 

and trimmed to mature sense piRNAs. These Ago3-bound, sense piRNAs can 

then bind and cleave the antisense transposon sequences present in the 

transcripts of the original piRNA cluster, producing piRNA intermediates that 

begin with uridines—a substrate that reinitiates the cycle. The model suggests 

that the piRNA biogenesis pathway is an adaptive system that silences active 

transposons with sequences complementary to piRNA cluster transcripts. 

Experiments in cultured, immortalized silkworm germline cells suggest that the 

DEAD-box RNA helicase Vasa assembles a complex with transposon transcripts, 

Aub, Ago3, and the Tudor protein Qin (Xiol et al., 2014). After Aub cleaves the 

transposon, Vasa facilitates the transfer of the 3′ cleavage product to Ago3. 

Without Qin, the interaction between Aub and Ago3 is weakened, and piRNA 

amplification occurs mainly between Aub proteins (Zhang et al., 2011; Zhang et 
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al., 2014a). For unknown reasons, piRNAs generated from such homotypic Ping-

Pong cannot silence transposons. 
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Figure 1.3 
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Figure Legend 1.3. Ping-Pong Cycle Amplifies piRNAs in Drosophila 

(A) In flies, piRNAs bound by Aubergine (Aub) and Ago3 typically overlap by ten 

nucleotides, suggesting that one piRNA was made by cleavage of its precursor 

by a PIWI protein guided by the other piRNA. 

(B) The Ping-Pong model for secondary piRNA biogenesis seeks to explain the 

unique relationship of Aub- and Ago3-bound piRNAs. Antisense piRNAs guide 

Aub to cleave transposon mRNA and cluster transcripts that contain transposon 

fragments. The resulting 3′ cleavage products bear a 5′ monophosphate, 

allowing them to load into Ago3. An unidentified, 3′ to 5′ exonuclease trims the 

Ago3-bound RNA to the proper length before Hen1 methylates its 3′ end. This 

process produces new piRNAs that are in the same orientation as the 

transposon. The piRNAs can now guide Ago3 to cleave piRNA precursor 

transcripts harboring complementary transposon fragments. These new 3′ 

cleavage products can then be loaded into Aub, trimmed, and methylated, 

generating mature piRNAs that can guide Aub to initiate the next cycle. 
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In the mouse testis, piRNAs are even more complex, with three types of 

piRNAs appearing during spermatogenesis: prenatal piRNAs from repetitive 

sequences, mRNA-derived piRNAs from 3′ UTRs, and pachytene piRNAs from 

long non-coding transcripts (Kuramochi-Miyagawa et al., 2001; Deng and Lin, 

2002; Girard et al., 2006; Aravin et al., 2006; Grivna et al., 2006a; Grivna et al., 

2006b; Aravin et al., 2007; Carmell et al., 2007; Li et al., 2013). Prenatal piRNAs 

bind both MIWI2 and MILI. MIWI2 begins to accumulate around 14.5–15.5 days 

post coitum (dpc), declines starting at birth, and becomes undetectable ~4 days 

post partum (dpp), when prospermatogonial cells re-enter the mitotic cell cycle 

and initiate the first wave of spermatogenesis. Like fly Piwi, MIWI2 silences 

transposons transcriptionally; its endonuclease activity is dispensable for 

transposon repression (De Fazio et al., 2011). MILI expression begins in the 

embryonic testis (12.5 dpc) and lasts until the round spermatid stage, near the 

end of spermatogenesis. It binds all three groups of piRNAs. In the embryonic 

testis, MILI performs “Ping-Pong” with itself, amplifying the piRNA pool before 

presenting mature piRNAs to MIWI2, which translocates into the nucleus and 

recruits the DNA methyltransferase DNMT3L to methylate and repress 

transposon loci (Aravin et al., 2008). Loss of MIWI2 or MILI leads to loss of DNA 

methylation, derepression of transposons, defects in spermatogenesis, and 

sterility. Most of the prenatal piRNA clusters are insertions of individual 

transposons or transposon fragments. Consequently, ~40 times more clusters 
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are required in mice than in flies to account for the sources of the same 

percentage of piRNAs. 

Sequencing of small RNAs after birth and before the pachytene stage (i.e., 

“pre-pachytene”) identified the second group of mouse piRNAs: mRNA-derived 

piRNAs. While some transposon-mapping piRNAs remain in the pre-pachytene 

spermatocytes, these could have been made during the earlier, mitotic stages of 

spermatogenesis. Most pre-pachytene piRNAs are mRNA-derived; they typically 

map to the 3′ UTRs of protein-coding genes. Because small RNAs are used as 

guides to identify targets by nucleotide complementarity, it is a great mystery 

what function such mRNA-derived—i.e., sense—piRNAs could serve. 

In response to a transcriptional program orchestrated by the transcription 

factor A-MYB, MIWI, additional piRNA pathway proteins, and the pachytene 

piRNAs emerge beginning at 12.5 dpp. The pachytene piRNAs rapidly grow to 

numbers that dwarf the abundance of the other two piRNA types, and they 

remain the most abundant piRNA population in the adult mouse testis. Mouse 

piRNA production requires most of the genes encoding homologs that function in 

the fly piRNA pathway, including the Zucchini homolog MitoPLD, the Armitage 

homolog Mov10l1, and several Tudor proteins (Watanabe et al., 2011; Zheng et 

al., 2010; Frost et al., 2010; Vourekas et al., 2015; Pan et al., 2005; Chuma et al., 

2006; Arkov et al., 2006; Hosokawa et al., 2007; van der Heijden and Bortvin, 

2009; Wang et al., 2009a; Chen et al., 2009a; Vasileva et al., 2009; Shoji et al., 

2009; Huang et al., 2011; Yabuta et al., 2011; Tanaka et al., 2011; Mathioudakis 
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et al., 2012; Saxe et al., 2013; Pandey et al., 2013; Patil et al., 2014). Loss of A-

MYB, MIWI, or other members of the pachytene piRNA pathway blocks 

spermatogenesis and causes male sterility. Nonetheless, how pachytene piRNAs 

are made or what they do remains unknown. 

Unlike the miRNA and siRNA pathways, the piRNA pathway lacks good 

biochemical and cell culture tools to analyze its molecular details, especially for 

mRNA-derived and intergenic piRNAs. Moreover, both the sources and targets of 

transposon-silencing piRNAs often lie in parts of the genome that remain 

incompletely sequenced and incompletely assembled. Therefore, a new 

methodology is in demand for making a breakthrough in the piRNA research. 
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Chapter II The 3′-to-5′ Exonuclease Nibbler Shapes the 3′ 

Ends of MicroRNA 

 

 

Disclaimer 

This chapter was a product of a collaborative effort among the authors: Bo W 

Han (BWH), Stefan L Ameres (SLA), Jui-Hung Hung (JHH), Zhiping Weng (ZW), 
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experiments. BWH and JHH performed the computational analyses. ZW and 

PDZ supervised the project. 
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Summary 

We show that after loading into Ago1, more than a quarter of all Drosophila 

miRNAs undergo 3′ end trimming by the 3′-to-5′ exonuclease Nibbler (CG9247). 

Depletion of Nibbler by RNAi reveal that miRNAs are frequently produced by 

Dicer-1 as intermediate that are longer than ~22 nt. Trimming of miRNA 3′ ends 

occurs after removal of the miRNA* strand from pre-RISC and may be the final 

step of RISC assembly, ultimately enhancing target mRNA repression. 

Additionally, we discovered that, in the absence of Nibbler, longer isoforms of 

miRNA were subjected to increased un-templated nucleotide addition to their 3′ 

ends—a molecular phenomenon known as “tailing”. Since tailing is associated 

with miRNA degradation, we conclude that 3′ end trimming by Nibbler improves 

miRNA stability. Our data provide a molecular explanation for the previously 

reported heterogeneity of miRNA 3′ ends and propose a model in which Nibbler 

converts miRNAs into isoforms that are compatible with the preferred length of 

Ago1-bound small RNAs. 
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Introduction 

MicroRNAs (miRNAs) are ~22 nucleotide (nt) small RNAs that control 

development, physiology, and pathology in animals and plants by regulating 

messenger RNA (mRNA) stability and translation in plants, green algae, and 

animals. Loss of proteins required for the production or function of miRNAs 

typically result in severe developmental defects or lethality (Bartel, 2004; Bartel, 

2009). 

miRNA genes are generally transcribed by RNA polymerase II to generate 

5′ capped and 3′ polyadenylated primary miRNAs (pri-miRNAs) that are then 

sequentially processed into mature miRNA duplexes (Lee et al., 2004; Cai et al., 

2004; Borchert et al., 2006). Pri-miRNAs contain one or more characteristic 

stem-loops that are recognized and cleaved by the nuclear RNase III enzyme 

Drosha to generate ~70 nt long precursor miRNAs (pre-miRNAs; Lee et al., 

2003; Denli et al., 2004; Gregory et al., 2004; Han et al., 2004; Landthaler et al., 

2004). Pre-miRNAs comprised a single-stranded loop and a partially base-paired 

stem whose termini bear the hallmarks of RNase III processing: a two-nucleotide 

3′ overhang, a 5′ phosphate, and a 3′ hydroxyl group. Nuclear pre-miRNAs are 

exported by Exportin-5 to the cytoplasm, where the RNase III enzyme Dicer 

liberates ~22 nt mature miRNA/miRNA* duplexes from the pre-miRNA stem (Yi 

et al., 2003; Bohnsack et al., 2004; Bernstein et al., 2001; Hutvagner, 2001; 

Grishok et al., 2001; Ketting et al., 2001; Jiang et al., 2005; Forstemann et al., 

2005; Haase et al., 2005; Lee et al., 2006). Like all Dicer products, miRNA 
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duplexes contain two-nucleotide 3′ overhangs, 5′ phosphate, and 3′ hydroxyl 

groups. In flies, Dicer-1 cleaves pre-miRNAs to miRNAs, whereas Dicer-2 

converts long double-stranded RNA into small interfering RNAs (siRNAs), which 

direct RNAi for host defense against viral infection and somatic transposon 

mobilization (Ghildiyal et al., 2008; Czech et al., 2008). 

miRNA duplexes assemble into Argonaute proteins to form the precursor 

RNA-induced silencing complex (pre-RISC), a process uncoupled from small 

RNA production. In flies, miRNAs typically bind to Argonaute1 (Ago1) and 

siRNAs to Argonaute2 (Ago2) (Tomari et al., 2007; Czech and Hannon, 2011). 

During RISC assembly, one of the two strands of a miRNA duplex is selectively 

retained to form an active silencing complex. Strand selection is determined by 

the relative thermodynamic stability of the duplex ends, the identity of the 5′ 

nucleotides, as well as the structure and length of the miRNA duplex (Czech and 

Hannon, 2011). In mature RISC, a single-stranded miRNA directs Ago1 to bind 

partially complementary sequences, typically within the 3′ untranslated region (3′ 

UTR) of miRNAs. RISC binding represses mRNA expression by accelerating its 

decay or inhibiting its translation. 
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Results 

The 3′ end of miRNA-34 is trimmed after its production by Dicer-1 

miRBase annotates miR-34 (miR-34-5p) as 24 nt long, pairing to a 23 nt miR-34* 

strand (miR-34-3p, Figure 2.1A), but high resolution northern hybridization 

revealed additional, abundant 23, 22, and 21 nt miR-34 isoforms (Figure 2.1B). 

We analyzed small RNA sequencing data from fly heads for reads mapping to 

the miR-34 genomic locus. Of those reads, 98.5% began at the annotated 5′ end 

of miR-34; for miR-34-mapping reads bound to Ago1, 99.0% shared this same, 

unique 5′ end (data not shown). Similarly, 98.8% of all miR-34 reads in total RNA 

data sets from S2 cells shared this 5′ end (Figure 2.1C). On the contrary, the 3′ 

ends displayed various degree of heterogeneity. Since the 3′ ends of miR-34 are 

generated by Dicer-1, thus the shorter isoforms of miR-34 could reflect the 

inaccurate processing of Dicer-1.  
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Figure 2.1 
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Figure Legend 2.1. Dme-miR-34 Displays 3′ End Heterogeneity 

(A) Structure of pre-miR-34. miR-34 (24 nt) is shown in red, and miR-34* (23 nt) 

is shown in blue. 

(B) miR-34 isoforms detected in total RNA from S2 cells and Oregon R flies by 

northern hybridization. 2S rRNA serves as loading control. 

(C) Reads mapping to the pre-miR-34 hairpin in high-throughput sequencing 

datasets of total small RNAs from S2 cells. Red, miR-34 reads that share the 

most abundant 5′ end; blue, miR-34*. Read abundance is reported as parts per 

million (ppm). The length distribution of miR-34 reads sharing the most abundant 

5′ end is shown. 
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To test whether inaccurate processing of pre-miR-34 by Dicer-1 explains 

miR-34 heterogeneity, we incubated 5′ 32P-radiolabeled pre-miR-34 with purified, 

recombinant Dicer-1/Loquacious PB, S2 cell lysate or 0–2 hr Drosophila embryo 

lysate for 15 min (Figure 2.2A). In all three conditions, pre-miR-34 was rapidly 

converted to 24 nt (Dcr-1/Loqs-PB: 61%; S2 cell lysate: 63%; embryo lysate: 

60%), 25 nt (Dcr-1/Loqs-PB: 25%; S2 cell lysate: 26%; embryo lysate: 29%), and 

23 nt (Dcr-1/Loqs-PB: 13%; S2 cell lysate: 11%; embryo lysate: 11%) products; 

we observed no isoforms shorter than 23 nt. Thus, the shorter isoforms of miR-

34 are unlikely to reflect inaccurate processing of pre-miR-34 by Dicer-1, but a 

likely consequence of 3′ end trimming after dicing (Figure 2.1C). Supporting this 

idea, incubation of 5′ 32P-labeled pre-miR-34 or a mature miR-34/miR-34* duplex 

in 0–2 hr embryo lysate produced 21 to 22 nt isoforms (Figure 2.2B). In contrast, 

let-7 was not shortened when incubated in embryo lysate. 
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Figure 2.2 
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Figure Legend 2.2. miR-34 is Trimmed After its Production by Dicer-1 

(A) 5′ 32P-radiolabeled pre-miR-34 was incubated with purified, recombinant 

Dicer-1/Loquacious-PB heterodimer (Dcr-1/Loqs-PB), S2 cell lysate, or 0–2 hr 

embryo lysate. Products were resolved by denaturing polyacrylamide gel 

electrophoresis. 

(B) 5′ 32P-radiolabeled pre-miR-34, 24 nt miR-34, or 21 nt let-7 RNA was 

incubated in 0–2 hr embryo lysate. Products were resolved by denaturing 

polyacrylamide gel electrophoresis. 
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miRNA Trimming Requires Ago1 

Trimming of miR-34 might occur immediately after its production by Dicer-1 when 

miR-34 is still bound to miRNA*, after loading of the miR-34/miR-34* duplex into 

Ago1 to generate pre-RISC, or following the eviction of miR-34* from pre-RISC to 

create miR-34-guided Ago1-RISC. To distinguish among these possibilities, we 

monitored pre-miR-34 processing and miRNA trimming in 0–2 h embryo lysate 

immuno-depleted of Ago1 (Figure 2.3A). Although pre-miR-34 was efficiently 

converted into miR-34 in the absence of Ago1, the resulting 23–25 nt Dcr-1 

products were not trimmed. In contrast, the miR-34 cleaved from pre-miR-34 was 

trimmed in lysate containing Ago1 (Figure 2.3A). Similarly, the fraction of trimmed 

miR-34 decreased in S2 cells depleted of Ago1 by RNAi, compared to the 

control, when measured by both Northern hybridization (Figure 2.3B) and high 

throughput sequencing (Figure 2.3C). RNAi depletion of Ago2—the Argonaute 

protein that binds small interfering RNAs in the RNA interference pathway—had 

no effect on the amount of trimmed miR-34. We conclude that trimming of miR-

34 requires Ago1, presumably because miR-34 trimming occurs after loading into 

Ago1. 
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Figure 2.3 
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Figure Legend 2.3. Trimming of miR-34 Requires Ago1 

(A) 5′ 32P-radiolabeled pre-miR-34 was incubated in 0–2 hr embryo lysate or 

lysate immune-depleted of Ago1. Products were resolved by denaturing 

polyacrylamide gel electrophoresis. 

(B) Double-stranded RNA (dsRNA)-triggered RNA interference (RNAi) targeting 

Ago1, but not Ago2, decreased trimming of miR-34, compared to treatment with 

a control dsRNA targeting GFP. “Trimmed” indicates the fraction of all miR-34 

corresponding to 21 and 22 nt isoforms. The 2S ribosomal RNA (rRNA) serves 

as control. 

(C) The fraction of long miR-34 isoforms, measured by high throughput 

sequencing, increased when S2 cells were depleted of Ago1 by RNAi. Only 

isoforms with the annotated miR-34 5′ end were analyzed. The abundance of 

miR-34 in the two libraries was 3,499 ppm (control) and 4,506 ppm (ago1 RNAi). 
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miRNA* Strand Dissociation Limits the Rate of miRNA trimming 

A key step in the assembly of mature Ago1-RISC is the removal of the miRNA* 

strand from the Ago1-bound, miRNA/miRNA* duplex, a process that converts 

pre-RISC to RISC. Mismatches between the miRNA seed sequence and the 

corresponding nucleotides in the miRNA* promote maturation of pre-Ago1-RISC. 

We performed in vitro trimming assays using three miR-34/miR-34* duplexes that 

differ in the strength of pairing of the miR-34 seed sequence to the seed match in 

miR-34* (Figure 2.4A). One duplex contained a mismatch within the miR-34 seed 

sequence. A second duplex, included two locked nucleic acid (LNA) ribose 

modifications within the seed match of miR-34*; LNA modifications increase the 

strength of base pairing by favoring the C3′ endo ribose conformation found in 

RNA helices. None of the modifications within the miR-34* strand are predicted 

to alter the relative thermodynamic stability of the miR-34 versus miR-34* 5′ 

ends, and therefore preserve the preference to load miR-34 rather than miR-34* 

into Ago1. The mismatch miR-34* more than doubled the rate of miR-34 trimming 

(kobs = 5.8 × 10−5 nM/sec), compared to the canonical miR-34* (kobs = 2.7 × 10−5 

nM/sec). In contrast, the miR-34* containing LNA modifications more than halved 

the rate of trimming (kobs = 1.1 × 10−5 nM/sec; Figures 2.4B and 2.4C). 

