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ABSTRACT 
 

The insulin-like growth factor-1 receptor (IGF-1R) and many of its downstream 

signaling components have long been implicated in tumor progression and resistance to 

therapy.  The insulin receptor substrate-1 (IRS-1) and IRS-2 adaptor proteins are two of 

the major downstream signaling intermediates of the IGF-1R.  Despite their considerable 

homology, previous work in our lab and others has shown that IRS-1 and IRS-2 play 

divergent roles in breast cancer cells. Signaling through IRS-1 promotes cell 

proliferation, whereas signaling through IRS-2 promotes cell motility and invasion, as 

well as glycolysis.   Moreover, using a mouse model of mammary tumorigenesis, our lab 

demonstrated that IRS-2 acts as a positive regulator of metastasis, while IRS-1 cannot 

compensate for this function. 

 

 The focus of my thesis research is to understand how IRS-2, but not IRS-1, 

promotes breast carcinoma cell invasion and metabolism to support metastasis.  In 

preliminary studies, I have found that IRS-1 and IRS-2 exhibit different expression 

patterns in both cell lines and human tumors with correlations to patient survival, which 

provides a potential mechanism for their distinct functions. The localization of IRS-1 and 

IRS-2 within separate intracellular compartments would determine their access to 

downstream effectors and substrates, and this would result in unique cellular outcomes.  

Specifically, I have observed that IRS-2, but not IRS-1, co-localizes with microtubules in 

breast carcinoma cell lines with implications for signaling through AKT and mTORC2.  
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The goal of this research is to determine how the localization of IRS-2 contributes to its 

regulation of breast cancer progression and response to therapy and how this information 

could be used to better predict patient outcomes. 
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CHAPTER I 
 
 
 
 

Introduction 
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Breast Cancer Statistics and Significance 
 

Breast cancer is the leading cancer diagnosis and second leading cause of cancer-

related death among women in the United States.  Approximately 12% of American 

women will be diagnosed with breast cancer in their lifetime, and 40,000 will die each 

year of the disease [1].  Public health efforts have improved screening for early detection, 

and scientific advances in treatment have prolonged survival for women with this disease; 

but breast cancer remains a serious and significant medical concern worldwide. 

 

Death from breast cancer, as with most cancers, is generally caused by the 

metastasis, or spreading, of tumor cells to other sites in the body and subsequent 

compression and invasion of the parenchyma of vital organs.   Common sites for 

metastasis of breast carcinoma include local lymph nodes, lung, bone, brain, and liver.  

Metastasis of a tumor cell to a distant site involves invasion of a blood or lymph vessel, 

travel in the circulation, invasion of a distant organ, and proliferation and survival in that 

organ.  Such a cell must possess the properties of invasiveness, motility, and resistance to 

hypoxic and metabolic stress [2].  Metastatic disease is particularly difficult to treat, as 

the metastatic process has selected for an aggressive and resilient cellular phenotype 

more likely to resist standard treatment measures. 

 

IGF-1 Signaling: An Overview 

A variety of signaling pathways mediate the ability of a tumor cell to metastasize 

or resist pharmacologic treatment.  Among others, insulin-like growth factor-1 receptor 
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(IGF-1R) signaling has been well studied in breast cancer.  High serum IGF-1 levels are 

associated with an increased risk of developing breast cancer, and breast cancer patients 

have higher levels than healthy controls [3, 4].  The receptor tends to be overexpressed 

and hyperactivated in breast carcinoma cells [5, 6]; and inhibition of the receptor 

suppresses cell adhesion, invasion, and metastasis and increases sensitivity to taxol 

treatment [7].   Additionally, IGF-1R expression is increased by estrogen, a primary 

mediator of tumor cell growth in many breast cancers, and IGF-1 signaling can positively 

influence estrogen-inducible genes [8, 9]. 

 

The dimeric IGF-1R is made up of two monomers, each containing an alpha and 

beta subunit, joined by disulfide bonds [10].  The extracellular alpha subunit is 

responsible for ligand binding, while the transmembrane and intracellular beta subunit is 

responsible for signaling [10].  Hybrid receptors containing an alpha and beta subunit of 

the insulin receptor (IR) are also possible.  Multiple ligands may activate the receptor.  

These include IGF-1 and IGF-2, as well as insulin to a lesser extent [11].  Although IGF 

levels are controlled in an endocrine manner, plasma ligand levels are also modulated in 

part by a group of IGF binding proteins (IGFBPs) which sequester IGF-1 in the plasma 

and prevent receptor binding and activation [11].  Specifically, IGFBP3 and IGFBP5 

have been well studied in breast cancer.  Both proteins have additional functions outside 

of the IGF-1 signaling pathway, and both have been correlated to breast cancer risk, 

prognosis, and sensitivity to therapy in several studies [12-19].  IGFBP3 mediates 

antiproliferative effects independent of IGF-1 through binding to cell surface proteins and 
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receptors [20, 21].  Additionally, IGFBP3 inhibits estrogen-stimulated growth when 

added to estrogen-treated MCF7 cultures, and antiestrogen treatment results in an 

accumulation of IGFBP3 with growth-inhibitory effects [22].  IGFBP5 has also been 

implicated in mediating growth inhibition by antiestrogens, as well as vitamin D-related 

compounds [23, 24].  IGFBP5 has also been found to enhance the antiproliferative effects 

of tumor necrosis factor-α (TNFα) [25]. 