  



 

 

40 

Figure 2.4 
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Figure Legend 2.4. Trimming of miR-34 is Limited by the miRNA* Removal 

(A) Synthetic duplexes of 5′ 32P-radiolabeled miR-34 (red) paired to variants of 

miR-34*. 

(B) miRNA/miRNA* duplexes in (A) were incubated in 0–2 hr embryo lysate, and 

the products were analyzed by denaturing polyacrylamide gel electrophoresis. 

(C) Mean ± standard deviation for three independent replicates of the experiment 

in (B). 
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Mismatches between miR-34 and miR-34* also accelerated the rate of 

destruction of miR-34*, whereas the addition of LNA modifications to miR-34* 

slowed the decay of miRNA*, compared to an unmodified miR-34* RNA (Figure 

2.5). Thus, miR-34* modifications that accelerate RISC assembly also 

accelerated trimming, whereas modifications that slow RISC assembly also 

slowed trimming. Our results suggest that miR-34 is first loaded into Ago1 as a 

24 nt RNA and is only converted into shorter isoforms after miR-34* is removed 

from pre-RISC. The majority of 24 nt miR-34 likely corresponds to miR-34 bound 

to miR-34* in pre-RISC, since the 24 nt isoform, unlike the 21–23 nt isoforms, is 

not susceptible to target RNA-directed destruction, a process that requires 

extensive base pairing between the small RNA and its RNA target. 
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Figure 2.5 
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Figure Legend 2.5. Mismatch in the Seed Accelerate miRNA* Destruction 

Synthetic duplexes of 5′ 32P-radiolabeled miR-34* variants (green, black, and 

blue) paired to non-radioactive, phosphorylated miR-34 (red) were incubated in 

0–2 h embryo lysate, and then the decrease in abundance of miR-34* was 

analyzed by denaturing polyacrylamide gel electrophoresis. Mean ± standard 

deviation for three independent replicates. Decay rates (kobs) were calculated by 

fitting the data to a single exponential. 
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The 3′-to-5′ exoribonuclease Nibbler trims miR-34 

To identify the exoribonuclease that trims miR-34, we performed a candidate 

RNAi screen in S2 cells using long double-stranded RNA targeting genes with 

sequence similarity to known or suspected exoribonucleases. Our screen 

included Drosophila homologs of exonucleases previously implicated in small 

RNA silencing pathways, such as the small RNA degrading nucleases (SDN) of 

plants (Ramachandran and Chen, 2008), Enhancer of RNAi-1 (Eri-1; Kennedy et 

al., 2004) and Mut-7 in C. elegans (Ketting et al., 1999), as well as components 

of the general cellular RNA decay machinery such as RRP4, a core component 

of the exosome, the SKI-2 ortholog Twister, and the general 5′-to-3′ exonuclease 

Pacman (XRN1; LaCava et al., 2005). RRP4, Twister and Pacman were 

previously proposed to degrade the mRNA products generated by RNAi and Xrn-

1 was implicated in miRNA turnover (Orban and Izaurralde, 2005). The miRNA 

bantam, which does not undergo detectable trimming served as a control for 

general destabilization of miRNAs. 

Among the exonucleases we tested, only depletion of CG9247 decreased 

the fraction of trimmed miR-34 (fraction trimmed = 20%), compared to control 

RNAi (fraction of miR-34 trimmed = 56%; Figure 2.6). We observed a similar loss 

of miR-34 trimming for two additional, non-overlapping dsRNAs targeting 

different regions within the second exon and the 3′ untranslated region of 

CG9247 (Figure 2.7A and 2.7B). In all cases trimming of miR-34 was reduced by 
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more than half. To reflect its role in 3′ shortening of miRNAs, we named CG9247 

Nibbler (nbr). 
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Figure 2.6 
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Figure Legend 2.6. The 3′-to-5′ Exonuclease CG9247 Trims miR-34 

S2 cells were transfected with dsRNA against a panel of predicted exonucleases 

and the effect on miR-34 length analyzed by high resolution northern 

hybridization. bantam and 2S rRNA served as controls. The fraction of miR-34 

trimmed to 21 to 22 nt is indicated below each lane. 
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Figure 2.7 
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Figure Legend 2.7. Nibbler Trims miR-34, Enhancing its Silencing 

(A) The predicted structure of the nibbler (CG9247) gene, messenger RNA 

(mRNA), and protein. 

(B) S2 cells were transfected with three dsRNAs targeting the second exon or the 

3′ UTR of nibbler as indicated in (A). All four dsRNAs decreased miR-34 

trimming, relative to a control dsRNA targeting firefly luciferase. bantam and 2S 

rRNA served as controls. The efficiency of those dsRNAs are determined by 

qPCR (right panel). 
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We note that RNAi depletion of snipper (snp; CG42257) decreased full 

length 2S rRNA and caused the accumulation of higher molecular weight 

isoforms of 2S rRNA (Figure 2.6), suggesting that Snipper plays a previously 

unknown role in the maturation of 2S rRNA, which is generated by the 

processing of 5.8S rRNA in flies. 

Nibbler homologs include Mut-7 in C. elegans and EXD3 in humans 

(Figure 2.8A). mut-7, which was one of the very first genes discovered to act in 

the RNAi pathway, is required for transposon silencing, RNAi, and co-

suppression in worms, but no role for mut-7 in miRNA biogenesis has been 

reported. Like Mut-7 and EXD3, Nibbler belongs to the DEDD family of 

exoribonucleases, which are part of a larger superfamily that includes DNA 

exonucleases as well as the proof-reading domains of many DNA polymerases. 

DEDD exonucleases contain three characteristic sequence motifs (Figures 2.8A), 

which include four invariant acidic amino acids (DEDD). The structure of DNA 

polymerase suggests that these four amino acids organize two divalent metal 

ions at the catalytic center. Consistent with the view that Nibbler is a metal-

dependent DEDD exoribonuclease, miR-34 trimming in fly lysate was inhibited by 

EDTA; adding additional Mg2+ rescued the inhibition (Figure 2.8B). 
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Figure 2.8 
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Figure Legend 2.8. MicroRNA Biogenesis in Drosophila 

(A) Nibbler belongs to the DEDD superfamily of exonucleases. The four invariant 

exonuclease domain amino acids (DEDD) required for catalysis are indicated. 

Multiple sequence alignment of three conserved regions of five DEDD family 

members is shown below. Red, conserved amino acids required for catalysis. 

(B) Trimming of miR-34 requires Mg2+. 5′ 32P-radiolabeled pre-miR-34 was 

incubated in 0–2 h embryo lysate containing additional water (control), 5 mM 

(f.c.) EDTA, 5 mM EGTA, or 5 mM EDTA plus 5 mM Mg2+. Samples were 

analyzed by denaturing polyacrylamide gel electrophoresis. 
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We changed two of the four invariant amino acids of the Nibbler DEDD 

motif to alanine (D435A and E437A; Figure 2.8A), mutations predicted to block 

exonuclease activity, then reintroduced wild-type or mutant Nibbler open reading 

frame into S2 cells depleted of endogenous nibbler using dsRNA targeting its 3′ 

UTR (dsRNA 3′ UTR; Figure 2.9A). Nibbler cDNA expression was driven by the 

constitutive Actin5C promoter. In these experiments, depletion of endogenous 

Nibbler in control S2 cells decreased the fraction of trimmed miR-34 from 54% to 

32% (Figure 2.9A); the presence of a stable, wild-type Nibbler transgene 

enhanced miR-34 trimming (73% trimmed), even after depletion of endogenous 

Nibbler (78% trimmed miR-34). Enhanced miR-34 trimming likely reflects the 

greater abundance of Nibbler protein in the stable transgenic cell line, since 

Nibbler mRNA levels were ~100-times higher than in control S2 cells (data not 

shown). In contrast, expression of the D435A, E437A mutant Nibbler protein 

reduced miR-34 trimming. The fraction of trimmed miR-34 decreased to 16% 

when transgenic, D435A, E437A mutant Nibbler was expressed along with 

endogenous Nibbler. The fraction of trimmed miR-34 decreased to 7% when 

D435A, E437A mutant Nibbler was expressed and endogenous Nibbler was 

depleted by RNAi. 

In cultured Drosophila S2 cells, trimming of miR-34 by Nibbler enhanced 

its target mRNA silencing activity. We compared the repression of a miR-34-

regulated Renilla reniformis luciferase reporter in S2 cells stably expressing wild-

type Nibbler to cell expressing D435A,E437A mutant Nibbler (Figure 2.9B). S2 



 

 

55 

cells expressing transgenic wild-type Nibbler produced mostly the 21 nt miR-34 

isoform, whereas S2 cells stably expressing mutant Nibbler produce 

predominantly the 24 nt miR-34 isoform (Figure 2.9A). For each cell line, we 

compared the level of reporter expression when the cells were transfected with a 

control anti-miRNA 2′-O-methyl oligonucleotide to the reporter expression when 

the cells were transfected with an anti-miR-34 2′-O-methyl oligonucleotide. The 

ratio of anti-miR-34 to control indicated the extent of repression. We observed 

significantly (p-value = 0.003, n = 6; Figure 2.9C) greater repression of the miR-

34 reporter in the cells expressing wild-type Nibbler, compared to those 

expressing the mutant protein, indicating that trimming of miR-34 to shorter 

isoforms enhances its activity. We conclude that trimming of long miRNAs by the 

Mg2+-dependent, 3′-to-5′ exoribonuclease Nibbler enhances miRNA function. 
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Figure 2.9 
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Figure Legend 2.9. Nibbler Trimming of miR-34 Enhances miRNA Function 

(A) S2 cells stably expressing wild-type or D435A,E437A mutant Nibbler CDS 

were transfected with dsRNA targeting the 3′ UTR of endogenous nibbler and the 

effect on miR-34 trimming measured. bantam and 2S rRNA served as controls. 

(B) Reporter construct used in (C). The three miR-34 binding sites pair with miR-

34 nucleotides 2–8 and 13–15, mimicking typical animal miRNA binding sites. 

The following abbreviation is used: Rr luc, Renilla reniformis luciferase. 

(C) Nibbler trimming of miR-34 enhances miRNA function. Repression by miR-34 

in S2 cells expressing wild-type or D435A,E437A mutant Nibbler was measured 

by blocking miR-34 using a 2′-O-methyl-modified anti-miRNA oligonucleotide and 

measuring the increase in Rr luciferase expression compared to a control 

oligonucleotide targeting let-7, a miRNA not normally expressed in S2 cells. 
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Nibbler Trims Many miRNAs 

To assess the role of Nibbler in the production of other miRNAs, we sequenced 

18–30 nt small RNAs from S2 cells treated with Nibbler dsRNA and from S2 cells 

treated with a control dsRNA. S2 cells produce 36 distinct miRNAs that were 

detected at >200 parts per million (ppm) in our high throughput sequencing. 

Among the isoforms of these 36 miRNA, we detected a small but statistically 

significant increase in the overall mean length of miRNAs when Nibbler was 

depleted: 21.96 nt in the control versus 22.11 nt in Nibbler (RNAi) (p-value = 3.9 

× 10−5, Wilcoxon signed rank test). If all of miR-34 were 22 nt long in the control 

and became 24 nt in the Nibbler dsRNA-treated cells, the mean miRNA length 

would be expected to increase by 0.056. Thus, a 0.15 increase in mean length 

suggests that miR-34 is not the only miRNA trimmed by Nibbler in S2 cells. 

In fact, of the 36 abundantly expressed S2 cell miRNAs, 28 increased in 

mean length. Of these, 13 increased by more than 0.1 nt, and 9 by more than 

0.33 nt (Figure 2.10A). We used a χ2 test to assess the significance of the 

change in the distributions of isoform lengths in the Nibbler (RNAi) S2 cells for 

each miRNA. An increase of ~0.2 nt in mean length was the smallest change we 

could corroborate by Northern hybridization, an admittedly less sensitive method 

than high throughput sequencing. Using the 0.2 nt mean length increase as a 

conservative threshold, 11 S2 cell miRNAs correspond to Nibbler substrates (red 

filled circles, Figures 2.10A). Thus, ≥30% of S2 cell miRNAs are trimmed by 

Nibbler after their production by Dicer-1. 
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Nibbler substrates included both miRNAs derived from the 5′ arm of their 

pre-miRNA (4 miRNAs) and miRNAs derived from the 3′ arm of their pre-miRNA 

(7 miRNAs). miRNAs trimmed by Nibbler account for most of the previously 

identified 3′ heterogeneity of S2 cell miRNAs, because Nibbler-substrates exhibit 

significantly higher 3′ heterogeneity than non-substrate miRNAs (p<0.0001, 

Mann-Whitney U-test, Figure 2.10B). In contrast, 5′ heterogeneity, which is 

generally low because of the purification process associated with Argonaute 

loading, was unaffected by the depletion of Nibbler by RNAi (data not shown). 

The 11 Nibbler substrate miRNAs were significantly longer in S2 cells 

treated with Nibbler dsRNA than non-Nibbler substrate miRNAs: the median of 

the mean lengths was 23.0 nt for Nibbler substrates versus 21.8 nt for all others 

(p-value = 0.02, Mann-Whitney U test, Figure 2.10C). In contrast to Nibbler 

substrate miRNAs, the length of endogenous siRNAs did not change after 

depletion of Nibbler by RNAi, suggesting that Ago2-bound small RNAs are not 

Nibbler substrates (data not shown). We also analyzed the effect of Nibbler 

depletion on the length of the 32 miRNA* strands for which we detected >10 ppm 

by high throughput sequencing. The overall miRNA* mean length changed from 

22.00 to 22.02 nt (p-value = 0.04, Wilcoxon signed rank test), but only two 

miRNA* strands showed a significant increase in the Nibbler dsRNA-treated S2 

cells when analyzed using the χ2 test; neither of the two miRNA* strands 

increased more than 0.1 nt. Consistent with the proposal that miRNA trimming 

occurs after miRNA* strands depart from pre-RISC, those miRNA* strands 
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whose miRNAs were Nibbler substrates did not change significantly in length 

when compared to all other miRNA*s. 

What destines miRNAs for trimming by Nibbler? Perhaps many Nibbler 

substrate miRNAs are initially produced by Dicer-1 as long isoforms that are 

trimmed to a more typical miRNA length. To test this idea, we incubated synthetic 

miR-305/miR-305* duplexes (Figure 2.10E) in Drosophila embryo lysate and 

monitored their trimming. In vivo in flies, miR-305 is efficiently trimmed. 

Moreover, miR-305 is abundantly expressed and efficiently trimmed in 0–2h 

embryos: among the 3,668 ppm miR-305 reads detected in the total small RNAs 

of 0–2h embryos, 23 nt (5%) and 24 nt (14%) miR-305 isoforms represent just 

19% of all miR-305 reads, whereas the shorter, trimmed 21 nt (45%) and 22 nt 

(32%) isoforms represent 77% of all miR-305 reads. When a 24 nt 5′ 32P-

radiolabeled miR-305, paired to a 23 nt miR-305* strand, was incubated 

overnight in embryo lysate, 17% was trimmed to shorter isoforms: 10% 

accumulated as 23 nt, 5% as 22 nt, and 2% as 21 nt. In contrast, only 2% of a 

duplex comprising the 22 nt isoform of miR-305 paired to a 22 nt miR-305* strand 

was converted to a 21 nt form; no species shorter than 21 nt were detectable. 

We conclude that miRNA trimming is triggered, at least in part, by the length of 

the miRNA, with ~24 nt miRNAs being converted by Nibbler into the 21–22 nt 

length, which is more typical for miRNAs at steady-state. 
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Figure 2.10 
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Figure Legend 2.10. Nibbler Trims A Quarter of All miRNAs in S2 Cells 

(A) Analysis of mean miRNA and miRNA* length in S2 cells transfected with 

dsRNA targeting Nibbler or a control dsRNA targeting firefly luciferase. miRNA, 

red; miRNA*, blue; filled circles indicate miRNAs with a significant increase in 

mean length. 

(B) Nibbler trimming explains miRNA 3′ heterogeneity. 3′ heterogeneity was 

determined for all S2 cell miRNAs that were more abundant than 200 ppm in high 

throughput sequencing data. Red, the 11 Nibbler substrates identified in this 

study. Boxplots illustrate 3′ heterogeneity of Nibbler substrate miRNAs (red) 

versus all other miRNAs (black). p-value was determined using the Mann-

Whitney U test.  

(C) The mean length of Nibbler substrate miRNAs is longer than Nibbler 

substrate miRNAs in S2 cells treated with Nibbler dsRNA. p-value was 

determined using the Mann-Whitney U test.  

(D, E) Synthetic miRNA/miRNA* duplexes comprising a 24 or 22 nt 5′ 32P-

radiolabeled miR-305 RNA and the corresponding miRNA* strand (D) were 

incubated in embryo lysate, and the products analyzed by denaturing 

polyacrylamide gel electrophoresis (E). 
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Nibbler Trims miRNAs in vivo 

To test the role of Nibbler in vivo, we obtained two publicly available Drosophila 

strains bearing a transposon insertion in Nibbler: NibblerEY04057, corresponding to 

a P-element insertion in the 5′ UTR of Nibbler and Nibblerf02257, corresponding to 

a piggyBac insertion in the first exon of Nibbler (Figure 2.7A). NibblerEY04057 was 

homozygous viable and showed no change in Nibbler mRNA abundance 

compared to Oregon R or w1118 control flies (Figure 2.11A). However, our 

preliminary data suggests that the Nibbler mRNAs in NibblerEY04057 originate 

within the P-element (data not shown) and may therefore not produce wild-type 

levels of Nibbler protein. Nibblerf02257 was homozygous lethal, and Nibblerf02257 

heterozygotes produced 38 ± 24% of the amount of Nibbler mRNA present in 

w1118 control flies (p = 0.008, Figure 2.11A). The fraction of miR-34 that was 

trimmed was reduced, albeit slightly, in both mutants: 57% of miR-34 was 

trimmed in Sp/CyO control flies, whereas 51% was trimmed in NibblerEY04057/CyO 

and 52% was trimmed in Nibblerf02257/CyO (Figure 2.11B and 2.11C). Trimmed 

miR-34 accounted for only 40% of all miR-34 isoforms in NibblerEY04057 

homozygotes, and in NibblerEY04057/Nibblerf02257 trans-heterozygotes just 21% of 

miR-34 was trimmed. We conclude that trimming of miR-34 requires Nibbler in 

vivo. Similarly, the two Nibbler mutations recapitulated the effect on eleven 

miRNAs identified as Nibbler substrates in S2 cells (data not shown). 