 

Upon binding of IGF-1, an autophosphorylation event on the intracellular domain 

of the IGF-1R activates the receptor [26].  This key tyrosine phosphorylation serves to 

recruit effectors, including insulin receptor substrate (IRS) proteins, Grb10, and SHC 

which bind by virtue of their phosphotyrosine binding (PTB) or SH2 domains [27-29].  

These effectors can then be phosphorylated by the receptor tyrosine kinase on specific 

tyrosine residues, facilitating the recruitment of other mediators of downstream signaling 

[30].  Most notably, PI3K is recruited to the receptor through the phosphorylated IRS 

proteins, where it converts phosphatidylinositol 4,5-bisphosphate (PIP2) to 

phosphatidylinositol 3,4,5-trisphosphate (PIP3) on the inner leaflet of the plasma 

membrane [31, 32].  Proteins that contain pleckstrin homology (PH) domains may then 

associate with PIP3 at the membrane, facilitating signaling by bringing important 

molecules into close proximity.  For example, 3-phosphoinositide dependent protein 

kinase-1 (PDK1) activates AKT in this manner. 
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IGF-1 Signaling: Insulin Receptor Substrates 

In addition to the IGF-1R, the IRS proteins serve as adaptors for the IR and a 

number of cytokine receptors [33].  These proteins were originally identified and studied 

in the context of insulin signaling, and they serve to recruit downstream mediators of 

insulin action to the membrane receptor [34].  There are six known family members.  

IRS-1 and IRS-2 are expressed ubiquitously in humans [34]. The roles of IRS-1 and IRS-

2 are not entirely redundant, though both mediate insulin signaling and regulate 

sensitivity [35-37].  Knockout studies in mice have revealed a role for Irs-1 in total body 

growth, whereas Irs-2 is involved in maintenance of pancreatic beta cell function and 

brain development [35-38].  Although loss of either Irs-1 or Irs-2 causes insulin 

resistance, only the loss of Irs-2 leads to diabetes [33].   Irs-3 is expressed in rodents only, 

and Irs-4 is limited in its tissue distribution with knockout resulting only in mild 

phenotypes [33, 39-41].  Two additional family members, IRS-5 and IRS-6, are truncated 

at the C-terminus but do associate with the IR and IGF-1R through intact PH and PTB 

domains [42].  Their function is relatively unknown.    

 

IRS-1 and IRS-2 share considerable homology [43].  In particular, the PH domain 

closest to the N-terminus and the adjacent PTB domain are highly conserved between 

IRS-1 and IRS-2 [43] (Figure 1.1a).  IRS-2 also contains a unique kinase regulatory loop 

binding (KRLB) domain involved in receptor interaction, which may have inhibitory 

effects that modulate IRS-2 activity downstream of the IR [44] (Figure 1.1a).  The C-

terminal region of the IRS proteins contains a number of confirmed and putative tyrosine 
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and serine phosphorylation sites [43, 45] (Figure 1.1a).  Though many of these sites are 

conserved between IRS-1 and IRS-2, many are unique and are likely partially responsible 

for differences in signaling downstream of these two proteins [43].  The tyrosine 

phosphorylation sites that have been best studied mediate binding of the p85 subunit of 

PI3K, Grb2, and Shp2 [43] (Figure 1.1a).  IRS signaling is summarized in Figure 1.1b.  

Serine phosphorylation has been associated with suppressing activity of the IRS proteins 

[46, 47].  In the context of insulin signaling, specific serine residues on IRS-1 are 

phosphorylated by S6 Kinase (S6K) downstream of the active insulin receptor, leading to 

feedback inhibition of signaling [48].  The function of serine phosphorylation in IRS-2 

has not been as well studied at this time.   

 

IRS-1 and IRS-2 are of particular interest in breast cancer.  In human breast 

cancer, IRS-1 expression is associated with increased recurrence rates and more lymph 

node metastasis [49, 50]; and a certain polymorphism of IRS1 is associated with 

increased breast cancer risk in a subset of women [51].  IRS-2 has not been studied in this 

context.  In a mouse model of mammary tumorigenesis, overexpression of either Irs-1 or 

Irs-2 enhances tumorigenesis, supporting a common role for the IRS proteins in 

transformation [52].  However, the roles of IRS-1 and IRS-2 in malignant breast tumor 

cells differ quite markedly [43].  In vitro studies have revealed that IRS-1 primarily 

regulates signals for proliferation and survival, whereas signaling through IRS-2 

promotes motility, invasion, and glycolysis [53-61].  Restoration of IRS-1 in a model 

system lacking endogenous IRS protein expression enhances proliferation, but expression 
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of IRS-2 instead promotes motility [53].  In our own studies using the MMTV:PyV-MT 

mouse model of mammary tumorigenesis, metastasis is increased in the absence of Irs-1 

expression, when Irs-2 expression is elevated, and diminished in the absence of Irs-2 

expression [57, 58].  Tumor cells derived from Irs-2-/- mice exhibit decreased 

invasiveness and lower rates of glycolysis, while Irs-1-/- tumor cells, which signal through 

Irs-2 only, are highly invasive [58, 59].   Taken together, these results suggest that IRS-2 

is uniquely associated with tumor aggressiveness and disease progression, while IRS-1 

may actually have suppressive effects. 

 

IRS Divergent Roles: Differential Expression and Localization 

Despite considerable evidence for the divergent roles of IRS-1 and IRS-2 in breast 

cancer, a mechanistic explanation is lacking.  Differential regulation of the expression of 

these proteins could partially explain differences in function.  IRS-1 gene expression and 

activity is positively regulated by estrogen [62]; and in the nucleus, IRS-1 complexes 

with estrogen receptor α (ERα) at the estrogen response element (ERE) in other gene 

promoters to regulate gene expression [63, 64].  In contrast, IRS-2 is a primary 

progesterone response gene [65].  Progesterone induces IRS-2 mRNA, increases total 

protein levels, and enhances activation in response to IGF-1 [55, 65, 66].  However, IRS-

2 can also be regulated by other means, including hypoxia and epidermal growth factor 

(EGF) signaling [67, 68].  Some differences in IRS expression patterns have been 

reported and might also explain divergent roles in breast cancer [69].  In the mouse 

mammary gland, Irs-1 is expressed in only a subset of ductal epithelial cells while Irs-2 is 
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expressed homogenously throughout the duct and in the terminal end buds [70].  The 

study of normal ducts and malignant lesions in humans is still needed to elucidate IRS-1 

and IRS-2 expression patterns in the human mammary gland. 

 

IGF-1 Signaling: AKT 

 The IRS proteins are important mediators of the PI3K/AKT/mTOR axis 

downstream of the activated IGF-1R.  Signaling through the PI3K/AKT axis has been 

shown to play an important role in breast carcinoma cell survival, as well as to impact 

patient outcome, response to therapy, and drug resistance [71-76].  Human breast tumors 

tend to overexpress the serine and threonine kinase AKT compared to normal breast 

epithelium, and overexpression in MCF7 cells increases IGF-1-independent survival and 

proliferation, enhances responsiveness to IGF-1 stimulation, and suppresses induction of 

apoptosis by TNF and ultraviolet radiation [71-73].  Activation of AKT is associated with 

recurrence and distant metastasis, as well as resistance of MCF7 cells to 

chemotherapeutic drugs, including doxorubicin and the antiestrogens tamoxifen and 

fulvestrant [74-76]. 

 

 Activation of AKT is achieved through phosphorylation of two essential sites.  

The threonine 308 (T308) site in the activation loop is a PDK1 phosphorylation site [77-

79], whereas phosphorylation of serine 473 (S473) in the hydrophobic motif (HM) C-

terminal domain is dependent on the mTORC2 complex [80].  An additional 

phosphorylation site at threonine 450 (T450) in the turn motif is also mTORC2-
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dependent and stabilizes AKT by protecting the HM from dephosphorylation [81-83]. 

Phosphorylation on T308 by PDK1 is thought to result from association of the N-terminal 

PH domain with PIP3 on the inner leaflet of the plasma membrane [84].  However, the 

mechanism of AKT activation by mTORC2 has not yet been fully elucidated.  The 

mTORC2 complex is defined by the association of mTOR with rictor and also contains 

SIN1, mLST8, PRR5, and DEPTOR [85].  Other substrates of mTORC2 include the 

AGC kinases Protein Kinase C-α (PKC-α), a kinase involved in the regulation of the 

actin cytoskeleton, and Serum- and Glucocorticoid-induced Kinase 1 (SGK1), which 

regulates a number of processes including ion transport [83, 86].  In contrast to 

mTORC1, the mTORC2 complex is generally rapamycin-insensitive [87].  mTORC2 is 

activated downstream of PI3K, but the specific mechanism is unknown [88].  Limited 

evidence suggests that mTORC2 can be directly activated by association with ribosomes 

or through interaction with PIP3 [89, 90].  Although rictor has been shown to be directly 

phosphorylated on a threonine residue by S6K1, causing an upregulation in 

phosphorylation of the S473 site on AKT, this event is not associated with increased 

complex formation or kinase activity [91].   

 

There are three AKT isoforms with both overlapping and distinct functions [92].  

AKT1 mainly functions in cell growth, AKT2 in glucose metabolism, and AKT3 in 

neuronal development, though there is considerable overlap [92].  All three isoforms have 

been shown to cause cellular transformation upon overexpression, and all three have been 

implicated in breast cancer [71, 73, 93-95].  AKT1 expression is increased in breast 
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tumors compared to normal mammary epithelium [71].  AKT2 is both frequently mutated 

and overexpressed in breast cancer, particularly in the HER2/Neu positive subset [73, 

93]; and this isoform has been implicated in resistance to chemotherapy in several studies 

[96-98].  AKT3 mRNA is upregulated and protein activity enhanced in ER negative (ER-

) breast tumors [94].  