Nibblerf02257 likely corresponds to a strong allele, but this mutation is not 

homozygous viable. To test whether loss of Nibbler affects fly development, we 



 

 

64 

used RNAi to deplete Nibbler in vivo. When driven by an Actin5C-Gal4 driver, a 

UAS-hpRNA transgene on the second chromosome (UAS-hpRNAv52550) reduced 

the fraction of miR-34 that was trimmed to 43% of all miR-34 isoforms, compared 

to 68% in flies expressing the Act5C-Gal4 driver alone or to 66% in the flies 

carrying only the UAS-hpRNA transgene. An insertion of the same hpRNA 

construct on the third chromosome (hpRNAv52612), reduced the fraction of miR-34 

that was trimmed to 13% of all miR-34 isoforms, compared to 60% in flies 

carrying only the Actin5C-Gal4 driver or 53% in flies bearing only the UAS-

hpRNA transgene (Figure 2.11D and 2.11E). Notably, 29% (69 of 239) of the flies 

expressing UAS-hpRNAv52612, the RNAi transgene with the stronger effect on 

miR-34 trimming, failed to eclose from their puparia. Only 5% (16 of 327) of the 

Actin5C-Gal4/CyO; Dr/TM3,Sb control flies and only 2% (5 of 298) of the +; UAS-

hpRNAiv52612 control flies died as pupae. Although miRNAs regulate fly 

development and Nibbler acts on miRNAs, we currently cannot exclude the 

possibility that this pupal lethality reflects a requirement for Nibbler in processing 

substrates other than miRNAs. 
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Figure 2.11 
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Figure Legend 2.11. Nibbler Trims miRNAs in vivo 

(A) Nibbler mRNA abundance in wild-type and mutant flies. Nibbler mRNA levels 

in 3–5-day-old whole male flies were measured by quantitative RT-PCR. Data 

were normalized to mRNA levels of ribosomal protein L32 (alternatively called 

rp49 or RpL32). Mean ± standard deviation for three biological replicates is 

shown. Student’s t-test was used to determine p-values. 

(B, D) High resolution Northern hybridization of miR-34 from 3–5 day-old male 

flies carrying a nibbler mutant allele (B) or in which nibbler was depleted by RNAi 

(D).  

(C, E) miR-34 isoform abundance was measured relative to the indicated 

controls. 
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Nibbler Trimming Prevents miRNAs from Tailing 

Depletion of Nibbler in S2 cells and in flies resulted in the appearance of higher 

molecular weight species, reminiscent of tailed small RNAs rather than bona-fide 

Dicer-products (Figure 2.6). Such non-templated addition of nucleotides to the 3′ 

ends of mature miRNAs has been implicated in miRNA turnover in plants and 

animals and may indicate that Nibbler-substrate miRNAs are marked for decay 

when not properly trimmed (Li et al., 2005; Ameres et al., 2010). To examine this 

idea, we analyzed the tailing of the most abundant 36 miRNAs in S2 cells treated 

with RNAi against luc or Nbr. Most of the miRNAs, but not miRNA*s, displayed 

an increase of tailing (p-value = 0.0004, Wilcoxon signed rank test; Figure 

2.12A). Among the 11 Nibbler substrates, 10 had their tailed fraction increased 

(Figure 2.12B). Only miR-79, which had limited tailed species in wild-type S2 

cells, failed to show increased in tailing upon Nbr knock-down. 

Although tailing has been suggested to mark miRNA for degradation by a 

target-dependent pathway, the increase of tailing in Nbr depleted S2 cells failed 

to correlate with a decrease of miRNA abundance (Figure 2.12C and 2.12D). 

Among the 36 miRNAs we examined, 8 increased their abundance more than 2-

fold while 10 had their levels more than halved. 

In summary, our data suggest that Nibbler trimming protects miRNA from 

non-templated addition of nucleotide to their 3′ end by terminal nucleotidyl 

transferase.
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Figure 2.12 
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Figure Legend 2.12. Nibbler Trimming Prevents miRNA Tailing 

(A, C) Paired dotplot comparing the fraction of tailed reads (A) and abundance 

(C) of miRNAs and miRNA*s in S2 cells treated with dsRNA against Nibbler or 

luciferase. n.s., not significant. 

(B, D) Scatterplot comparing fraction of tailed reads (B) and abundance (D) of 

miRNAs in S2 cells treated with dsRNA against Nibbler or luciferase. Filled circle 

indicate miRNA with more than 25% of change. 
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Discussion 

miRNA 3′ heterogeneity has been attributed to inaccurate processing by Dicer or 

Drosha. Our data suggest that much of the 3′ diversity of miRNAs reflects their 

trimming by a novel processing step catalyzed by the 3′-to-5′ exoribonuclease 

Nibbler. Figure 2.13 presents a revised model for the production of mature 

miRNAs from pre-miRNAs in flies. First, Dicer-1 converts pre-miRNAs to 

miRNA/miRNA* duplexes. These are then sorted between Ago1 and Ago2 to 

generate Ago1- and Ago-2 pre-RISC complexes, with Ago1 selecting ≥22 nt 

miRNAs that begin with an unpaired U or A and containing an unpaired region 

centered on position 9. The Ago1 sorting process helps restrict the diversity of 5′ 

ends of miRNAs. Next, the miRNA* strand dissociates from pre-RISC to produce 

RISC. We imagine that the 3′ ends of “long” miRNAs bound to Ago1 are available 

for trimming by Nibbler because they spend less time bound to the Ago1 PAZ 

domain than do 22 nt miRNAs. Once Nibbler has shortened a long miRNA to 22 

nt, its 3′ end can bind the PAZ domain, protecting it from further trimming or 

tailing. For miR-34, we observed that trimming enhanced miRNA activity. 

This model does not invoke specific recruitment of Nibbler to Ago1-RISC 

and is consistent with our preliminary experiments, in which we were unable to 

detect epitope-tagged, over-expressed Nibbler bound to immunoprecipitated 

Ago1 (data not shown). However, such a simple model cannot explain why some 

trimmed miRNAs do not accumulate isoforms longer than 22 nt even after 

Nibbler was depleted by RNAi (e.g., miR-11; Figure 2.10B), suggesting that 
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miRNA length alone does not define a Nibbler substrate. Perhaps additional 

proteins help recruit Nibbler to Ago1-RISC for some miRNAs. 

Is miRNA-trimming conserved in other organisms? Small RNAs in the 

human cervical carcinoma cell line HeLa exhibit an overall miRNA 3′ 

heterogeneity similar to that observed for fly miRNAs. Several human miRNAs 

with high 3′ heterogeneity show a length distribution in HeLa cells reminiscent of 

Nibbler-substrates in flies (data not shown). Perhaps a human homolog of fly 

Nibbler processes these miRNAs. The C. elegans homolog of Nibbler, Mut-7, is 

required for the accumulation of the 22G RNAs that direct worm Piwi proteins to 

represses transposon expression. We do not yet know if Nibbler functions in the 

analogous piRNA pathway in flies or if Mut-7 has a yet undiscovered role in 

miRNA maturation in worms. 
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Figure 2.13 
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Figure Legend 2.13. Revised Model of MicroRNA Biogenesis in Drosophila 

See text for more details. 
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Experimental Procedures 

General Methods 

Preparation of embryo and S2 cell lysate (Haley et al., 2003), recombinant Dicer-

1 and Loquacious-PB (Cenik et al., 2011), clonal S2 cell lines (Ameres et al., 

2010), and small RNA libraries for high throughput sequencing (Ghildiyal et al., 

2008) have been described previously. Northern hybridization was as described 

(Ameres et al., 2010), except that N-(3-Dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (Sigma-Aldrich, St. Louis, MO, USA) was used 

to crosslink 5′ phosphorylated small RNAs to Hybond-NX (Amersham, GE 

Healthcare, Piscataway, NJ; Pall and Hamilton, 2008). Published small RNA 

libraries used in this study were total S2 cell RNA and ago1 RNAi (Czech et al., 

2009), total fly head RNA (Ghildiyal et al., 2008), and anti-Ago1 

immunoprecipitated small RNAs (Ghildiyal et al., 2010). Sequence data 

generated in this study are available from the NIH Gene Expression Omnibus 

(www.ncbi.nlm.nih.gov/geo) using accession number GSE31689.  

Fly strain y1 w67c23; P{w+mC, y+mDint2, EPgy2}CG9247[EY04057] was from 

the Drosophila Stock Center (Bloomington, IN, USA); PBac{WH}CG9247[f02257] 

was from the Exelixis Collection at Harvard Medical School (Boston, MA, USA); 

and flies expressing hpRNAs were from the Drosophila RNAi Center (Vienna, 

Austria). 
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Pre-miRNA Processing and Trimming Assays 

Pre-miR-34 was transcribed with T7 RNA polymerase using a double-stranded 

DNA oligonucleotide template, dephosphorylated with Calf Intestinal 

Phosphatase (New England Biolabs, Ipswich, MA, USA), and 5′ 32P-radiolabeled 

with T4 Polynucleotide Kinase (New England Biolabs). Pre-miR-34 (2 nM) was 

incubated with recombinant Dicer-1/Loquacious PB (5 nM) or S2 cell or 0–2 h 

embryo lysate for 15 min at 25˚C in a typical RNAi reaction (Haley et al., 2003). 

Ago1 immuno-depletion was as described (Tomari et al., 2007). 

For miRNA trimming, 5′ 32P-radiolabeled RNAs (2 nM) were incubated with 

0–2 h embryo lysate as described (Haley et al., 2003), except that RNase 

inhibitor was omitted. Products were resolved by electrophoresis through a 15% 

denaturing polyacrylamide sequencing gel. Gels were dried, exposed to storage 

phosphor screens (Fuji, Tokyo, Japan) and quantified using ImageGauge 4.22 

(Science Lab 2003, Fuji). 

To analyze miRNA trimming for synthetic 5′ 32P-radiolabeled 24 nt miR-34, 

all isoforms shorter than 24 nt were considered to be trimmed. When pre-miR-34 

was used as a substrate, we considered only isoforms shorter than 23 nt to be 

trimmed, because Dicer-1 produces 23, 24, and 25 nt miR-34 isoforms from pre-

miR-34, so only isoforms shorter than 23 nt could be unambiguously considered 

to be trimmed. Similarly, we only considered isoforms shorter than 23 nt to be 

trimmed for Northern hybridization experiments. The fraction of miR-34 trimmed 

was defined as the sum of trimmed isoforms divided by the sum of all isoforms. 
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RNAi in S2 cells 

Regions targeted by double-stranded RNA were from (Dietzl et al., 2007). DNA 

templates for in vitro transcription were amplified from genomic DNA or cDNA 

from Oregon R flies by PCR using primers incorporating the T7 promoter 

sequence. After isopropanol precipitation, PCR products were used as templates 

for transcription by T7 RNA polymerase. DsRNA products were purified using 

MEGA clear RNA purification kit (Ambion, Austin, TX, USA). S2 cells were 

transfected on day 1 and day 4 with 20 µg dsRNA using Dharmafect4 

(Dharmacon, Lafayette, CO, USA), and then total RNA was extracted on day 7 

using the mirVana kit (Ambion). 

Quantitative RT-PCR 

Total RNA purified from S2 cells or flies was treated with Turbo DNase (Ambion), 

extracted with phenol:chloroform (1:1), and precipitated with 3 volumes ethanol 

and 1/10th volume sodium acetate (Ambion). Purified RNA was reverse 

transcribed with SuperScript III (Invitrogen, Carlsbad, CA, USA), and quantitative 

PCR was performed using SsoFast EvaGreen Supermix (Bio-Rad, Hercules, CA, 

USA). 

Reporter assay 

S2 cells stably expressing wild-type or mutant Nibbler were seeded in 24-well 

plates at 1.0 × 106 cells/ml and transfected immediately after seeding using 

DharmaFECT Duo (Dharmacon) and 500 ng per well psiCHECK-2 bearing three 

sites partially complementary to miR-34 in the 3′ UTR of Rr luciferase, together 
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with 20 nM 2′-O-methyl-modified oligonucleotide complementary to miR-34 or let-

7. Rr and Photinus pyralis luciferase activities were measured 72 h later. Six 

biological replicates were used to compare the repression conferred by miR-34 

for the two cell lines; error was propagated by standard methods. p-values were 

determined using Student’s t-test. 

Bioinformatics Analyses and Statistics 

Insert extraction, mapping and filtering was as described (Ameres et al., 2010), 

except that after removing the 3′ adaptor and 5′ barcode, only inserts longer than 

18 nt were analyzed. 5′ and 3′ heterogeneity was determined as described (Seitz 

et al., 2008). Briefly, for each miRNA the heterogeneity of the termini of its 

isoforms was calculated as the mean of the absolute values of the distance 

between the 5′ or 3′ extremity of an individual read and the most abundant 5′ or 3′ 

end for that miRNA. For 5′ heterogeneity, all isoforms of a miRNA were 

examined. For 3′ heterogeneity, only the most abundant 5′ isoforms (i.e., that 

with the annotated seed sequence) were evaluated. 
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Chapter III The Biogenesis of PIWI-interacting RNAs 
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Summary 

In animal gonads, PIWI-interacting RNAs (piRNAs) protect genome integrity by 

suppressing transposable elements. The current view is that primary piRNAs 

generated by the endonuclease Zucchini produce secondary piRNAs via the 

“Ping-Pong” pathway—reciprocal cycles of Aubergine- and Argonaute3-mediated 

cleavage of transposon mRNAs and piRNA precursor transcripts. Here, we show 

that secondary piRNAs also initiate the production of primary piRNAs, by feeding 

Aubergine- and Argonaute3-cleaved RNAs to Zucchini. The first ~26 nt of these 

cleaved RNAs become secondary piRNAs, while the next ~26 nt become the first 

in a series of phased primary piRNAs that bind Piwi and Aub, allowing piRNAs to 

spread beyond the initial site of RNA cleavage. While the Ping-Pong pathway 

only amplifies the abundance of inherited and de novo piRNAs, the production of 

phased primary piRNAs from adjacent sequences further introduces novel 

sequence diversity into the piRNA pool. 
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Introduction 

In animals, PIWI proteins guided by single-stranded, 23–36 nucleotide (nt) small 

RNAs, PIWI-interacting RNAs (piRNAs), suppress germline transposon 

expression. In Drosophila, piRNAs bind the PIWI proteins, Piwi, Aubergine (Aub) 

and Argonaute3 (Ago3; Luteijn and Ketting, 2013). Fly primary piRNAs derive 

from long transcripts from piRNA clusters—discrete genomic loci comprising 

transposon fragments (Malone et al., 2009). The endonuclease Zucchini (Zuc) is 

thought to cut cluster transcripts into fragments whose 5′ ends correspond to the 

5′ ends of piRNAs, but whose length exceeds that of piRNAs; these piRNA 

precursors are loaded into Piwi and Aub and then trimmed from their 3′ ends, 

yielding mature primary piRNAs (Luteijn and Ketting, 2013; Voigt et al., 2012; 

Nishimasu et al., 2012; Ipsaro et al., 2012). In the fly oocyte, maternally inherited 

and primary piRNAs made de novo initiate production of secondary piRNAs, 

which subsequently self-amplify via reciprocal cycles of Aub- and Ago3-catalyzed 

cleavage of transposon mRNAs and cluster transcripts, a process known as the 

Ping-Pong pathway (Figure 3.1; Brennecke et al., 2007; Gunawardane et al., 

2007). The Ping-Pong pathway increases piRNA abundance, but cannot create 

novel piRNA sequences. Yet piRNA populations are highly diverse, with most 

individual species of low abundance.  
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Figure 3.1 
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Figure Legend 3.1. Current Model of piRNA Biogenesis in Drosophila 

See text for more details. 
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Results 

Phasing of Primary piRNAs 

We used genetic mutants to separate primary, maternal, and secondary piRNAs. 

To assess the mutants’ effects on the germ line, we examined piRNAs from the 

largest piRNA cluster, 42AB (Brennecke et al., 2007). aubHN2/QC42; ago3t2/t3 

double-mutants lack the Ping-Pong pathway, so they contain only maternal and 

primary piRNAs (for 42AB, Z10 = 0.6; Z-score ≥ 2.81 corresponds to p-value ≤ 

0.005; Figure 3.2A). In contrast, zuc mutants contain maternal and secondary, 

but not primary piRNAs. Loss of Zuc decreased 42AB piRNAs by a factor of 50, 

but the piRNAs remaining showed significant Ping-Pong amplification (42AB 

piRNAs, Z10 = 39; all piRNAs, Z10 = 42; Figure 3.2A and 3.2B), consistent with a 

small pool of maternal piRNAs being amplified into secondary piRNAs. 
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Figure 3.2 
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Figure Legend 3.2. Separate Primary and Secondary piRNAs in Mutants 

(A) Ping-Pong analysis of all piRNAs from w1, aubHN2/QC42; ago3t2/t3, and 

zucHM27/Df ovaries. 

(B) Length distribution of genome-, flamenco- and 42AB cluster-derived, uniquely 

mapping piRNAs from w1, aubHN2/QC42; ago3t2/t3, and zucHM27/Df ovaries. Reads 

were normalized to non-transposon-derived siRNAs, including cis-natural 

antisense transcripts and structured loci. 

  



 

 

87 

The 5′ ends of piRNAs mapping to the same genomic strand and present 

in aubHN2/QC42; ago3t2/t3 but not zucHM27/Df typically lay 25–28 nt apart, the same 

length as piRNAs themselves (Figure 3.3A). Thus, the maternal and primary 

piRNAs remaining in aubHN2/QC42; ago3t2/t3 double-mutant ovaries were phased, 

suggesting that a nuclease initiates production of piRNAs from one end of a 

piRNA precursor, moving 5′-to-3′ to clip off successive piRNAs. A broad 5′-to-5′ 

peak reflects the imprecision in the production of piRNA 5′ ends and impedes 

statistical analysis. Alternatively, we applied 3′-to-5′ analysis—the distance from 

the 3′ end of each piRNA to the 5′ end of the next downstream piRNA—to 

measure piRNA phasing (Figure 3.3B). The most common 3′-to-5′ distance was 1 

nt: a single cleavage event appears to produce the 3′ end of one piRNA and the 

5′ end of the adjacent, downstream piRNA more often than expected by chance 

(Z1 for w1 = 6.5). Production of phased piRNAs required Zuc but not Ping-Pong: 

The 1-nt peak was more prominent in aubHN2/QC42; ago3t2/t3 ovaries (Z1 = 22) than 

in w1, but was undetectable in zucHM27/Df (Z1 = 1.5). 
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Figure 3.3 
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Figure Legend 3.3. Primary piRNAs Display Phasing 

(A) Distance from 5′ ends of upstream piRNAs to the 5′ ends of downstream 

piRNAs for uniquely mapping piRNAs on the same genomic strand from w1, 

aubHN2/QC42; ago3t2/t3, and zucHM27/Df ovaries. 