 

 AKT has a wide number of downstream targets which function in proliferation, 

metabolism, and survival [99].  AKT regulates proliferation through modulation of the 

cell cycle.  For example, phosphorylation of Glycogen Synthase Kinase 3 (GSK3) by 

AKT is inhibitory, relieving the inhibition of GSK3 on cyclin D1 and allowing the cell 

cycle to move forward [100].  Other targets include WEE1, MYT1, KIP1, and CIP1, 

inhibitors of the cell cycle which are themselves inhibited upon phosphorylation by AKT 

[101-104].  AKT also regulates metabolism through a number of pathways which 

regulate protein synthesis, glycogen synthesis, and glucose transport.  AKT can regulate 

protein synthesis by activating the nutrient sensing complex mTORC1 either directly or 

through inactivation of the inhibitory Tuberous Sclerosis Complex (TSC) proteins [105].  

mTORC1 may then activate 4E-BP1 to release eIF-4E for mRNA translation, as well as 

S6, another effector of protein synthesis, downstream of p70 S6K [105, 106].  AKT 

inhibits glycogen synthesis through inhibition of GSK3, which itself activates glycogen 

synthase [107].  Glucose transport is upregulated by activation of AS160, a Rab GTPase 

activating protein (RabGAP) involved in GLUT4 trafficking [108, 109].  Finally, AKT 
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promotes cell survival predominantly through the inhibitory phosphorylation of pro-

apoptotic proteins, including FOXO1, BIM, BAX, and BAD [110-113]. 

 

Microtubules in Cancer and Therapy 

 Due to the importance of microtubules in many cellular functions, most notably 

mitosis, they have been an attractive target for cancer chemotherapy.  The vinca 

alkaloids, which include the drugs vinblastine, vincristine, and vinorelbine, cause 

disaggregation of the microtubules through binding to tubulin dimer, resulting in 

disruption of replication and mitosis [114].  In contrast, the taxane drugs paclitaxel and 

docetaxel bind to microtubules causing a stabilization that prevents the dynamic changes 

necessary for cell cycle progression [114].  Both drug classes are associated with 

clinically significant myelosuppression and neuropathy, as well as drug resistance [114].   

Studies of the mechanisms by which these drugs exert killing effects on cells, as well the 

study of modes of resistance to these drugs, will be important in developing and 

modifying cancer treatments for better clinical outcomes. 

 

 The microtubule cytoskeleton is a dynamic structure made up of polymerized 

tubulin which functions in the maintenance of cell architecture, protein and vesicle 

trafficking, cell division, and movement [115].  Tubulin polymerization and 

depolymerization is in constant flux, with many tubules growing and others shrinking at 

any moment in time [116].  The steady state length and stability of microtubules is highly 

regulated, likely due to the drastic reorganization which must take place during mitosis, 
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and this varies by cell type and context [117].  Tubulin polymerization is dependent on 

binding of guanosine triphosphate (GTP) to the beta subunit, and hydrolysis to guanosine 

diphosphate (GDP) occurs simultaneously with polymerization [115, 118].  Binding of 

GDP has a destabilizing effect, contributing to depolymerization and the dynamic nature 

of microtubules [115].  

 

Though cancer treatment has focused on the role of the microtubules in mitosis, 

the microtubule cytoskeleton serves other important roles in cancer progression.  In 

particular, the dynamic nature of the microtubules is required to effect changes in cell 

morphology for the purposes of motility and invasion.  In a study of breast tumors, the 

microtubule associated protein (MAP) intracellular hyaluronic acid binding protein 

(IHABP) was strongly expressed in the tumor stroma, as well as in the carcinoma cells at 

the tumor edges, and this was associated with worse overall survival, suggesting that 

changes in microtubule stability may mediate tumor aggressiveness [119].   In MDA-

MB-231 cells, hypoxia induces a stabilization of the microtubules which is required for 

invasiveness mediated by α6β4 integrin [120].  The epithelial-to-mesenchymal transition 

(EMT) is associated with accumulation of detyrosinated tubulin at the invasive tumor 

front and the formation of microtentacles which aid in invasion of the vascular 

endothelium [121].   

 

 The microtubules may also impact the outcome of signaling.  Of relevance to 

IGF-1 and insulin signaling, many glycolytic enzymes are bound to the microtubules, and 
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changes in microtubule length and stability can modulate their activity [122].  Regarding 

glucose transport, the microtubules are targets of insulin signaling, as well as downstream 

effectors of GLUT4 trafficking [123].  It has been suggested that the microtubules are 

required to organize an insulin signaling complex and provide the surface necessary for 

the mobility of GLUT4 [124].  Similar mechanisms likely exist for IGF-1 signaling. 

 

Microtubule Associated Proteins 

 A variety of microtubule associated proteins bind to polymerized tubulin and 

modulate stability and dynamicity.  For example, the MAP2/tau family of proteins are 

known to stabilize microtubules, though they have diverse functions in signaling and 

transport [125].  Family members include MAP2 and tau which are mainly expressed in 

neurons and MAP4 which has a wider tissue distribution [125].  Other families of MAPs 

bind only the plus ends of microtubules.  For example, end-binding (EB) proteins track 

plus ends autonomously and serve to recruit other important proteins to the plus ends 

where they serve to regulate microtubule tip dynamics [126].  Another important group of 

proteins that interact with the microtubules are the motor proteins, which function in 

movement and transport of organelles along microtubules.  Dynein allows retrograde 

movement toward minus ends, whereas kinesins, of which there are several families, 

allow anterograde movement toward the tips [127, 128].  Motor proteins may be of 

particular interest in cancer due to their diverse roles in mitosis, vesicle trafficking, and 

cellular motility [129].  Dysregulation of mitosis may result in tumorigenesis, while 

vesicle trafficking may be involved in the altered metabolism underlying cancer cell 
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survival.  Motility facilitated in part by kinesins is required for tumor progression and 

metastasis. 

 

Rationale for Thesis Work 

 The IRS proteins mediate signals downstream of the IGF-1R to support breast 

tumorigenesis and disease progression.  Despite the considerable sequence homology 

shared between the two family members most frequently implicated in breast cancer, 

IRS-1 and IRS-2, the specific roles of these two proteins in breast carcinoma cell function 

differ greatly.  Differential subcellular localization may affect signaling outcomes 

through differing access to downstream effectors.  Though IRS-1 has been investigated in 

this context, little is known about the subcellular localization of IRS-2 in breast cancer.  

Such information has important clinical implications, as the IGF-1 signaling pathway is a 

common target of treatment, as well as a common suspect in the development of drug 

resistance.  Information about the mechanisms by which downstream signaling events are 

regulated could lead to the discovery of new drug targets.  For my thesis research, I 

sought to characterize the expression patterns of IRS-1 and IRS-2 in breast tumors and 

breast carcinoma cell lines and to examine the impact of their localization on downstream 

signaling, cell function, and patient outcomes in order to determine if the differing roles 

of IRS-1 and IRS-2 in breast cancer can be explained by differential subcellular 

localization.  
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ABSTRACT 
 

Recent studies have identified a role for insulin receptor substrate-2 (IRS-2) in 

promoting motility and metastasis in breast cancer.  However, no published studies to 

date have examined IRS-2 expression in human breast tumors.  We examined IRS-2 

expression by immunohistochemistry (IHC) in normal breast tissue, benign breast 

lesions, and malignant breast tumors from the institutional pathology archives and a 

tumor microarray from a separate institution.  Three distinct IRS-2 staining patterns were 

noted: diffusely cytoplasmic, punctate cytoplasmic, and localized to the cell membrane. 

The individual and pooled datasets were analyzed for associations of IRS-2 staining 

pattern with core clinical parameters and clinical outcomes.  Univariate analysis revealed 

a trend toward decreased overall survival (OS) with IRS-2 membrane staining, and this 

association became significant upon multivariate analysis (p = 0.01).  In progesterone 

receptor negative (PR-) tumors in particular, IRS-2 staining at the membrane correlated 

with significantly worse OS than other IRS-2 staining patterns (p < 0.001).  When PR 

status and IRS-2 staining pattern were evaluated in combination, PR- tumors with IRS-2 

at the membrane were associated with a significantly decreased OS when compared with 

all other combinations (p = 0.002).   Evaluation of IRS-2 staining patterns could 

potentially be used to identify patients with PR- tumors who would most benefit from 

aggressive treatment. 

 



18

INTRODUCTION 

Insulin receptor substrate-1 (IRS-1) and IRS-2 adaptor proteins are downstream 

signaling intermediates of several receptors that transmit signals to breast carcinoma cell 

function [6, 33, 130-135].  The most widely studied of these receptors is the insulin-like 

growth factor-1 receptor (IGF-1R), which has been implicated in breast cancer 

progression and response to therapy [6, 130-132].  Despite a high level of sequence 

homology, IRS-1 and IRS-2 play divergent roles in breast cancer [43].  Signaling through 

IRS-1 promotes breast carcinoma cell proliferation, whereas signals transmitted through 

IRS-2 regulate breast carcinoma cell motility and invasion, as well as glycolysis [53-60].   

Studies from our own lab have demonstrated that IRS-2 acts as a positive regulator of 

metastasis, while IRS-1 cannot compensate for this function and may negatively regulate 

metastasis [57, 58].  Taken together, the results from these studies support that IRS-1 and 

IRS-2 can markedly influence the outcome of signaling through their upstream receptors, 

and the expression of these proteins is likely to impact the biology of breast tumors. 