(B) Distance from the 3′ ends of upstream piRNAs to the 5′ ends of downstream 

piRNAs on the same genomic strand. The data are reported as fraction of all 

piRNA pairs. 
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Phased piRNAs are more readily detected when piRNAs are abundant, 

ensuring good genomic coverage. In theory, piRNAs might be phased in zuc 

mutants, but concealed by the low level of piRNA abundance in this mutant. To 

exclude this possibility, we randomly down-sampled the 42AB-derived, uniquely 

mapping, piRNA species from w1 to the level of 42AB-derived piRNAs in 

zucHM27/Df. The reduced set of wild-type piRNAs gave a Z1 score (6 ± 1) very 

close to that obtained when using all wild-type piRNAs (Figure 3.4A). 

piRNA phasing differed among the three Drosophila PIWI proteins (Figure 

3.3B). By 3′-to-5′ distance, Piwi-bound piRNAs displayed the most significant 

phasing (Z1 = 21); Aub-bound piRNAs displayed reduced, but still significant 

phasing (Z1 = 4.0); Ago3-bound piRNAs were not phased (Z1 = −1.3). Thus, Piwi- 

and Aub-, but not Ago3-bound primary piRNAs are produced by a processive 

mechanism that requires Zuc. 

piRNAs associated with Piwi and Aub, but not Ago3, typically begin with 

uridine (Brennecke et al., 2007). Phased piRNAs beginning with U could be 

produced by a processive nuclease complex measuring out ~26 nt, then cleaving 

at the nearest U. Alternatively, they could be made by the same nuclease 

measuring out ~26 nt, but cleaving at all nucleotides with similar efficiency; 

subsequent binding of Piwi and Aub would select for piRNAs starting with U. The 

first model predicts that the nucleotide immediately following the 3′ end of a 

piRNA—in genomic sequence but not mature piRNAs—is more likely to be U 

than expected by chance. The second model predicts that when one piRNA 
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follows another in phase, the second piRNA is more likely to begin with U 

because of the preference of Aub and Piwi; the genomic nucleotide following a 

piRNA would not have any sequence bias, because selection for a 5′ U follows 

piRNA precursor cleavage. To distinguish between the models, we measured the 

composition of the nucleotide after the 3′ ends of piRNAs (“+1U percentage”). 

This nucleotide was typically uridine in both w1 and aubHN2/QC42; ago3t2/t3, but not 

in zucHM27/Df (Figure 3.4B), indicating that phased piRNAs are likely produced by 

direct cleavage 5′ to U, before pre-piRNAs are loaded into PIWI proteins. 

Because purified Zuc shows no nucleotide preference (Nishimasu et al., 2012; 

Ipsaro et al., 2012), we propose that other factors direct Zuc to cleave before U. 
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Figure 3.4 
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Figure Legend 3.4. Primary piRNAs Display Phasing 

(A) Uniquely mapping, 42AB cluster-derived piRNAs from w1 were randomly 

down-sampled 100× to the number of 42AB cluster-derived, uniquely mapping 

piRNA species in zucHM27/Df. Then, distance from 3′ ends of upstream piRNAs to 

the 5′ ends of downstream piRNAs were calculated for each sample. Error bars 

report standard deviation.  

(B) Nucleotide composition of piRNA species (i.e., distinct sequences 

irrespective of abundance) 29 nt upstream and 1 nt downstream of the 3′ ends of 

piRNAs.   
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Genetic Requirements for piRNA Phasing 

Analysis of the phasing of piRNAs derived from the 42AB cluster in 21 different 

piRNA pathway mutants or germline RNA interference (RNAi) strains revealed 

significant piRNA phasing in all mutants except those with defects in the primary 

piRNA pathway, including piwi, zucchini, armitage (armi), minotaur and gasz 

(Figure 3.5; Vagin et al., 2006; Pane et al., 2007; Malone et al., 2009; Olivieri et 

al., 2010; Vagin et al., 2013; Czech et al., 2013; Handler et al., 2013). Mutants 

defective in piRNA Ping-Pong, including vasa, krimper, spindle-E and aub, all 

displayed more pronounced phasing, likely because the loss of secondary 

piRNAs reduces the background signal. The presence or absence of piRNA 

phasing in a mutant accurately predicted the previously defined role of the gene 

in primary versus secondary piRNA production.   
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Figure 3.5 
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Figure Legend 3.5. piRNA Phasing Requires Primary Pathway Components 

Nucleotide composition of piRNA species immediately downstream of the 3′ ends 

of piRNAs that are uniquely mapped and derived from 42AB cluster. Z-scores for 

Ping-Pong and phasing are shown. RNAi, germline RNA interference with 

double-stranded RNA or short hairpin RNA. 
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We also detected Zuc-dependent phasing in the piRNA cluster flamenco 

and the piRNA-producing 3′ UTR of the protein-coding traffic jam mRNA, two loci 

that produce piRNAs only in the somatic follicle cells that support oocyte 

development (Figure 3.6A). Cultured, somatic ovarian sheet cells (OSCs), which 

possess only the primary piRNA biogenesis pathway, also display piRNA 

phasing. Neither somatic follicle cells nor cultured OSC cells express Aub or 

Ago3, and both lack a secondary piRNA pathway. Thus, we conclude that 

phasing is an inherent feature of primary piRNA production.  
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Figure 3.6 

 

 

 

 

  



 

 

99 

Figure Legend 3.6. Somatic piRNA Display Phasing 

Distance from 3′ ends of upstream piRNAs to the 5′ ends of downstream piRNAs 

for uniquely mapping piRNAs derived from 42AB, flamenco, the 3′ UTR of traffic 

jam from w1, aubHN2/QC42; ago3t2/t3, and zucHM27/Df ovaries. Few traffic jam-

mapping piRNAs were detected for zucHM27/Df and were not analyzed. Bottom-

right: distance from 3′ ends of upstream piRNAs to the 5′ ends of downstream 

piRNAs for all uniquely mapping piRNAs from cultured ovarian somatic cells 

(OSC), as well as those piRNAs co-purified with FLAG-HA-Piwi and FLAG-HA-

Aub expressed in these cells. 
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Contribution of Maternal piRNAs to Phasing 

To test whether the production of phased piRNAs depends on maternal piRNAs, 

we used a strain bearing a ~7 kilobase pair (kbp) transgene, P{GSV6}, inserted 

into 42AB. P{GSV6} carries both gfp and w+mC and produces both sense and 

antisense piRNAs (Figure 3.7). Both transgene piRNA abundance and Ping-

Pong were greater when P{GSV6}42A18 was inherited maternally (Figure 3.7 

and 3.8; Brennecke et al., 2008; de Vanssay et al., 2012; Le Thomas et al., 

2014), but primary piRNA phasing was unaltered by the parental source of the 

transgene (Z1 maternal = 13; Z1 paternal = 13). As an additional test of the idea 

that phased piRNAs are primary, not maternal, we sequenced piRNAs from 

vasaD5/PH165 ovaries that had inherited the P{GSV6} transgene maternally or 

paternally (Figure 3.8A); Vasa is required for Ping-Pong amplification. 

Regardless of which parent contributed the transgene, P{GSV6}-derived piRNAs 

displayed significant phasing (paternal, Z1 = 12; maternal, Z1 = 9.0; wild-type, Z1 

= 13), consistent with the idea that phasing is a primary piRNA signature that 

requires neither maternal piRNAs nor Ping-Pong amplification. 
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Figure 3.7 
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Figure Legend 3.7. piRNA Production from P{GSV6} Inserted in 42AB 

(A) Length distribution, Ping-Pong analysis, phasing Z-score, and +1 U 

percentage are shown for piRNAs (23–29 nt) from P{GSV6}42A18 in different 

genotypes. Red: maternally inherited allele; blue: paternally inherited allele. 

Reads were normalized to non-transposon-derived siRNAs from cis-NATs and 

structural loci.  

(B) piRNA reads from the P{GSV6}42A18 transgene in wild-type (w1) or vasa 

mutant ovaries shown according to whether the transgene was inherited 

maternally or paternally. 
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Without Vasa, piRNA phasing (Z1) and the percentage of uridine at the 

genomic nucleotide immediately after the 3′ ends of the piRNAs (+1U 

percentage) was unchanged, but the abundance of Piwi-bound piRNAs was less 

than one-tenth that of wild-type (Figure 3.8). Piwi is likely loaded only with 

primary piRNAs (Zhang et al., 2011; Sienski et al., 2012; Le Thomas et al., 

2014). Why then should Vasa, a central component of the secondary piRNA 

pathway, affect the abundance of Piwi-bound piRNAs? One explanation is that 

production of Piwi-loaded, phased primary piRNAs requires precursor cleavage 

directed by secondary piRNAs. 
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Figure 3.8 
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Figure Legend 3.8. Contribution of Maternal and Secondary piRNAs to 

Phasing 

(A) Z-scores for Ping-Pong and phasing and +1 U percentage for 

P{GSV6}42A18-derived piRNAs with the transgene inherited paternally or 

maternally, with or without vasa.  

(B) Length distribution of Piwi-bound, uniquely mapping piRNAs derived from 

P{GSV6}42A18 in wild-type and vasa mutants with the transgene inherited either 

maternally or paternally. Reads were normalized to flamenco-derived, uniquely 

mapping piRNAs in the same library. 
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Phasing is Initiated from 5′ Monophosphorylated RNAs 

To test this idea, we sequenced the “degradome”—RNAs >200 nt and bearing 5′ 

monophosphates—to detect the RNAs cleaved by secondary piRNAs bound to 

Aub or Ago3. In w1 control ovaries, we readily identified long transposon RNAs 

whose 5′ ends were generated by Aub or Ago3 (Figure 3.9A; Wang et al., 2014); 

such degradome reads were absent from aubHN2/QC42; ago3t2/t3 mutants (Z10 = 

0.8). Moreover, degradome reads corresponding to Piwi-catalyzed cleavage 

were indistinguishable from background (Z10 = 0.4), consistent with Piwi silencing 

via transcriptional repression, rather than RNA cleavage (Sienski et al., 2012). 

Thus 3′ cleavage products of Aub- or Ago3-catalyzed slicing are subsequently 

used to produce phased primary piRNAs. 
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Figure 3.9 
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Figure Legend 3.9. Degradome-seq Captures Cleavage Products of Aub 

and Ago3 

(A) Ping-Pong analysis between PIWI protein-associated piRNAs and 

degradome reads.  

(B) Computational strategy to measure the distance from the 5′ ends of piRNAs 

to the 5′ ends of degradome reads.  

(C) Distance from 5′ ends of transposon-derived piRNAs to the 5′ ends of 

degradome reads in w1 (left) and zucHM27/Df (right).  

(D) Computational strategy to identify sites cleaved by Aub or Ago3 in 

degradome-seq data. These sites were then used to calculate the distance to the 

5′ ends of nearby PIWI-associated piRNAs.  
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Phased piRNAs from Aub- and Ago3-cleaved RNAs 

To test whether the 3′ cleavage products of Aub- or Ago3-catalyzed slicing are 

subsequently used to produce phased primary piRNAs, we analyzed the 

positions of piRNA 5′ ends within the sequences (on the same genomic strand) of 

the cleavage products from transposon transcripts. To accomplish this, we 

determined the fraction of piRNA 5′ ends at each position 150 nt upstream and 

150 nt downstream from the cleavage sites (Figure 3.9B). In both wild-type (w1) 

and zuc mutant ovaries, the 5′ ends of piRNAs were far more likely to map to the 

cleavage site than expected by chance (w1, Z0 = 27; zucHM27/Df, Z0 = 34; Figure 

3.9C). The Ping-Pong model predicts this result: it posits that the 5′ termini of 

Aub- and Ago3-cleaved RNAs subsequently become the 5′ ends of secondary 

piRNAs. However, two additional peaks of piRNA 5′ ends were present ~26 nt 

and ~53 nt downstream of the cleavage sites. That is, the 5′ end of a piRNA lies 

immediately after the 3′ end of the secondary piRNA (i.e., ~26 nt from the 

cleavage site), and the 5′ end of another piRNA follows the 3′ end of that piRNA 

(i.e., ~53 nt from the cleavage site). The ~26 and ~53 nt peaks were readily 

detected in wild-type, but not in zucHM27/Df ovaries. The requirement for Zuc 

suggests that the production of a single secondary piRNA from the 5′ end of an 

RNA cleaved by Aub or Ago3 is followed by the processing of the downstream 

sequence into phased primary piRNAs. 

We separated degradome reads based on the likelihood (p-value ≤ 0.005, 

χ2 test) that they were produced by Aub versus Ago3 (Figure 3.9D; Wang et al., 
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2014), then analyzed the distance between the 5′ ends of Piwi-bound piRNAs 

and the sites of Aub- or Ago3-catalyzed cleavage. The 5′ ends of Piwi-bound 

piRNAs coincided with the Zuc-dependent ~26 and ~53 nt peaks for both Aub- 

and Ago3-cleaved RNAs (Figure 3.10). A small but significant fraction of Aub-, 

but not Ago3-bound piRNAs also began ~26 and ~53 nt after the Ago3-cleaved 

sites. 
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Figure 3.10 
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Figure Legend 3.10. Phasing of Piwi-piRNAs downstream of the cleavage 

sites of Aub and Ago3 in w1. 

The distance between the 5′ ends of Piwi- (left), Ago3- (top-right), and Aub- 

(bottom-right) bound piRNAs and the cleavage sites of Aub (top) and Ago3 

(bottom) on the same genomic strand in w1.  
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Small RNA and degradome sequencing data from zuc mutant ovaries 

unambiguously identified sites cleaved by Aub or Ago3. Using this data, the 5′ 

ends of Piwi-bound piRNAs in w1 ovaries were typically ~26 and ~53 nt 

downstream from where Aub or Ago3 cleaved (Figure 3.11A), a relationship not 

detected using degradome data from aubHN2/QC42; ago3t2/t3 ovaries, which lack 

secondary piRNAs (Figure 3.11B).  
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Figure 3.11 
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Figure Legend 3.11. Piwi-associated piRNAs Display Phasing 3′ to the 

Cleavage Sites of Aub and Ago3. 

(A) Distance from the 5′ ends of Piwi-associated piRNAs in w1 to the cleavage 

sites of Ago3 (left) and Aub (right) identified in zucHM27/Df. 

(B) Distance from 5′ ends of Piwi-associated piRNAs in w1 to the 5′ ends of 

degradome reads in w1; aubHN2/QC42; ago3t2/t3.  
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Next, we measured the distance from the 5′ ends of Aub- and Ago3-bound 

piRNAs to the 5′ ends of Piwi-bound piRNAs on the same genomic strand. Again, 

the 5′ ends of Piwi-bound piRNAs were typically 26 nt downstream from the 5′ 

ends of Ago3-piRNAs and 27–29 nt downstream of the 5′ ends of Aub-piRNAs 

(Figure 3.12A). Similarly, the 5′ ends of Aub-bound piRNAs lay ~26 nt 

downstream from the 5′ ends of Ago3-bound piRNAs. In contrast, the 5′ ends of 

Ago3-bound piRNAs were no more likely to be ~26 nt downstream from the 5′ 

ends of Aub-bound piRNAs than would be expected by chance. Thus, RNAs cut 

by Ago3 produce phased, Aub-bound piRNAs, but RNAs cut by Aub do not make 

phased, Ago3-bound piRNAs. 

The distance between the 5′ ends of Piwi-bound piRNAs and the 5′ ends 

of Ago3- or Aub-bound piRNAs on the opposite genomic strand (i.e., Ping-Pong 

analysis) again suggests that the 3′ cleavage product generated by Ago3 or Aub 

is initially processed into a secondary piRNA, and thereafter is used for the 

production of phased primary piRNAs loaded into Piwi (Figure 3.12B). Piwi does 

not directly participate in Ping-Pong, and the 5′ ends of Piwi-bound piRNAs did 

not map 10 nt from the 5′ ends of Aub- or Ago3-bound piRNAs. Instead, Piwi-

bound piRNAs lay 15–19 nt after the 5′ ends of Aub- or Ago3-bound piRNAs. 

Such phased piRNAs have been detected previously, but were attributed to Ping-

Pong amplification (Lau et al., 2009). 
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Figure 3.12 
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Figure Legend 3.12. Majority of Piwi-piRNAs are Generated from the 

Cleavage Products of Ago3 

(A) Distance from the 5′ ends of upstream piRNAs to the 5′ ends of downstream 

piRNAs on the same genomic strand for piRNAs bound to each PIWI protein in 

w1 ovaries.  

(B) Distance from the 5′ ends of Aub- or Ago3-bound piRNAs to the 

5′ ends of Piwi-bound piRNAs on the opposite genomic strand in w1 ovaries.  
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Contributions of Aub and Ago3 to Phased Primary piRNAs 

In the absence of Ago3 or Vasa, 42AB-derived, Piwi-bound piRNAs decreased to 

~10% of the w1 level (Figure 3.12C). Loss of Aub had a more modest effect: 

42AB-derived, Piwi-bound piRNAs were ~47% of the w1 level. Thus, Ago3 

initiates the production of most phased, Piwi-bound primary piRNAs. These data 

help explain why transposon silencing requires heterotypic Aub:Ago3 Ping-Pong 

amplification (Zhang et al., 2011): Homotypic Aub:Aub Ping-Pong cannot 

generate enough Piwi-bound, antisense, primary piRNAs. 

Nibbler Trims the 3′ end of piRNAs After Zuc Cleavage 

Experiments in silkmoth cells and mice implicate the Tudor protein Papi in 3′ 

piRNA trimming (Honda et al., 2013). To examine the role of 3′ trimming in the 

biogenesis of phased primary piRNAs, we sequenced small RNAs from papi 

mutant fly ovaries (Figure 3.13A). The median length of piRNAs from nearly all 

transposon families increased 0.35 nt (p-value < 2.2 × 10−16, Wilcoxon signed-

rank test; Figure 3.13B and 3.13C) and germline and somatic piRNA phasing 

became more pronounced (Figure 3.13D). We propose that 3′ trimming of Piwi-

bound piRNAs allows the use of uridines >26 nt after the 5′ end of a pre-piRNA 

as cleavage sites to make piRNAs. 
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Figure 3.13 
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Figure Legend 3.13. Papi and 3′ Trimming in piRNA Biogenesis 

(A) Gene model for fly papi with RPKM values shown for each mRNA isoform 

calculated using RNA-seq data from w1 ovaries. CAGE-seq data from Oregon R 

ovaries is also shown.  