 

Although IRS-1 and IRS-2 are expressed relatively ubiquitously in human tissues, 

differences in their expression patterns have been reported [69].  In the developing mouse 

mammary gland, IRS-1 is expressed in a subset of luminal mammary epithelial cells in 

mature ducts and also in the body of the terminal end bud (TEB) [70].  In contrast, IRS-2 

is expressed homogeneously in the ductal luminal epithelial cells and also throughout the 

TEB, including the cap cell layer [70].   These differential expression patterns likely 

reflect differences in the regulatory mechanisms that control expression of their genes. 
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IRS-1 is an estrogen-regulated gene, and its expression correlates positively with estrogen 

receptor (ER) expression in human breast tumors [49, 62, 136-138].  IRS-1 expression is 

highest in more well-differentiated, ER-positive (ER+) cell lines and tumors, and its 

expression may decrease with disease progression, as expression or function of the ER is 

lost [139].  IRS-2 is a progesterone-responsive gene, and it is expressed at higher levels in 

more poorly differentiated, ER negative (ER-) breast carcinoma cells [57, 65].  Given that 

breast carcinoma cells that express IRS-2 often lack expression of the progesterone 

receptor (PR), alternative mechanisms are likely to play a more dominant role in 

regulating IRS-2 expression in breast tumors.  In this regard, epidermal growth factor 

(EGF) signaling and hypoxia positively regulate the expression of IRS-2 [67, 68]. 

 

In addition to differential regulation of IRS-1 and IRS-2 at the level of gene 

transcription, intracellular localization is also likely to play an important role in the 

divergent functions of these adaptor proteins.  Although many tumors exhibit diffuse, 

cytoplasmic expression of IRS-1, IRS-1 can also localize to the nucleus where it can 

interact with ER-α and modulate its transcriptional activity [63, 136, 139, 140].  An 

association with increased tamoxifen response and survival for patients with tumors 

expressing IRS-1 in the nucleus has been reported [140].  The authors of that study 

suggested that nuclear IRS-1 reflects an upregulation of ER signaling, which would 

render a tumor more sensitive to an ER antagonist such as tamoxifen [140].  To date, 

there are no published studies examining IRS-2 expression in human breast tumors.  In 

the current study, we evaluated IRS-2 expression in invasive ductal carcinomas and 
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identified distinct IRS-2 expression patterns that have significance for overall patient 

survival outcomes.  
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MATERIALS AND METHODS 

Tumor sections.  Formalin-fixed, paraffin-embedded tumor sections were obtained from 

the Pathology Department archives and tumor bank at the University of Massachusetts 

Medical School.  Institutional Review Board (IRB) approval was obtained for this study, 

and informed consent was obtained for all participating subjects.  The retrospective study 

population consisted of patients diagnosed between the years of 1997 and 2007 with 

breast cancer of any stage.  Complete data on tumor size, tumor grade, node status, and 

receptor status were available.  For many patients, follow-up data on recurrence-free 

survival, overall survival, metastases, therapy, and co-morbid conditions were also 

available.  Median follow-up was 69.5 months for recurrence-free survival and 72.5 

months for overall survival. 

 

Tissue Microarray.  A tissue microarray was constructed from 154 cases from the 

surgical pathology files at the University of Michigan Health System [141].   Three 0.6 

mm diameter cores were taken from each formalin-fixed, paraffin-embedded block.  

Cases which did not contain cores with tumor cells were excluded from analysis, 

resulting in 130 final cases.  The study was approved by the IRB, and informed consent 

was obtained for all subjects.  The retrospective study population consisted of patients 

diagnosed between the years of 1987 and 1991 with invasive breast carcinoma.  

Complete data on tumor size, tumor grade, node status, receptor status, and other 

clinicopathologic variables, as well as recurrence-free survival, overall survival, and 
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therapy were available.  Median follow-up time was 80.0 months for recurrence-free 

survival and 104.4 months for overall survival.  

 

Immunohistochemistry.  Immunohistochemical studies were performed on 5-um 

sections.  Archived blocks were stored in a climate-controlled environment.  All staining 

was performed immediately after sectioning to maintain maximum antigenicity for 

detection.  Tissue sections were deparaffinized and rehydrated, and antigen retrieval was 

carried out with 0.01M citrate buffer, pH 6.0, for slides to be stained for IRS-1, or 

0.001M EDTA, pH 8.0, for slides to be stained for IRS-2, and heating in a 770-W 

microwave oven for 14 minutes.  The slides were stained on the Dako Autostainer (Dako, 

Carpinteria, CA) using EnVision+ (Dako) staining reagents.  Tissue sections were 

blocked with Dual Endogenous Block for 10 minutes and then incubated for 30 minutes 

with either rabbit polyclonal IRS-1 (C20, Santa Cruz, Santa Cruz, CA) at a concentration 

of 1:400 or rabbit monoclonal IRS-2 (1849, Epitomics, Burlingame, CA) at a 

concentration of 1:400. Following a buffer wash, sections were incubated with the 

EnVision+ Dual Link detection reagent for 30 minutes and then treated with a solution of 

diaminobenzidine and hydrogen peroxide for 10 minutes to produce the visible brown 

pigment.  DAB Enhancer was used to enrich the final color. The tissue sections were 

counterstained with hematoxylin, dehydrated, and coverslipped using a permanent 

mounting medium.   
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 Sections were evaluated for staining pattern using the following criteria: 1) 

Diffuse staining was defined as even staining throughout the cytoplasm with no clear 

demarcation of cell borders; 2) Punctate staining was defined as clearly demarcated 

puncta of staining within the cytoplasm of each cell with or without diffuse background 

staining of the cytoplasm; 3) Membrane staining was defined as clear demarcation of cell 

borders by staining with or without diffuse background staining of the cytoplasm.  The 

individual assessing staining patterns was blinded to all prognostic and follow-up data.   

A second blinded individual assessed a subset of 30 cases for IRS-2 staining patterns with 

93.3% concordance.  In addition, a subset of the tumors was evaluated using a different 

antibody that recognizes IRS-2 to confirm the observed staining patterns.  The tissue 

microarray was evaluated using the same criteria that were used for the tumor sections.  

Three cores per patient were evaluated, and the membrane staining pattern was 

designated if it was contained in any of the three cores per patient sample. 

 

Imaging.  Stained tumor sections were viewed on an Olympus BX41 light microscope 

(Olympus, Center Valley, PA).  Photomicrographs were obtained using an Evolution 

MPColor camera (Media Cybernetics, Bethesda, MD). 

 

Immunoblotting. Cells were solubilized at 4°C in RIPA buffer, and cell extracts 

containing equivalent amounts of protein were resolved by SDS-PAGE and transferred to 

nitrocellulose filters.  For samples requiring cytoplasmic/nuclear fractionation, the NE-

PER kit (Pierce, Rockford, IL) was used according to the manufacturer’s instructions.    
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The filters were blocked for 1 h with a 50 mM Tris buffer, pH 7.5, containing 0.15 M 

NaCl, 0.05% Tween 20, and 5% (wt/vol) dry milk, incubated overnight at 4°C in the 

same buffer containing primary antibodies and then incubated for 1 h in blocking buffer 

containing peroxidase-conjugated secondary antibodies.  Proteins were detected by 

enhanced chemiluminescence (Pierce). The following antibodies were used for 

immunoblotting: IRS-1 (#C20, Santa Cruz), IRS-2 (#420293, Calbiochem, Gibbstown, 

NJ; #1849, Epitomics), GAPDH (#A300-642A, Bethyl, Montgomery, TX), hnRNP A1 

(#4B10, Santa Cruz), peroxidase-conjugated goat anti-rabbit IgG (Jackson, West Grove, 

PA), peroxidase-conjugated goat anti-mouse IgG (Jackson). 

 

Cell lines, shRNA, and transfection.  The MDA-MB-231 cell line was obtained from 

the ATCC Cell Biology Collection.  A lentiviral vector containing a small hairpin RNA 

(shRNA) targeting IRS-2 was obtained from Open Biosystems (Hunstville, AL). MDA-

MB-231 cells were infected with virus and stably expressing cells were selected by the 

addition of 2 ug/mL puromycin.  For IHC analysis, cells were pelleted and fixed in 10% 

zinc formalin before embedding in paraffin blocks. 

 

Statistical analysis. Overall survival was measured from the date of first cancer 

diagnosis to the date of death from any cause and was censored from the date of last 

follow-up for survivors.  Data for age, tumor size, node status, grade, ER status, PR 

status, HER2 status, and therapy were obtained as baseline variables.  Therapy was 

defined as any combination of chemotherapy, radiation, or tamoxifen.  As most samples 
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were surgical specimens, surgery was not included.  Overall survival was estimated by 

the Kaplan-Meier method and assessed by the use of log-rank test for univariate analysis. 

We used the Cox proportional-hazard model to assess and control the simultaneous 

contribution of baseline covariates in multivariable analyses.  First, we estimated the 

effect of IRS-2 within each individual dataset in the multivariable analysis.  We then 

combined the two datasets in a proportional hazards model that tested for heterogeneity 

in the effect estimates from the two datasets by the inclusion of multiplicative terms 

involving the study indicator.  The pooled results from the two datasets were presented if 

there was no significant heterogeneity of the effects for IRS-2 variables.  A two-sided p-

value of <0.05 was considered to indicate statistical significance. The REMARK criteria 

were used for this study [142]. 
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RESULTS 

IRS staining in normal breast tissue and benign breast disease 

Twenty cases from the pathology archives were reviewed to identify all normal 

and pathological findings.  Five cases were found to contain normal ducts.  In total, 22 

benign lesions were identified in the tissue set.  The tissue set was evaluated by IHC for 

IRS-1 and IRS-2 expression.  The IRS-1 antibody used in this study has been 

characterized in previous studies and stained pancreatic islet cells as expected [139, 143, 

144] (Figure 2.1c).  We evaluated the specificity of the IRS-2 antibody by staining MDA-

MB-231 cells that expressed an IRS-2-specific shRNA to suppress IRS-2 expression.  

Trypsinized cells were spun down and the cell pellets fixed in zinc formalin, embedded in 

paraffin, and stained using the same IHC protocol that was used for staining the tissue 

sections.  Parental MDA-MB-231 cells stained positive for IRS-2, and this staining was 

diminished significantly when IRS-2 expression was suppressed (Figure 2.1a).  The 

antibody also exhibited specificity for IRS-2 by immunoblot (Figure 2.1b).  As a positive 

control, pancreatic islets stained positive for IRS-2 using this antibody (Figure. 2.1c).   