(B-C) Scatterplots (B) and boxplots (C) compare the mean lengths of piRNAs 

from each transposon family. p-values were calculated using a paired Wilcoxon 

test. 

(D) Distance from 3′ ends of upstream piRNAs to the 5′ ends of downstream 

piRNAs for piRNAs derived from 42AB, flamenco, and 3′ UTRs. 
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Other than its role in miRNA 3′ end trimming, exonuclease Nibbler has 

been proposed to modulate the length of piRNA (Feltzin et al., 2015). We thus 

examined the mean length and phasing of piRNAs in Nibbler heterozygotes, 

mutant, as well as Nibbler mutant flies expressing transgenic, wild-type or 

catalytically inactive Nibbler (Figure 2.7A). Consistent with the previous finding, 

the median length of piRNAs increased from 25.5 nt in w1118 to 25.9 nt in 

nibbler+/−, 26.0 nt in nibbler−/−, and was reduced by transgenic NibblerWT (25.6 nt) 

but not by NibblerE435,E437 (25.9 nt). Consistently, phasing by 3′-to-5′ analysis 

increased in the absence of functional Nibbler (Figure 3.14B; w1118 Z1 = 3.9; 

nibbler+/− Z1 = 5.2; nibbler−/− Z1 = 8.3; NibblerWT Z1 = 4.7; NibblerE435,E437 Z1 = 

7.8). Our data suggests that Nibbler trimming follows the cleavage of Zuc 

machinery, possibly to protect piRNA from tailing enzyme (Han et al., 2015a). 
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Figure 3.14 
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Figure Legend 3.14. Nibbler Trims piRNAs after Zuc Cleavage 

(A) Scatterplots compare the mean lengths of piRNAs from each transposon 

family. 

(B) Distance from 3′ ends of upstream piRNAs to the 5′ ends of downstream 

piRNAs for piRNAs derived from transposon sequences. 
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Phasing of mammalian piRNAs 

In testes from wild-type mice, one piRNA 5′ end often lies 30–40 nt downstream 

from another (data not shown), possibly because mouse pre-piRNAs are longer 

than those in flies and require the 3′ trimming of ~3–10 nt. Analysis of Papi 

(Tdrkh–/–) mutant testes supports this view. Tdrkh–/– testes accumulate 31–37 nt 

RNAs instead of 26–30 nt piRNAs, and most of these longer species share their 

5′ ends with mature piRNAs from Tdrkh+/– heterozygotes (Saxe et al., 2013). At 

11 days post partum (dpp), 3′-to-5′ distance analysis of piRNAs from Tdrkh–/– 

testes showed clear evidence for phasing (Figure 3.15A). Mouse piRNAs 

typically begin with uridine, and the 3′ ends of the longer RNAs in Tdrkh–/– testes 

were generally followed by a uridine in genomic sequence (Figure 3.15B). piRNA 

5′-to-5′ distance analysis of Tdrkh+/– and Tdrkh–/– showed broad peaks at 35 to 43 

nt—the same length as the pre-piRNAs detected in Tdrkh–/–. We conclude 

mammalian primary piRNAs are phased, but are more extensively trimmed than 

those in flies. 
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Figure 3.15 
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Figure Legend 3.15. Mouse piRNAs display phasing 

(A) Distance from 3′ ends of upstream piRNAs to 5′ ends of downstream piRNAs 

on the same genomic strand for uniquely mapping piRNAs in Tdrkh+/– and Tdrkh–

/– in mouse testes at 11 dpp.  

(B) The nucleotide composition, in species, of sequences 29 nt upstream and 1 

nt downstream of the 3′ ends of uniquely mapping piRNAs. Pachytene piRNAs 

are not included because spermatogenesis arrests before the pachytene stage in 

Tdrkh–/–.  

(C) Distance from 5′ ends of upstream piRNAs to 5′ ends of downstream piRNAs 

on the same genomic strand for uniquely mapping piRNAs in Tdrkh+/– and Tdrkh–

/– mouse testes at 11 dpp. Data are from Saxe et al. (GSE47151). 
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Discussion 

Our findings suggest a substantially revised model for primary piRNA biogenesis 

(Figure 3.16). The model proposes that each cycle of Ping-Pong amplification 

can generate one secondary piRNA and multiple primary piRNAs. For example, 

a secondary piRNA bound to Ago3 can direct cleavage of a fully or partially 

complementary target RNA (Wang et al., 2014). The resulting 3′ cleavage 

product then binds Aub. An unknown factor, possibly Armi, recruits Zuc, which 

makes a second cut 26–29 nt away from the 5′ monophosphate, likely at the first 

uridine not occluded by Aub. The two cleavage products from this reaction follow 

decidedly different fates. The 5′ fragment matures into a secondary piRNA bound 

to Aub. We envision that some but not all of such Aub-bound RNA fragments will 

require 3′ trimming to achieve their characteristic length (Honda et al., 2013). The 

3′ fragment becomes a substrate for the production of phased primary piRNAs by 

Zuc. With the aid of Armi, Zuc travels 5′-to-3′ cleaving every ~26 nt. The piRNAs 

released by this process load mainly into Piwi. Although as much as 90% of Piwi-

associated piRNAs are generated by this mechanism in the germline, piRNAs in 

the soma, which lacks Aub and Ago3, must deploy a different mechanism to 

initiate Zuc-dependent processing. 

Our data also help explain why effective transposon silencing requires 

heterotypic Aub:Ago3 Ping-Pong amplification. In ago3 mutant ovaries, 

homotypic Aub:Aub Ping-Pong replaces heterotypic Ping-Pong. Although 

antisense piRNAs are produced by homotypic Ping-Pong, they fail to silence 
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transposon expression (Li et al., 2009; Zhang et al., 2011). We propose that 

homotypic Aub:Aub Ping-Pong is unable to replace heterotypic Ping-Pong, 

because it cannot generate enough Piwi-bound primary piRNAs. 
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Figure 3.16  
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Figure Legend 3.16. Revised Model of piRNA Biogenesis in Drosophila 

(Left) The de novo primary piRNA pathway starts with piRNA intermediates 

released from piRNA cluster transcripts in an Aub- and Ago3-independent 

manner. Zuc slices them consecutively every ~26 nt, aided by Armi and other 

factors in the primary pathway (e.g., Minotaur and Gasz). Those primary piRNAs 

are loaded into Piwi and Aub, but not Ago3. 

(Right) In nuage, cleavage by Ago3 or Aub produces piRNA intermediates with a 

5′ monophosphate. The 3′ cleavage products are loaded into Aub and Ago3, 

followed by Zuc-dependent cleavage ~26 nt from their 5′ ends. This cleavage 

produces the 3′ ends of the “Ping-Pong partner” secondary piRNA and the 5′ 

ends of long RNAs that become substrates for Zuc, which processively cleaves 

the RNA to generate phased piRNAs loaded into Piwi and, to a lesser extent, 

Aub. We propose that the Zuc machinery chooses as its cleavage site the first 

uridine that is not protected by a PIWI protein. Consequently, some pre-piRNAs 

require Papi- and Nbr-dependent 3′ trimming before their 3′ ends are methylated 

by Hen1. 

  



 

 

132 

Finally, the Ping-Pong model does not explain the stunning diversity of 

piRNA sequences: each cycle of Ping-Pong increases the abundance of a pair of 

piRNAs, but cannot generate piRNAs with novel sequence specificity (piRNA 

nucleotides 2–16; Wang et al., 2014). Our data show that each RNA cleaved by 

Aub or Ago3 not only produces a secondary, Ping-Pong piRNA partner, but also 

produces primary piRNAs from the sequences immediately 3′ to the secondary 

piRNA. Such a spreading mechanism calls to mind features of siRNA production 

in Caenorhabditis elegans and Arabidopsis thaliana (Xie et al., 2005; Yoshikawa 

et al., 2005; Bagijn et al., 2012; Lee et al., 2012), and primed CRISPR adaptation 

in Escherichia coli (Swarts et al., 2012; Datsenko et al., 2012; Heler et al., 2014). 

Although the detailed mechanisms differ (e.g., slicing activity is dispensable in C. 

elegans, and an RNA-dependent RNA polymerase is required in A. thaliana), 

signal amplification and sequence diversification is clearly a recurrent theme for 

RNA-guided silencing in animals, plants, and bacteria. 
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Experimental Procedures 

General methods 

Stocks and crosses were grown at 25°C. All flies were in the w1 background, 

except w+; Df(2L)Prl (zucDf) and the papi strains w1118 ; Df(2L)ED125 and w1118 ; 

Df(2L)Exel7010. Ovaries were dissected in modified Robb’s Buffer (55 mM 

CH3COONa, 40 mM CH3COOK, 100 mM sucrose, 10 mM glucose, 1.2 mM 

MgCl2, 1 mM CaCl2, 100 mM HEPES, pH 7.4). RNAs were purified using 

mirVana (Ambion, Life technologies, CA, USA). 

Small RNA library construction 

Total RNA (100 µg) or RNA co-immunoprecipitated with Aub, Ago3, or Piwi was 

purified by 15% urea polyacrylamide gel electrophoresis (PAGE), selecting for 

18–30 nt long RNAs. Oxidization of RNA with NaIO4 was used to deplete 

miRNAs and enrich for siRNAs and piRNAs (Li et al., 2009). Ligation of the 3′ 

adaptor (5′-rApp NNN TGG AAT TCT CGG GTG CCA AGG /ddC/-3′ or 5′-rApp 

TGG AAT TCT CGG GTG CCA AGG /ddC/-3′) using truncated, K227Q mutant 

T4 RNA Ligase 2 at 25°C for ≥16 h and subsequent size selection by 15% PAGE 

was as described (Li et al., 2009). To exclude 2S rRNA from sequencing 

libraries, 10 pmol 2S blocker oligo was added before 5′ adaptor ligation 

(Wickersheim and Blumenstiel, 2013); 5′ adaptor was added using T4 RNA 

ligase (Ambion) at 25°C for ≥ 2 h, followed by reverse-transcription using AMV 

reverse transcriptase (New England Biolabs, MA, USA) and PCR using Q5 
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polymerase (NEB). An Illumina HiSeq 2000 was used for high-throughput, single-

end 50 nt or 100 nt sequencing. 

Degradome-seq library construction 

Freshly isolated RNA (4 µg) was subjected to two rounds of rRNA depletion 

(Ribo-Zero; Epicentre, WI, USA), treated with turbo DNase (Ambion), and then 

size-selected to isolate RNA ≥ 200 nt (DNA Clean & Concentrator™-5, ZYMO 

RESEARCH, CA, USA). T4 RNA ligase (Ambion) was used at 25°C for 2–4 

hours for 5′ ligation. Reverse transcription with SuperScript III (Life Technologies) 

employed a primer containing a degenerate sequence at its 3′ end (5′-GCA CCC 

GAG AAT TCC ANN NNN NNN-3′). cDNA was amplified by PCR using Q5 

polymerase (NEB), and 200–400 nt dsDNA was isolated using 6% native PAGE. 

An Illumina HiSeq 2000 was used to perform paired-end, 100 nt sequencing of 

the dsDNA products. 

Small RNA immunoprecipitation 

Anti-Piwi, Aub, and Ago3 antibodies (~10 µg) were incubated with Protein A and 

G Dynabeads (15 µl each; Life Technologies) in lysis buffer (30 mM HEPES-

KOH, pH 7.4, 100 mM CH3COOK, 2 mM (CH3COO)2Mg, 5 mM dithiothreitol, 

0.5% [v/v] NP-40, 1 mM 4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride, 

0.3 µM Aprotinin, 40 µM Bestatin, 10 µM E-64, 10 µM Leupeptin) at 4°C for 4 h 

with rotation, then washed twice with lysis buffer. Next, 400–800 µl freshly 

prepared ovary lysate (5 µg/µl) was added and incubated at 4°C for 4 h with 
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rotation. After washing the beads four times with ice-cold lysis buffer, RNA was 

purified using Trizol (Life Technologies). 

General bioinformatics analyses 

Analyses were performed using piPipes v1.4 (Han et al., 2015b). Briefly, all small 

RNA sequencing libraries were filtered using PHRED score ≥ 5. Genome 

mapping using Bowtie v1.1.0 allowed no mismatches for fly and one mismatch 

for mouse data. Degradome mapping was performed with Bowtie2 v2.2.3 (to 

rRNA) and STAR v2.3.0 (to genome). Reads whose 5′ ends could not be 

determined precisely (soft-clipped) during alignment were removed 

computationally. Alignments were categorized by genomic feature using 

BEDTools v2.17.0. For transgene mapping, we first aligned an oxidized small 

RNA-seq library from w1 (23,712,713 genome-mapping reads) to the transgene 

sequence, masking (turning into Ns) positions that could be mapped to piRNAs 

more abundant than 1 part per million. Statistical analysis in R 3.0.2 required p-

value < 0.005. To compare piRNA abundance between two small RNA libraries, 

we normalized to non-transposon-derived siRNAs, rather than uniquely mapping 

reads of the genome, in order to avoid biasing genotypes such as zuc, in which 

piRNA abundance was decreased globally. To compare the abundance of 

piRNAs associated with Piwi, we normalized to flamenco-derived reads, which 

are unaffected by defects in the germline piRNA pathway. 
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Phasing analysis 

Reads were mapped to genome, alignments that overlapped with rRNAs, tRNAs 

and snoRNAs were removed, and the remaining 23–29 nt RNAs (fly piRNAs) or 

23–35 nt (mouse piRNAs) were analyzed. To analyze small RNAs in Tdrkh–/– and 

Tdrkh+/–, all reads ≥ 23 nt were used. The score for a distance of x nt was 

calculated by ∑minimal (Mi, Ni+x) where Mi is the number of reads whose 3′ ends 

are located at position i and Ni+x is the number of reads whose 5′ ends are 

located at position i+x. When x equals 0, the 3′ and 5′ ends overlap. When x 

equals to 1, the 5′ end is immediately downstream of the 3′ end (phasing). For 

analyses including multi-mappers, reads were apportioned by the number of 

times they can be aligned to the genome. To calculate Z1, overlaps at position 2–

20 nt were used as background to calculate Z scores. In Ping-Pong analyses, the 

product, instead of the smaller value, of M and N was used.  

We used three different computational strategies to evaluate the phasing 

of piRNAs: 5′-to-5′ end distance, 3′-to-5′ end distance, and +1U percentage. A 

peak in 5′-to-5′ distance analysis demonstrates that the generation of 5′ ends of 

piRNAs occur with a certain periodicity. Imprecision in the production of piRNA 5′ 

ends is expected to produce a broad 5′-to-5′ peak, impeding statistical analysis. 

For 3′ to 5′ analysis, a peak at a distance of 1 nt suggests that the same 

cleavage event generates both the 3′ end of an upstream piRNA and the 5′ end 

of a downstream piRNA. It also indicates the absence of 3′ end trimming. 

Because piRNAs are generally subjected to Papi-dependent 3′ trimming, this 
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analysis can fail to detect the periodicity. The +1U percentage reflects the 

percentage of uridines at the nucleotide immediately after the 3′ end of piRNAs. 

This is an indirect measurement that relies on the finding that primary piRNAs 

typically begin with uridine. Like the other measures, +1U analysis can be 

confounded by 3′ piRNA trimming. However, the +1U percentage is unaffected 

by sequencing depth, allowing comparison of dataset with widely varying 

numbers of mappable reads or species. 

Assigning immunopurified small RNA reads to Piwi, Aub, or Ago3 

We used a χ2 test with a p-value cutoff < 0.005 to test whether a sequence was 

enriched in one of the three PIWI proteins. A sequence could be unambiguously 

assigned only when one of two conditions was met: (1) the sequence was 

uniquely sequenced in only one of the three libraries (two for mutants lacking one 

PIWI protein) or (2) the sequence passed the χ2 test (p < 0.005) and was at least 

five-fold more abundant in one sample than the other two. 
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Chapter IV piPipes: a set of pipelines for piRNA and 

transposon analysis via small RNA-seq, RNA-seq, 

degradome- and CAGE-seq, ChIP-seq and genomic DNA 

sequencing. 
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Summary 

piRNAs, 23–36 nucleotide (nt) small silencing RNAs, repress transposon 

expression in the metazoan germline, thereby protect the genome. Although 

high-throughput sequencing has made it possible to examine the genome and 

transcriptome at unprecedented resolution, extracting useful information from 

gigabytes of sequencing data still requires substantial computational skills. 

Additionally, researchers may analyze and interpret the same data differently, 

generating results that are difficult to reconcile. To address these issues, we 

developed a coordinated set of pipelines, “piPipes,” to analyze piRNA and 

transposon-derived RNAs from a variety of high-throughput sequencing libraries, 

including small RNA, RNA, degradome or 7-methyl guanosine-cap analysis of 

gene expression (CAGE), chromatin immunoprecipitation (ChIP), and genomic 

DNA sequencing. piPipes can also produce figures and tables suitable for 

publication. By facilitating data analysis, piPipes provides an opportunity to 

standardize computational methods in the piRNA field. 
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Introduction 

piRNAs, a class of 23–36 nt long small silencing RNAs, suppress transposon 

expression in the metazoan germline and, in some animals, the adjacent gonadal 

somatic cells (Luteijn and Ketting, 2013). By preventing transposition, the piRNA 

pathway ensures that genetic information passes faithfully to the next generation. 

Disruption of the piRNA pathway typically leads to transposon mobilization, 

double-stranded DNA breaks, and sterility. 

High-throughput sequencing technologies have been widely deployed in 

the study of piRNAs. Small RNA-seq reveals the identity and abundance of 

piRNAs (Brennecke et al., 2007); RNA-seq detects and quantifies mRNA and 

transposon transcripts (Reuter et al., 2011); degradome-seq (also termed RACE-

seq) detects the cleavage products of PIWI-proteins guided by piRNAs (Reuter et 

al., 2011); ChIP-seq detects chromatin modifications directed by piRNAs or 

transcription factor-binding events that regulate piRNA precursor or target 

transcription (Sienski et al., 2012; Li et al., 2013); and genomic DNA sequencing 

detects new transposition events caused by transposons that escape piRNA 

repression (Khurana et al., 2011; Sienski et al., 2012). Correctly extracting 

biological knowledge from such voluminous data requires significant 

computational expertise and effort. Moreover, different laboratories use diverse 

methods to analyze and interpret data (e.g., the way of treating reads that map to 

multiple locations in a reference genome; Huang et al., 2013; Marinov et al., 

2015; Lin et al., 2015). To provide a standardized set of tools to analyze these 
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diverse data types, we developed piPipes, a collection of five integrated pipelines 

for small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and 

genome-seq analyses. 
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Methods 

piPipes comprises five pipelines designed to analyze small RNA-seq, RNA-seq, 

degradome- and CAGE-seq, ChIP-seq or genome-seq data. The small RNA-seq 

pipeline reports the abundance, length distribution, nucleotide composition and 

5′-to-5′ distance (Ping-Pong signature) of piRNAs assigned to genomic 

annotations, including individual transposon families and piRNA clusters, the 

initial sources of piRNA precursor transcripts. The RNA-seq pipeline reports the 

normalized abundance of transcripts from both genes and transposons in RPKM 

(Reads Per Kilobase of transcript per Million mapped reads). The degradome-

seq pipeline offers methods to identify piRNA-directed cleavage products. This 

pipeline can also be used to analyze any long RNA sequencing method designed 

to define RNA 5′ ends, e.g., CAGE-seq. The ChIP-seq pipeline employs the 

widely used peak-calling algorithm MACS2 (Zhang et al., 2008), focusing on 

piRNA clusters and transposons. The genome-seq pipeline detects novel 

transposition events. 

Besides the analysis pipelines, piPipes provides an installation pipeline to 

acquire genomic sequences and annotations for different genome assemblies. 

To achieve a generic interface across multiple genomes, piPipes uses the 

reference packages from the Illumina iGenome project. Additionally, piPipes 

comes with organized annotation files, including piRNA cluster annotations for 

Drosophila melanogaster and Mus musculus, two well-studied model organisms 

in the piRNA field (Brennecke et al., 2007; Li et al., 2013). Detailed instructions 



 

 

144 

for constructing the annotation files for other genomes can be found on the 

GitHub wiki. 

All five analysis pipelines map reads to the reference genomes, assigning 

mapped reads to annotated genomic features and quantifying the signal strength 

for each feature (computed from the number of mapped reads). piPipes uses 

Bowtie (Langmead et al., 2009) to map small RNA reads, Bowtie2 (Langmead 

and Salzberg, 2012), BWA (Li and Durbin, 2009), and mrFast (Alkan et al., 2009) 

to map genomic DNA reads, and STAR (Dobin et al., 2013) to map long RNA 

reads to a reference genome. piPipes uses two different methods to assign reads 

to different genomic features, including exon, intron, transposon, and piRNA 

clusters. The first maps all reads to the reference genome and then uses 

BEDTools (Quinlan and Hall, 2010) and HTSeq-count (Anders et al., 2015) to 

assign features to the reads based on their genomic coordinates. The second 

method directly aligns reads to the sequences of the features (e.g., the entire 

transcriptome comprising the sequences of coding and non-coding RNAs, 

transposon consensus sequences, and piRNA cluster sequences). eXpress 

(Roberts and Pachter, 2013) then quantifies reads using an expectation-

maximization (EM) algorithm to assign reads that match multiple features. For 

each pipeline, piPipes produces summary tables of the statistics for each 

annotated feature, bigWig files for visualization in the UCSC (Kent et al., 2002) or 

IGV genome browser (Robinson et al., 2011), and publication-quality figures for 

presenting analysis results. 
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small RNA pipeline 

piPipes requires that adaptors and barcodes be removed before running the 

pipeline. Because Bowtie (Langmead et al., 2009) does not incorporate 

sequence quality scores, piPipes gathers reads with the same sequence and 

aligns that sequence (species) once. Best practice requires filtering reads 

according to their PHRED score and discarding low quality reads. piPipes 

removes small RNA reads aligning to rRNAs (Figure 4.1A). After rRNA removal, 

piPipes aligns the rest of the reads to microRNA hairpins (Griffiths-Jones et al., 

2006; Griffiths-Jones et al., 2008; Griffiths-Jones, 2010; Kozomara and Griffiths-

Jones, 2011), and then calculates the 5′ and 3′ heterogeneity of the miRNA-

mapping reads (Seitz et al., 2008). Next, piPipes uses Bowtie to align the non-

rRNA, non-miRNA reads to the genome. The SAM/BAM output is converted to a 

modified BED format (“BED2” in piPipes) to reduce file size and computational 

load. BED2 replaces column four of standard BED format with the number of 

times a species appears in the library, replaces column five with the number of 

loci to which this sequence can be assigned, and replaces column seven with the 

sequence itself. With this design, uniquely mapping species can be retrieved by 

restricting column five to 1. Species mapping to multiple locations are counted by 

dividing column four by column five. Species calculation can be simply done by 

counting the unique appearance of sequences in column seven. piPipes applies 

BEDTools (Quinlan and Hall, 2010) to the BED2 file to assign reads to different 

genomic features (e.g., piRNA cluster, transposon family, genes, exon or intron). 
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For each genomic feature, piPipes classifies small RNA reads as siRNA or 

piRNA, according to length restrictions defined by the user. piPipes uses ggplot2 

(Hadley, 2009) to plot length distribution (unique reads), nucleotide percentage 

(unique species) and Ping-Pong signature (with the abundance of reads divided 

by the number of loci to which the sequences can be assigned; Figure 4.1B). 

piPipes also aligns non-rRNA, non-miRNA reads to a reference index comprising 

gene transcripts, transposon consensus sequences and piRNA clusters, and 

then uses eXpress (Roberts and Pachter, 2013) to quantify number of reads 

assigned to different genomic feature. In the dual library mode, piPipes provides 

six different normalization methods to compare miRNA and piRNA between two 

samples. piPipes uses balloon plot (Warnes et al., 2008) to compare the relative 

abundance of different miRNA isoforms (Figure 4.1C) and scatter plots of reads 

from different transposon families or piRNA clusters to compare piRNA 

abundance (Figure 4.1D). 
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Figure 4.1 
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Figure Legend 4.1. Flowchart and Example Figures for the Small RNA 

Pipeline 

(A) Work flow for the pipeline in single- (blue) and dual-library mode (red). 

(B) An example of small RNA analysis for reads assigned to piRNA clusters in 

Drosophila melanogaster. Length distribution (first row), nucleotide composition 

thirty nucleotide upstream and downstream of the 5′ ends of the small RNA 

(second row), and local Ping-Pong signature (bottom row) for all small RNAs (left 

column), siRNAs (middle column), and piRNAs (right column). The length 

defining siRNAs versus piRNAs was set to the values defined by the users in the 

installing pipeline (20–22 nt for siRNA and 23–29 nt for piRNA here).  

(C) Balloon plot for the pair-wise comparison of the 5′ and 3′ heterogeneity of 

microRNA ends. The X- (5′ ends) and Y-axes (3′ ends) report the distance to the 

ends of the miRBase annotated mature miRNA. The number in the “balloon” 

indicates the percentage of the isoform among all isoforms of the mature miRNA. 

(D) A scatter plot comparing sense and antisense piRNAs abundance, classified 

by transposon family between two normalized data sets. 
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RNA-seq pipeline 

Non-rRNA reads are aligned to the genome by STAR (Dobin et al., 2013). 

piPipes uses Cufflinks (Trapnell et al., 2010) to quantify gene expression. piPipes 

also uses HTSeq-count to count the uniquely mapping reads for each genomic 

annotation (Figure 4.2A). To quantify reads from transposons or piRNA clusters, 

piPipes directly aligns the non-rRNA reads to a transcriptome index that includes 

gene, transposon consensus and piRNA cluster sequences. Then the output is 

fed to eXpress (Roberts and Pachter, 2013). Because transposon-derived reads 

could increase in some mutants, skewing the sequencing depth calculation, 

piPipes uses the depth calculated by Cufflinks based on reference-compatible 

fragments (only reads that can be assigned to protein-coding genes and well-

characterized ncRNAs but not transposons, tRNA, et al.). In dual-library mode, 

the output of eXpress is used to draw a scatter plot that includes coding (NM*) 

and non-coding (NR*) transcripts, as wells as transcripts from transposons and 

piRNA clusters (Figure 4.2B). For the analysis of differentially expressed genes, 

piPipes employs Cuffdiff (Trapnell et al., 2013) and cummeRbund 

(http://compbio.mit.edu/cummeRbund/). 
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Figure 4.2 
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Figure Legend 4.2. Flowchart and Example Figures For the RNA-seq 

Pipeline 

(A) Work flow for the pipeline in single- (blue) and dual-library mode (red). 

(B) Scatter plot comparing w1 to aubHN2/QC42 Drosophila ovary RNA-seq reads 

assigned to mRNA (NM; red), non-coding RNA (NR; green) and transposons 

(blue). 
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Degradome- and CAGE-seq pipeline 

The mapping of degradome- or CAGE-seq reads to the genome and 

transcriptome is similar to RNA-seq, except that the pipeline discard alignments 

whose 5′ ends cannot be accurately determined (e.g., soft-clipped). Like the 

small RNA-seq and RNA-seq pipelines, the degradome pipeline uses BEDTools 

to assign the alignments to different genomic features, then plots nucleotide 

frequency around the 5′ ends of the reads (Figure 4.3). Direct transcriptome 

mapping and quantification is also done as in RNA-seq pipeline. 
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Figure 4.3 
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Figure Legend 4.3. Flowchart and Example Figures for the Degradome- and 

CAGE-seq Pipeline 

(A) Work flow for the pipeline. 

(B) Nucleotide percentage 30 nt upstream and downstream of the 5′ end of 

Drosophila w1 degradome reads as-signed to piRNA clusters.  

(C) Bar plot representing 5′ to 5′ overlapping (Ping-Pong signature) analysis 

between Drosophila w1 ovary small RNA-seq and degradome-seq reads that are 

assigned to piRNA clusters. 
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ChIP-seq pipeline 

piPipes aligns ChIP input and IP reads to the genome using Bowtie2 (Liu and 

Schmidt, 2012), then calls peaks using MACS2 (Zhang et al., 2008), which 

supports both narrow (e.g., transcriptional factors) and broad peaks (e.g., 

H3K9me3). The alignments are then converted to normalized signals, which are 

used by bwtool (Pohl and Beato, 2014) to perform TSS, TES, and metagene 

analyses for each genomic feature. In dual-library mode, piPipes uses MACS2 to 

call differential binding events using non-normalized alignments. TSS, TES and 

metagene analyses are provided for those loci that are identified to be 

differentially enriched (Figure 4.4). 
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Figure 4.4 
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Figure Legend 4.4. Flowchart and Example Figures of ChIP-seq Pipeline 

(A) Work flow for the pipeline in single- (blue) and dual-sample mode (red). 

(B) Example plots for TSS (left), TES (right) analyses of H3K9me3 ChIP-seq 

enrichment for piRNA cluster calculated using three different statistical methods; 

see the MACS2 manual for detailed information. Data used here is from 

Drosophila ovary with RNAi against piwi (SRX215630). 

  



 

 

159 

Genome Sequencing Pipeline 

piPipes aligns genomic sequencing reads to the genome with three different 

aligners, Bowtie2 (Liu and Schmidt, 2012), BWA (Li and Durbin, 2009) and 

mrFast (Alkan et al., 2009) to best fit the preference of different software used 

downstream. To perform Structural Variation (SV) Analysis and identify 

transposon insertion or deletion events, the genome-seq pipeline applies 

different algorithms, including BreakDancer (Chen et al., 2009b), RetroSeq 

(Keane et al., 2013; Hormozdiari et al., 2010), VariationHunter, and TEMP 

(Zhuang et al., 2014), to discover transposon insertion, deletion, and other 

structural variation (SV) events (Figure 4.5). piPipes uses a Circos plot (Zhang et 

al., 2013) to represent the variant loci discovered by each algorithm across 

different chromosomes. 
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Figure 4.5 
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Figure Legend 4.5. Flowchart and Example Figures of Genome-seq pipeline 

(A) Work flow for the Genomic-seq pipeline. 

(B) Circos plot representing the locations of, from the periphery to the center, 

cytological position, piRNA clusters, SV discovered by TEMP (tiles), retroSeq 

(tiles) and Variation-Hunter (links) using genomic sequencing of 2–4 day-old 

ovaries from female offspring from the cross w1 × Harwich (SRX093065). 
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Dual-sample Comparison 

The small RNA-seq, RNA-seq and ChIP-seq pipelines can each be run in two 

modes, allowing analysis of a single sample or a pair of samples. The dual-

sample mode uses the output from the single-sample mode and performs pair-

wise comparison as illustrated by balloon plots and scatter plots (Figure 4.1B and 

D). The comparison can be performed on miRNA, piRNA, or mRNA. Figure 4.2B 

illustrates a scatter plot showing for the mRNA abundance in the RNA-seq data 

set produced by the RNA-seq pipeline in the dual-sample mode. The dual-

sample mode of the RNA-seq pipeline also uses Cuffdiff (Trapnell et al., 2013) to 

perform differential analysis on genic transcripts. In the dual-sample mode, the 

ChIP-seq pipeline uses MACS2 to identify differentially enriched loci (Figure 4.4). 

Uniquely and Ambiguously Mapping Reads 

The repetitive nature of transposons makes it desirable to analyze ambiguous 

mappers under some circumstances. The small RNA pipeline separately counts 

reads mapping to a single genomic location and reads mapping to more than one 

location, and then divides the abundance of each read by the number of loci to 

which it can be assigned. For RNA-seq and degradome/CAGE-seq, piPipes uses 

eXpress (Roberts and Pachter, 2013) to assign unambiguous reads with an 

online expectation-maximization (EM) algorithm. In ChIP-seq, piPipes calls 

Bowtie2 to randomly report only one of the best alignments for each ambiguous 

read. Incorporating multiple mappers in the analysis avoids neglecting repetitive 

regions, which are the chief sources or targets of piRNAs in many animals; 
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counting only one alignment for each read prevents artefactually enriching for 

repetitive regions. 
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Chapter V Tailor: A computational framework for 

detecting non-templated tailing of small silencing RNAs 
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Summary 

Small silencing RNAs, including microRNAs (miRNAs), endogenous small 

interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), have been 

shown to play important roles in fine-tuning gene expression, defending virus and 

controlling transposons. Loss of small silencing RNAs or components in their 

pathways often leads to severe developmental defects, including lethality and 

sterility. Recently, non-templated addition of nucleotides to the 3′ end, namely 

tailing, was found to associate with the processing and stability of small silencing 

RNAs (Ji and Chen, 2012; Li et al., 2005; Ren et al., 2012; Ameres et al., 2010; 

Ameres and Zamore, 2013). Next Generation Sequencing has made it possible 

to detect such modifications at nucleotide resolution in an unprecedented 

throughput. Unfortunately, detecting such events from millions of short reads 

confounded by sequencing errors and RNA editing is still a tricky problem. Here, 

we developed a computational framework, Tailor, driven by an efficient and 

accurate aligner specifically designed for capturing the tailing events directly from 

the alignments without extensive post-processing. The performance of Tailor was 

fully tested and compared favorably with other general-purpose aligners using 

both simulated and real datasets for tailing analysis. Moreover, to show the broad 

utility of Tailor, we used Tailor to reanalyze published datasets to reveal novel 

findings worth further experimental validation. The source code and the 

executable binaries are freely available at https://github.com/jhhung/Tailor. 
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Introduction 

Over the past decade, small silencing RNAs, including miRNAs, endogenous 

small silencing RNAs (endo-siRNAs) and piRNAs have been shown to play 

indispensable roles in regulating gene expression, protecting against viral 

infection and preventing mobilization of transposable elements (Ameres and 

Zamore, 2013; Luteijn and Ketting, 2013; Stefani and Slack, 2008; Siomi et al., 

2011; Luteijn and Ketting, 2013; Stefani and Slack, 2008; Siomi et al., 2011). 

Small silencing RNAs exert their silencing function by associating with Argonaute 

proteins to form RNA-induced silencing complex (RISC), which uses the small 

RNA guide to find its regulatory targets and reduce gene expression (Meister, 

2013). Although the studies on the biogenesis of small silencing RNAs have 

made enormous progress in the past decade, the factors controlling their stability 

and degradation remain elusive. 

Recent studies have suggested that non-templated addition to the 3′ end 

of small silencing RNAs, namely tailing, could play essential roles in this regard. 

Non-templated 3′ mono- and oligo-uridylation of the pre-microRNAs (pre- 

miRNAs) regulates miRNA processing by either preventing or promoting Dicer 

cleavage in flies (Heo et al., 2008; Heo et al., 2009; Heo et al., 2012). The 3′ 

mono-uridylation on small interfering RNAs in Caenorhabditis elegans is 

associated with negative regulation (van Wolfswinkel et al., 2009). Ameres et al. 

have demonstrated that highly complementary targets trigger the tailing of 

miRNAs and eventually lead to their degradation in flies and mammals (Ameres 
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et al., 2010; Xie et al., 2012); a similar mechanism has been found on some 

endo-siRNAs as well (Ameres et al., 2011). Identification of tailing events not 

only suggests the co-evolution of small silencing RNAs and their targets, but also 

sheds light on the mechanism of their maturation and degradation. Despite the 

fact that Next Generation Sequencing (NGS) has greatly facilitated the 

understanding of RNA tailing, computational detection of non-templated 

nucleotides from millions of sequencing reads is challenging. The Ketting group 

used MegaBLAST to align piRNA sequences to the genome and relied on post-

processing the reported mismatches to gain insights into tailing (van Wolfswinkel 

et al., 2009). However, as a heuristic algorithm, BLAST is not guaranteed to find 

all the tailing events (Zhang et al., 2000; Altschul et al., 2013) and it is 

significantly slower than the NGS aligners, like MAQ (Li et al., 2008a), BWA (Li 

and Durbin, 2009), Bowtie (Langmead et al., 2009) and SOAP (Li et al., 2008b; Li 

et al., 2009). The Chen group used an accurate method that iterates between 

Bowtie alignment and 3′ clipping of unmatched reads (Zhao et al., 2012) to find 

all the perfect alignments of trimmed reads. A similar approach has been used 

for removing erroneous bases at 3′ end to increase the sensitivity of detecting 

miRNAs (Marco and Griffiths-Jones, 2012). Let alone that this method inevitably 

multiples the running time by the maximal length of tails, extra computational 

works are still needed to retrieve the identity of each trimmed tail. The study by 

Ameres et al. used a specialized suffix tree data structure to efficiently find all the 

tails without sacrificing the accuracy (Ameres et al., 2010). However, due to the 
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high memory footprint of suffix tree, which is about 16 to 20× of the genome size, 

the read mapping has to be performed for each chromosome separately (Ameres 

et al., 2010; Ameres et al., 2011; Xie et al., 2012). Extra processing is still 

required to finalize the alignments from all chromosomes. 

Moreover, the task becomes even trickier when technical and biological 

confounding factors are taken into account for better capturing the true tailing 

events. For example, it is known that reads from Illumina HiSeq and Genome 

analyzer platforms have preferential A–C conversions (Dohm et al., 2008; Qu et 

al., 2009) and a high error rate at the 3′ end of reads, which frequently leads to 

uncalled bases, i.e. B-tails (Minoche et al., 2011; Le et al., 2013). In addition to 

these technical artifacts, RNA editing is another common post-transcriptional 

modification in small silencing RNA biology that could perplex the tools with 

erroneous alignment. There are two major types of RNA editing in mammals, 

adenosine to inosine (A-to-I) and cytidine to uridine (C-to-U) editing. The major 

enzymes that catalyze adenosine to inosine are the adenosine deaminases 

acting on RNA (ADARs), whose main substrates are RNAs with double-stranded 

structures (Blow et al., 2004; Kim et al., 2004; Morse et al., 2002). Since many 

small silencing RNAs are originated from structural RNAs, they are all likely 

targets of A-to-I editing (Blow et al., 2006; Luciano et al., 2004; Warnefors et al., 

2014). Recent studies have shown that A-to-I editing can occur on the seed 

region of the miRNAs with fairly high occurrence rate (up to 80% in some cases) 

and have a direct impact on the selection of their regulatory targets (Kume et al., 
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2014; Vesely et al., 2014). Those unmatched bases degenerate the sensitivity 

and accuracy of short read alignment and have a negative effect on the detection 

of tailing. 

Most of the current methods simply ignore those confounding factors and 

rely on adapting existing, less specialized tools with extensive post-processing 

and as a consequence the performance, usefulness and application of tailing 

analysis is seriously compromised. A fast, accurate and straightforward approach 

to study tailing is still in need. To ease the cost of performing tailing analysis with 

dramatically increasing sequencing throughput, we here introduce Tailor–a 

framework that preprocesses and maps sequences to a reference, distinguishes 

tails from mismatches or bad alignments with a novel algorithm and reports both 

perfect and tailed alignment simultaneously without loss of information. Tailor is 

capable of analyzing the non-templated tailing for miRNA and other types of 

small RNAs and produce publication-quality summary figures. In addition, to 

better demonstrate the utility of Tailor, we reanalyzed published datasets with 

Tailor and unearthed several interesting observations. Although the findings still 

require thorough experimental validation, it is clear that Tailor would help expand 

the scope of the study of small silencing RNAs. 
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Methods 

The principle of detecting non-templated bases at the 3′ end of reads is basically 

to find the longest common prefix (LCP) between the read and each of the 

suffixes of the reference and then report the remainder on the read as a tail. 

Given a read R (M base pairs [bp] long) and all the suffixes (Si) of a reference 

sequence G (N bp long), one can find the LCP between R and Si by finding the 

longest consecutive matches from the first base to the last. Since there are totally 

N suffixes of G, a trivial solution needs at worse M × N times of comparison to 

find the LCP of R and G; however the performance is unacceptably slow when G 

is as large as a human genome. Using index structures, such as the suffix tree or 

suffix array (SA), finding LCPs between the NGS reads and the reference can be 

solved much more efficiently (Ameres et al., 2010; Dobin et al., 2013). 

Recently, the Full-text index in Minute space (FM-index) derived from the 

Burrows-Wheeler transform (BWT; Burrows and Wheeler, 1994; Ferragina and 

Manzini, 2000; Burkhardt and Kärkkäinen, 2003) is widely used in many NGS 

applications (Li and Durbin, 2009; Langmead et al., 2009; Li et al., 2009). The 

FM-index is both time and space efficient and can be built from a suffix array and 

requires only 3 to 4 bits per base to store the index. However, since the FM-index 

is originally designed for matching all bases of a read to a substring of the 

reference, it cannot be used directly for finding tails. One straightforward solution 

is to align reads without those non-templated bases by repeatedly removed one 

last base in each round of the alignment process until at least one perfect hit is 



 

 

172 

found, but the approach scarifies the speed greatly and requires extensive post-

processing. To benefit from the space and time efficiency of the FM-index, we 

further modified its matching procedure and adapted the error tolerant strategy 

proposed by Langmead et al. to devise an FM-index based tail detection 

algorithm (Langmead et al., 2009), Tailor, which is specialized in capturing the 

non-templated bases at the 3′ end of reads with confounding factors, such as 

sequencing errors and RNA editing. 

Construction of the Burrows-Wheeler Transformed Genome 

Tailor first computes the suffix array of the concatenated Watson and Crick 

strands of the genome, which can be built by sorting all suffixes of the sequence 

of the concatenation of the plus and minus strand of the genome in 

lexicographical order. Biological sequences are usually filled with long repeats, 

which make the construction of SA degenerates to quadratic time and obstructs 

the practical use. To handle repetitions in linearithmic time, Tailor adapts the 

difference cover sample (DCS) data structure as proposed to accelerate the 

sorting (Burkhardt and Kärkkäinen, 2003). The DCS is the data structure that 

ensures an anchor pair (whose order is known) can be found for any pair of 

suffixes (order unknown) within a small offset. With the help of DCS, one can 

determine the relative order of two suffixes in linearithmic time even with the 

present of long repeats, which achieves the construction of SA of a genome in 

reasonable time. 
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For the human genome, about 15G of main memory is required for the 

construction of its SA. A feasible solution is to compute the corresponding block 

of the BWT of the complete text separately. Tailor generates the splitter as 

follows: First, the size of each block is pre-specified as 30 millions (M) which is 

taking into account the efficiency of sorting and its memory usage in the later 

stage. The number of blocks (k) is then calculated by k = N / 30M, where N is the 

length of the genome times 2 (both strands are counted). Second, Tailor 

randomly generates about 4k suffix indexes and keeps only the unique indexes, 

whose size is denoted as u, and then sorts the corresponding suffixes with the 

help of the DCS. Finally, from the sorted suffixes, Tailor picks the splitters with an 

interval of u/(k-1). Tailor then classifies all suffixes to each block by comparing 

the lexicographical order of the sequences of the suffixes and the splitters. 

Finally, Tailor sorts the suffixes in each block using the bucket sort. The 

bucket sort is a non-comparison sort, and the average case time complexity is O 

(n+Ω), where n is sequence length, and Ω is the size of the alphabet, which 

contains 4 letters (A, T, C, and G). However, the worst case space complexity of 

the bucket sort is O (n×Ω), which is too large to store in the memory in some 

case, so Tailor uses multi-key quick sort and DCS to pre-sort the suffix indexes, 

until the size of the unsorted suffix indexes is less than 4 millions. Finally, when 

all blocks are sorted, the indexes are collected accordingly and the SA of the 

genome is constructed. 
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Constructing the FM-index 

Since biological sequences have a relatively small alphabet, the transformed 

sequence (i.e., the BWT of the genome) can be further compressed to save 

space. For example, DNA sequences are consists of four nucleotides, A, T, C, 

and G. One would only need two bits to store a nucleotide, which can greatly 

reduced the memory usage by 75%. Another edge of compressing the BWT 

string is that the inverse algorithm can recover 4 nucleotides in reading one 

single byte and reduce the time calculating position in searching with the help of 

some additional lookup tables. Other two important tables in the FM-index are 

the C table and the Occ table. Tailor maintains the contents of them along with 

the construction of the SA, but since the memory usage of Occ table is also 

huge, so Tailor only records a part of the Occ table in an interval of 64, and 

others are calculated on the fly as previously suggested (Langmead et al., 2009).  

Searching for Prefix Matching 

As described previously, the query is first reverse complemented and Tailor 

starts to find the converted query in the FM-index by the backward searching 

algorithm. If the query contains a 3′ tail, the backward searching of the converted 

query will stop before reaching the end. When the backward searching stops, 

Tailor records a pair of indexes of the BWT, which indicating all the suffixes that 

share the same prefix, whose content is the same as the suffix of the converted 

query (i.e., the prefix of the original query). Starting from each of the suffixes 

marked by the pair of indexes, Tailor then uses the inverse BWT algorithm to 
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backtrack to the very first base of the genome (Burrows and Wheeler, 1994). The 

number of bases traversed before reaching the end implicating the chromosomal 

location of each suffix. To accelerate this process, Tailor keeps a portion of the 

SA along with an auxiliary data structure as a fast lookup table, which assures 

the chromosomal location represented by the index of the BWT can be retrieved 

within a bounded number of backtracking. 

The system flow of the Tailor algorithm is outlined in Figure 5.1. Since 

searching within the FM-index initiates from the 3′ end of the query string (i.e., 

the read), where the non-templated nucleotides append, Tailor first makes the 

reverse-complement of the query sequence so that searching starts from the 

original 5′ end to avoid excessive exhaustive search at the early stage. To do so, 

the reference should be reversed complemented as well, and the coordinate of 

each alignment should be calculated accordingly. To allow searching against 

both strands simultaneously and improves the speed, Tailor concatenates the 

plus and minus strands of the reference and constructs one index instead of two. 

Tailor also stores a part of the suffix array similar to other FM-index based 

aligners to achieve fast calculation of the text shift for getting the coordinate of 

each occurrence. Any alignment whose prefix matching portion exceeds the 

boundary of the mapped chromosome is filtered. The searching continues until 

either it matches all the characters of the query to the reference (i.e., the perfect 

matching) or no more bases can be matched (i.e., the prefix matching). In the 

latter case, Tailor backtracks to the previous matched position and exhaustively 
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enumerates all the possible prefix matches. The unmatched part remained in the 

query is reported as a tail (Figure 5.1B). 
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Figure 5.1 
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Figure Legend 5.1. BWT-based Tailing Detection Algorithm 

(A) Genomic index construction procedure. 

(B) Read searching procedure. 
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Implementation 

We implemented the core of the Tailor aligner using C++ with built-in support for 

multithreading. Since Tailor concatenates both strands of the chromosomes into 

one long reference, whose length could exceed the maximum number 

represented by 32 bits, we have to use 64 bits to store the indexes in all the 

relevant data structures, which require about 2× memory footprint than that of 

other FM-index based aligners. Tailor has a similar command line interface like 

other NGS aligners, and reports alignment in the SAM format. A tail is described 

as "soft-clipping" in CIGAR and the sequences are reported under "TL:Z:" in the 

optional fields . Mismatches, if allowed (–v), will be reported in the "MD" tag. 

Tailor is freely available on GitHub (http://jhhung.github.io/Tailor/) under GNU 

General Public License 2. The tailing pipelines were implemented in shell 

scripting language and R. 
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Results 

Performance without confounding factors 

To begin with, we ignored confounding factors in the following tests to compare 

with conventional approaches first. To assess the aligning speed directly, we 

indiscriminately generated 10 millions of perfectly genome-matching reads from 

the Drosophila melanogaster genome (simulated tail-free dataset) and randomly 

appended 1–4 genome-unmatched nucleotides to the 3′ ends (simulated tailed 

dataset). We compared Tailor with two most popular BWT aligners Bowtie and 

BWA by applying them on simulated small RNA datasets (Figure 5.2A). For the 

simulated tail-free dataset, Tailor outperformed Bowtie and BWA in five thread 

settings (using 2, 4, 8, 12, and 24 threads; Figure 5.2A, top). But for the 

simulated tailed dataset, Bowtie ran slightly faster than Tailor possibly due to the 

fact the it reported no alignment and did not perform any disk writing (Figure 

5.2A, bottom).  We also performed the speed test with real small RNA 

sequencing data from hen1+/− and hen1−/− fruitfly and zebrafish (Figure 5.2B). 

hen1 encodes for a methyl-transferase that adds a methyl group to the 3′ end of 

siRNA and piRNA at the 2′-O position and prevents tailing. For both hen1+/− and 

hen1−/− libraries, Tailor outperformed Bowtie and BWA and reproduced the 

published result that siRNAs, but not miRNAs, were subjected to tailing in the 

absence of hen1 (Figure 5.2B). Please note that Bowtie and BWA in the speed 

test setting here were not capable of detecting non-templated tails. These tests 

were just used to compare their execution speed but not functionality.
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To prove the accuracy of Tailor when confounding factors were not 

considered, we then used either Tailor or the Chen method to identify the non-

templated tailing events. To achieve maximal speed of the Chen method to our 

best knowledge, we used the “-3 k” option of Bowtie to clip k bases off from the 3′ 

end of each read. This strategy avoided calling secondary programs and ensured 

that minimal computational work was done other than Bowtie mapping. We 

started the alignment by setting k to 0. After the initial mapping, the unaligned 

reads were realigned with an incremented k (k = 1). This process was repeated 

four times. In the last iteration, four nucleotides were trimmed off from the 3′ end 

(k = 4) and all the tailed reads should have been mapped at this point. In the 

simulation test, this method finished in 67 ± 1 seconds with Bowtie been called 

five times (k = 0–4). Not surprisingly, directly mapping by Tailor finished in 22 ± 1 

seconds in the same computational environment. Both methods reported the 

same coordinates. However, in such setting, the Chen method was not able to 

identify the tails, which requires considerable computational work and time to 

retrieve from the raw reads. In contrast, Tailor revealed the length and the 

identity of the tails in the alignment output directly. 
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Figure 5.2 
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Figure Legend 5.2. Speed Comparison of Tailor, Bowtie2, and BWA 

(A) Speed comparison between Tailor, BWA and Bowtie using simulated 18–23 

nt small RNA with (top) or without (bottom) non-templated tails. Tailor ran with 

the default setting, which allows no mismatch in the middle of the query. Tailed 

alignments were reported if perfect match could not be found. Bowtie ran with ‘−a 

–best –strata −v 0’ setting to allow no mismatch while report all best alignments. 

BWA ran with the default setting. Five different CPU settings were used and the 

running time was plotted. Three replicates were performed. 

(B) Speed comparison between Tailor, BWA and Bowtie using published small 

RNA Illumina NGS libraries from hen1+/− and hen1−/− mutants in fruitfly and 

zebrafish. Same settings were used as in (A). 
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Performance with error tolerance 

It is arguable that some NGS aligners that support local alignment, such as 

Bowtie2 and BWA (Liu and Schmidt, 2012; Langmead and Salzberg, 2012), can 

recover those tails with error tolerance. We simulated two datasets (one normal, 

one mutated, see below) whose distribution of read length follows that of the real 

small RNA sequencing dataset. For the normal dataset, two million reads were 

randomly sampled from the reference genome. We intentionally kept reads 

having just one unique occurrence in the genome and then appended a 1-4 nt 

non-templated tail on each read. For the mutated dataset, a similar procedure 

was used to generate another two million reads, but one additional step was 

added: we introduced one substitution in the nucleotides 2-8 of each read to 

simulate an RNA editing event as suggested by Vesely et al. (Vesely et al., 

2014). Again, this substitution was picked carefully to have only one occurrence 

in the genome with exactly one mismatch. The simulation guaranteed that there 

existed only one best alignment to the reference for each read in both datasets. 

Then we examined the mappability of these datasets by Tailor (allow 

mismatch), Bowtie2, and BWA (Figure 5.3A). Tailor clearly reported more unique 

mapping reads than others especially in the mutated datasets.  When we looked 

closer to those reads that were mapped to multiple positions, we found Bowtie2 

and BWA were more likely to align the tails to the reference than Tailor and 

create many alternative alignments. Note that the seed region setting was used 

to aid all three tools for the alignment (S=20 and –v in Tailor and the 
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equivalences in Bowtie2 and BWA; mismatches in the seed region were 

allowed), and all tools should try to align the first 20 nt of each read to the 

genome, but Bowtie2 and BWA still generated suboptimal alignments. 

We further checked whether the alignments and the tails were correctly 

reported (Figure 5.3B). Tailor was the only tool that gave satisfactory results 

reporting correct alignments and tails in the mutated dataset. There was no 

information in the output of BWA to recover the tails, and since most of the reads 

were aligned to multiple loci, it was expected that extensive post-processing 

would be needed for extracting the tails. The simulation clearly shows that Tailor 

is the only practical solution for doing tailing analysis with confounding factors. 
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Figure 5.3 
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Figure Legend 5.3. Accuracy Comparison of Tailor, Bowtie2, and BWA 

(A) The mappability of the normal (N) and mutated (M) datasets aligned by 

Tailor, Bowtie2 (with local alignment) and BWA. Multiple mapping was deemed 

as misalignment since each read was guaranteed to have only one occurrence in 

the reference.  

(B) The unique mapping reads shown in (A) were further examined to make sure 

they were aligned correctly and with proper tails reported (correct tails); unique 

mapping reads that didn’t have correct alignment or tails were categorized 

another group (wrong tails/wrong alignment). The unmappable and multiple 

mapping reads were grouped together (undetermined or unmappable). 
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Analysis Pipeline 

In order to provide a thorough and straightforward tailing analysis of deep 

sequencing libraries to the scientific community, we developed the interface of 

Tailor to take FastQ files as input and produce publication-ready figures. In brief, 

the input reads, with barcodes and adaptors removed, are subject to a quality-

filtering step based on a PHRED score threshold provided by the user (e.g., to 

get rid of B-tails). The pipeline then applies Tailor to align the high-quality reads 

to the reference. The information on the length and identity of tails are then 

retrieved from the SAM formatted output and summarized to a tabular text file. 

Additionally, the alignments are assigned to different genomic features (miRNAs, 

exons, introns, et al.) using BEDTools (Quinlan and Hall, 2010). Tails from 

different categories are summarized. Publication quality figures depicting the 

length distribution are drawn using R package ggplot2 (Figure 5.4B). The pipeline 

also offers microRNA specific analysis. Balloon plots describing the 5′ and 3′ 

relative positions and the tails length are provided for a comprehensive overview 

(data not shown). 
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Figure 5.4 
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Figure Legend 5.4. Tailor Pipeline 

(A) Flowchart of the Tailor pipeline. 

(B) Example output of small RNAs categorized as “transposable element” in 

Arabidopsis hen1, heso1 mutant. Perfect match, reads with one nucleotide tail 

(A, C, G, T), and reads with longer than one nucleotide tail are plotted separately 

(top) and together (bottom). 
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Applications—case studies 

To prove the utility of Tailor, we applied Tailor to reanalyze several publicly 

available small RNA sequencing datasets and revealed new facts about the data 

that has not been reported yet. In plants, HEN1 methylates both miRNA and 

siRNA at their 3′ ends to protect them from non-templated uridylation catalyzed 

by HEN1 SUPPRESSOR1 (HESO1), a terminal nucleotidyl transferase that 

favors uridine as substrate (Zhao et al., 2012; Ren et al., 2012; Ren et al., 2014). 

We applied Tailor on small RNA sequencing libraries from WT, hen1−/− and 

hen1−/−; heso1−/− cells of Arabidopsis, and the results showed that siRNAs were 

subjected to both non-templated uridylation and cytosylation without HEN1 while 

miRNAs were mainly subjected to uridylation. Furthermore, the loss of HESO1 

only reduced the uridylation but not cytosylation of siRNAs, suggesting the 

existence of additional nucleotidyl transferase that prefers cytosine as substrates 

(Figure 5.5A).  

We then applied Tailor to two NGS libraries that cloned Ago2 associated 

small RNA from nuclear and cytoplasmic fraction of HeLa cells respectively 

(Ameyar-Zazoua et al., 2012). Since RNAs were cloned using poly-A polymerase 

instead of 3′ adaptor ligation in the library preparation, A-tails were unable to be 

recovered computationally. Although most miRNAs showed very similar length 

distribution and tailing frequency between these two samples, one miRNA, miR-

15a, exhibited a distinct pattern. In cytoplasm, miR-15a was mostly 21 nt long 

and had modest U tailing for its 22-mer isoform. Surprisingly, in the nuclear 
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fraction, miR-15a peaked at 22 nt and showed strong U tailing (Figure 5.5B). In 

addition, miR-15b, which shares its seed sequence with miR-15a and only has 

one nucleotide different from miR-15a in the first 19 nt of its mature sequence, 

did not exhibit obvious variation between the two samples. This suggests that, 

either 9–12 nt, also known as the “central site”, or the 3′ end of guide miRNA play 

an important role in tailing regulation. 
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Figure 5.5 
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Figure Legend 5.5. Application of Tailor 

(A) Length distribution of mRNA-derived small RNA reads with tailing information 

from wild type, hen1 mutant, and hen1, heso1 double mutant tissues from 

Arabidopsis. Raw read counts are shown without normalization. Perfect match 

and tailed reads are indicated in different colors. 

(B) Length distribution of Ago2 associated Hsa-miR-15a (left) and Hsa-miR-15b 

(right) in cytoplasm (top) and nucleus (bottom) fraction of HeLa cell. Raw read 

count are shown without normalization. Note that since the authors of these 

libraries used poly-adenylation instead of 3′ ligation in their cloning strategy, it 

was impractical to identify A tailing. 

(C) Tail composition for miR-379 and the edited form (miR-379-5G) in wildtype 

and Adar−/− libraries. 

  



 

 

195 

Finally, we applied Tailor to study the possible relationship between RNA 

editing and tailing in microRNAs. The miRNA libraries were constructed from the 

whole brain tissue cells dissected from Adar2−/− and wild-type mice (Vesely et al., 

2014). Adar2 is known for its strongest effects on miRNA abundance and editing 

among the three isoforms of ADARs (Vesely et al., 2012). One of the highly 

expressed ADAR substrates, miR-379, was shown to be directly edited at the 

nucleotide 5 within the seed region, and about half of the mature miR-379 were 

edited by ADAR2 (Vesely et al., 2012). As expected, the edited form of miR-379 

(i.e., miR-379-5G) was greatly reduced in Adar−/− mice. Surprisingly, we found 

that the normal miR-379 has much more tailing than miR-379-5G (Figure 5.5C). 

Mono-A and poly-A tails  (the bluish portion) were depleted in miR-379-5G, which 

raises the probability that ADARs and the A-to-I editing could affect the affinity 

between the miRNAs and the unknown enzymes responsible for adenylylating 

the 3′ end. Since the proportion of different types of tails was unchanged upon 

Adar2 knockout, the tailing machinery is less likely modulated by ADAR2 directly 

but by the subsequent factors after editing in the seed, such as differential 

targeting, RNA stability change or miRNA-Argonaute sorting. 
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Discussion 

Tailing is a molecular phenomenon that associates with the function, processing, 

and stability of many small RNAs. Computational identification of the tailed 

sequences from the millions of NGS reads has been proven to be challenging 

and time-consuming. We herein present a tailing analysis framework, Tailor, 

which aligns reads to the reference genome, reports tailing events 

simultaneously, and visualizes analysis results. We assessed the accuracy of 

Tailor by comparing it with the Chen method with simulated reads and found they 

generated exactly the same results while Tailor only used a third of the time to 

align and provided more information comparing to the alternative.  

When confounding factor was ignored, Tailor was not slower than other 

well-known fast general-purpose mappers in our tests. We demonstrated that 

Tailor executed in a speed that was very competitive to, if not better than, Bowtie 

and BWA, while providing more functionalities for detecting tailing events. When 

confounding factors was presented in the reads, it was arguable that advanced 

NGS aligners that support the local alignment mode (e.g., Bowtie2) could be 

competent in finding tails, but we tested them with simulated reads and showed 

that Tailor performed significantly better in both accuracy and efficiency. 

Tailor’s shell-based framework takes raw reads as input and produces 

comprehensive tailing analysis results and publication quality figures. We 

reproduced known conclusions drawn from the published tailing study by the 

pipeline with little extra scripting and post-processing. We also applied the 
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pipeline to other datasets and shed light on other possibilities of the functional 

roles of tailing, such as involving in RNA processing, transport, decay and 

storage by interacting with other RNA binding proteins (Gerstberger et al., 2014).  

Our aims to design Tailor are to reduce the cost of doing tailing analysis 

and reinforce or even replace the conventional computational procedure in 

analyzing all short non-coding RNAs. We expect that Tailor could be applied to a 

broader scope and subsequently facilitate the understanding of biological 

processes related to tailing. 
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Chapter VI Conclusions, discussion and future 

directions 
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Summary 

miRNAs and piRNAs guide Argonaute proteins to regulate gene and transposon 

expression. Although enormous efforts have been made to dissect their 

pathways, many aspects in their biogenesis and function still remain elusive. My 

thesis research addresses unknown questions in the field by computationally 

exploring novel features of miRNA and piRNA sequences, biochemical 

identification of the enzymes, and validating the hypothesis with genetics and 

next generation sequencing strategies. The following sections in this thesis 

summarize my work and discuss the future challenges. 
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Nibbler and miRNAs 

Using computational analysis and in vitro biochemical experiments, we 

discovered that many Drosophila miRNAs are released from pre-miRNA by 

Dicer-1 as intermediates that are longer than the lengths of mature small RNA 

associated with Ago proteins. Those longer isoforms are loaded into Ago1 

protein as miRNA/miRNA* duplex. After the removal of miRNA*, the miRNA 

intermediates are subjected to 3′-to-5′ end trimming to their mature lengths. 

Performing a candidate RNAi screening, we identified a 3′-to-5′ exonuclease, 

Nibbler, that trims those intermediates to their mature lengths. Such trimming 

increases the diversity of miRNA sequences and explains the previously 

observed 3′ heterogeneity (Seitz et al., 2008). 

Biochemical and structural studies suggest that the 3′ ends of small RNAs 

are bound by Argonaute PAZ domain and do not base-pair with their target RNAs 

(Tang et al., 2003; Haley and Zamore, 2004; Wee et al., 2012; Schirle et al., 

2014). Consequently, the 3′ ends do not positively contribute to the efficiency of 

cleavage. Supporting this view, no direct evidence has linked the length of small 

RNA to their regulatory roles.  

In fact, the study of miR-451 supports the view that miRNAs with longer 3′ 

ends still silence targets. Different from most miRNAs, the production of miR-451 

is independent of Dicer. After being released by Drosha and exported into the 

cytoplasm, pre-miR-451 is loaded directly into Ago2. Using the 5′ arm as the 

guide strand, Ago2 cleaves the 3′ arm strand of pre-miR-451 and creates a miR-
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451 intermediate with ~30 nucleotides (Cheloufi et al., 2010; Yang et al., 2010). 

Poly(A)-specific ribonuclease (PARN) trims the 3′ end of miR-451 intermediate to 

the mature length (Yoda et al., 2013). Surprisingly, the trimming activity is 

dispensable for the function of miR-451, indicating that RISC can tolerate miRNA 

guides as long as 30 nt. 

The observation of tailed miRNAs in Nbr mutant encouraged us to link the 

miRNA 3′ end trimming to their stability. Tailing is observed when miRNAs 

encounter highly complementary targets (Ameres et al., 2010). It is hypothesized 

that structural rearrangements associated target binding provide the tailing 

enzyme access to miRNA 3′ ends, which would otherwise be buried in the PAZ 

domains (Yan et al., 2003; Lingel et al., 2003; Lingel et al., 2004a; Lingel et al., 

2004b; Ameres and Zamore, 2013). Since longer isoforms of miRNAs are 

unlikely to have their 3′ ends accommodated in the PAZ domain, they are more 

vulnerable to Nibbler and the tailing enzyme. We thus conclude that 3′ end 

trimming of Nbr protects miRNA from tailing enzyme. Nonetheless, we cannot 

rule out the possibility that the tailed miRNA species are also substrates of Nbr. 

Although tailing is often associated with target-directed miRNA 

degradation, the increase of tailing in the absence of Nbr fails to correlate with a 

decrease in their abundance (Figure 2.12D). Thus the specific function of Nbr-

mediated 3′ end trimming remains elusive and demands research to understand 

tailing and degradation. 
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Nibbler and piRNAs 

In Chapter III, we demonstrated that Nibbler also trims the 3′ end of piRNAs after 

the piRNA intermediates are generated by Zuc. In Drosophila, Zuc generates a 

majority of Piwi-associated piRNAs by processively slicing the cleavage products 

of Ago3. The nucleotides that are immediately downstream of the 3′ end of those 

piRNAs are enriched in uridines. Since those nucleotides do not exist in the 

mature piRNAs, we speculate that this preference is created by Zuc. We further 

propose that Zuc machinery chooses, as its cleavage site, the first uridine that is 

not protected by the PIWI proteins (a.k.a., the first uridine >26 nt from the 5′ end 

of piRNA intermediate). Consequently, some pre-piRNAs require 3′ trimming 

before their 3′ ends are methylated by Hen1, while some do not. 

We can model the number of nucleotide that Nbr trims (a.k.a., the distance 

from the 3′ end of mature piRNA to the first uridine on its 3′ end) using a 

geometric distribution: 

(i −1)× 1− pj( )
j=1

i−1

∏ × pi
⎡

⎣
⎢

⎤

⎦
⎥

i=2

∞

∑  

i: distance from the 3′ ends of piRNAs to the next uridine on the 3′ end (i.e., for i 

= 2, Nbr trims 1 nucleotide; Figure 6.1). p: the percentage of uridine at the i nt 

position 3′ to the 3′ end of piRNA. p remains constant and equal to the 

percentage of uridines in piRNA clusters, assuming no preference for a uridine. 

Our analysis suggests that in w1 and aubHN2/QC42; ago3t2/t3, uridines are 

enriched at the nucleotide immediately downstream of the 3′ end of piRNAs 
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(Figure 3.4B). On the other hand, zucHM27/Df have a uridine composition equal to 

the percentage of uridine in the piRNA clusters. Based our simulation, it is 

estimated that Nbr trims ~0.7 nt on average (Figure 6.1), close to the average 

length increase (0.5 nt) in Nbr−/− compared to w1118 (Figure 3.14). Due to the 

small increase of piRNA length, it is unlikely that the 3′ end trimming plays an 

important function in the piRNA pathway.  

Unexpectedly, in w1 and aubHN2/QC42; ago3t2/t3, but not zucHM27/Df, the 

chance to encounter the first uridine two nucleotides away from the 3′ end of 

piRNAs is lower than expected (Figure 6.1; i = 2). Our data suggest a possibility 

that the second nucleotide is also involved in the selection site of Zuc cleavage. 

Despite the its role in the 3′ end trimming of miRNA and piRNA in flies, 

Nbr does not have homolog in silk moth or mouse, the two other model 

organisms widely used in piRNA studies. The 5′-to-5′ distance analysis of silk 

moth and mouse piRNA displayed a peak at ~35 nt, which is longer than the 

lengths of their mature piRNAs. These data suggest that their piRNAs undergo 

more 3′ trimming than do fly piRNAs. Consistently, Tdrkh−\− mutant mice 

accumulate 30–36 nt piRNA intermediates. More importantly, Tdrkh−\− male mice 

are sterile, indicating the 3′ trimming is indispensable in the piRNA pathway. The 

identification of the trimming enzyme in silk moth and mouse remain an important 

open question for the future study of the piRNA pathway. 
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Figure 6.1 
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Figure Legend 6.1. Modeling the Length of piRNA 3′ Trimming 

Distance from the 3′ end of piRNAs to the next uridine in the genome. Only 

transposon-derived, unique mapping piRNAs from w1, aubHN2/QC42; ago3t2/t3, 

zucHM27/Df (dots) are included in this analysis. We used a geometric distribution, 

with a constant p, to model the expected distribution assuming no nucleotide 

preference towards uridine (line). 
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Ping-Pong Cycle and Transcriptional Silencing 

In Chapter III, we analyzed piRNA sequences in different mutants and 

discovered that primary piRNAs display phasing—the 5′ ends of piRNAs exhibit a 

periodicity of ~26 nt in the genome. Similar to endogenous siRNAs generated by 

Dicer-2 (Vagin et al., 2006; Ghildiyal et al., 2008; Czech et al., 2008), phased 

piRNAs also rely on processive activity of the endonuclease Zucchini for their 

production. Further analyses on piRNAs associating with different PIWI proteins 

revealed that Piwi-piRNAs display the strongest phasing, Aub-piRNAs display 

modest phasing, while Ago3-piRNAs fail to show any signature of phasing. We 

subsequently observed that the abundance of Piwi-associated piRNA dropped 

dramatically in ago3 and vasa mutants. Our data suggest that the production of 

primary piRNAs is downstream of the Ping-Pong cycle.  

To test this hypothesis, we cloned the degradation intermediate RNAs 

using degradome sequencing and identified the potential cleavage products of 

Aub and Ago3 using the 10 bp cleavage signature. Further analysis of the 5′ end 

of Piwi-piRNA and those cleavage sites suggest that Piwi-piRNAs are initiated 

from the cleavage products of Aub and, more frequently, Ago3. Our data 

suggested a new model for piRNA biogenesis: the primary piRNAs are 

essentially produced from the cleavage product of the secondary piRNAs: after 

Ago3 slicing, the 3′ end cleavage products become a substrate of Zuc machinery, 

which preferentially slices the phosphodiester bond upstream of a uridine. This 

cleavage not only produces the 3′ end of the secondary piRNA, but also 
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generates a 5′ end of a piRNA precursor. This precursor is likely transferred to 

the outer membrane of mitochondria and further processed by Zuc to produce 

phased piRNAs that are mainly loaded into Piwi. 

Without an intact Ping-Pong pathway, the level of germline Piwi-piRNAs 

drop while the somatic Piwi-piRNA level remains unchanged. Importantly, Piwi-

piRNAs decrease to ~10–20% in ago3 and vas mutant while only to ~40–60% in 

aub mutant. Those data indicate that most Piwi-associated piRNAs are 

generated from the cleavage products of Ago3 but not Aub. It is consistently with 

the early observation that Ago3 mainly associates with piRNAs in the sense 

orientation of the transposons while Aub- and Piwi-piRNAs are predominantly 

antisense. 

Our data also explain the mysterious function of the Tudor protein Qin. In 

qin mutant ovaries, homotypic Aub:Aub dominates and heterotypic Aub:Ago3 

Ping-Pong is greatly reduced  (Zhang et al., 2011; Zhang et al., 2014a). 

However, the abundance of piRNAs and the strength of Ping-Pong show no 

significant difference. It remained elusive why Aub:Aub Ping-Pong cannot 

replace heterotypic Aub:Ago3 Ping-Pong. Our data suggest that Aub cleavage 

cannot produce antisense substrates for Zuc to generate Piwi-associated, 

antisense piRNAs. Thus, Qin ensures the antisense bias of Piwi-bound piRNAs 

by enforcing heterotypic Ago3:Aub Ping-Pong. However, how Qin ensures 

heterotypic Ping-Pong still remains mysterious. Qin could either inhibit homotypic 

Aub:Aub Ping-Pong or promote heterotypic Aub:Ago3 Ping-Pong. An epigenetic 



 

 

209 

strategy using ago3t2/t3 and ago3t2/t3, qin1/Df double mutant flies can answer this 

question. If Qin represses Aub:Aub Ping-Pong, then Ping-Pong will increase in 

ago3t2/t3; qin1/Df compared to ago3t2/t3. However, if Qin represses Aub:Ago3 Ping-

Pong, then we predict that little change on the Ping-Pong level will be observed 

between ago3t2/t3 single-mutant and ago3t2/t3; qin1/Df double-mutant. 

Our discovery that the Ping-Pong pathway not only amplifies piRNA reads 

bound to Aub and Ago3 but also produces piRNAs loaded into Piwi completely 

revises the current model of the piRNA pathway. It also raises many new 

questions. For example, two functions of the Ping-Pong cycle have been 

revealed: to repress transposons post-transcriptionally and to initiate the 

production of Piwi-bound piRNAs. Which one is its major function? To answer 

this question, we propose to compare the transposon silencing in piwi2/Nt single-

mutant, piwi2/Nt; ago3t2/t3, and piwi2/Nt; aubHN2/QC42 double-mutants. If the major 

function of Ago3 is to generate Piwi-associated piRNAs and promote 

transcriptional silencing, we expect little transposon level increase when 

comparing piwi2/Nt single-mutant to piwi2/Nt; ago3t2/t3 double-mutant. On the other 

hand, if transposons further increase in piwi2/Nt; ago3t2/t3 compared to piwi2/Nt, this 

portion of increase must be derived from the loss of heterotypic Aub:Ago3 Ping-

Pong. 

Aub silences transposon expression by cleaving transposon RNA and 

amplifying sense piRNA guides for Ago3, which can then initiate primary, 

antisense piRNA production for Piwi. aub; piwi double mutants would, of course, 
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be ideal for determining the relative importance of these two Aub functions, but 

the aub and piwi genes are too close to generate such a genotype (10 kbp and 

0.04–0.06 centimorgan apart). The high efficiency of CRISPR might be useful in 

generating an aub; piwi double mutant fly line simultaneously. However, a piwi 

null mutant has degenerated ovaries due to its additional function in stem cell 

maintenance (Lin and Spradling, 1997; Cox et al., 1998; Klenov et al., 2011; Jin 

et al., 2013). Thus the piwiNt allele needs to be included in our epistasis analysis, 

further increasing the difficulty of testing this hypothesis. 

Despite those difficulties, the future is big for those small RNAs. 
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