 

All five cases containing normal ducts exhibited nuclear IRS-1 staining in the 

luminal epithelium (Figure 2.2).  4 of 5 cases also exhibited fine, punctate IRS-1 staining 

in the cytoplasm in the myoepithelial (basal) cells.  IRS-2 was expressed strongly in the 

myoepithelial cells of the normal ducts, and in 4 of 5 cases it was also expressed diffusely 

in the cytoplasm of the luminal epithelium (Figure 2.2).  However, one case exhibited 

punctate cytoplasmic staining for IRS-2 in the luminal epithelium, and one case exhibited 
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staining at the membrane in addition to diffuse cytoplasmic staining.  IRS-2 was not 

expressed in the nuclei of either the myoepithelial or luminal epithelial cells of normal 

ducts. 

 

 Twenty-two benign lesions were examined consisting of the following: 6 

fibroadenomas, 7 cases of ductal hyperplasia (6 of the usual type, 1 of the atypical type), 

7 cases of sclerosing adenosis, and 2 intraductal papillomas.  Representative images of 

each type are shown in Figure 2.2.  Two cases were negative altogether for IRS-1 

staining, including one case of sclerosing adenosis and the atypical ductal hyperplasia.  

The majority of the benign lesions (77.3%) demonstrated positive nuclear staining for 

IRS-1 (Figure 2.2), and 20 of 22 cases also exhibited punctate IRS-1 staining of the 

myoepithelial cells.  All of the benign lesions exhibited diffuse cytoplasmic IRS-2 

expression in the luminal epithelium, with two cases each demonstrating additional 

membrane or punctate staining of luminal cells. Strong cytoplasmic IRS-2 staining was 

also observed in the myoepithelial cells of the benign lesions. 

 

IRS expression patterns in invasive ductal carcinoma 

IRS expression was evaluated in 157 invasive ductal carcinoma tumor sections 

from the pathology archives. This tumor set consisted of the following: grade 1 (21 

tumors), grade 2 (39 tumors), and grade 3 (97 tumors).  Detailed clinical information was 

available for a subset of these tumors (128 tumors), and the clinical characteristics of this 

tumor subset are shown in Table 2.1 (Set 1).  Consistent with our findings in normal and 
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benign breast tissue and previously published results, IRS-1 was expressed in the nuclei 

and cytoplasm of invasive tumors (Figure 2.3a) [136, 139, 140].  IRS-2 was not 

expressed in the nucleus in any of the invasive tumors (Figure 2.3a).  Analysis of SUM-

159PT and MDA-MB-231 breast carcinoma cells after fractionation into cytoplasmic and 

nuclear fractions confirmed the nuclear localization patterns of IRS-1 and IRS-2 in the 

human tumors.  IRS-1 was localized in both the nucleus and cytoplasm in both cell lines, 

while IRS-2 was localized only in the cytoplasm (Figure 2.3b).  

 

 Upon further analysis of the IRS-2 staining in the invasive tumors, three distinct 

staining patterns were observed: diffuse cytoplasmic staining (diffuse; Figure 2.4a), 

punctate cytoplasmic staining (punctate; Figure 2.4b), and membrane staining 

(membrane; Figure 2.4c). While diffuse cytoplasmic staining was the dominant IRS-2 

staining pattern in normal ducts and benign lesions, punctate and membrane staining 

patterns increased in tumors.  This alteration in IRS-2 staining patterns during malignant 

progression was demonstrated in one case in which normal ducts, ductal carcinoma in 

situ (DCIS), and invasive tumor were all present.  IRS-2 staining of the normal ductal 

epithelium was diffusely cytoplasmic, whereas membrane staining was observed in the 

adjacent DCIS and invasive tumor (Figure 2.4j). 

 

 To confirm the IRS-2 staining patterns in a second tumor set, we evaluated a 

tissue microarray from a separate institution containing 130 new patient cases. The 

clinical characteristics of this tumor subset are summarized in Table 2.1 (Set 2). The 
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microarray was stained for IRS-2 by IHC and evaluated by the same individual who 

evaluated Set 1.  All three IRS-2 staining patterns were observed (Figure 2.4), although in 

different percentages than were observed for Set 1.  This may reflect the differences in 

the distribution of tumors by grade in the two individual datasets (Table 2.1). 

 

Correlations with clinical and pathological characteristics  

The two datasets were analyzed individually and then pooled for the association 

of IRS-2 staining patterns with survival outcomes.  Clinical parameters and overall 

survival trends for the pooled dataset are presented in Table 2.2.  Initially, survival data 

were analyzed for the tumor subset defined as Set 1 in Table 2.1, and correlations were 

drawn to IRS-2 staining pattern.  Although not statistically significant, a trend toward 

decreased overall survival with IRS-2 membrane staining was noted on the initial 

univariate analysis.  This trend became statistically significant in the follow-up 

multivariate analysis when the dataset was adjusted for confounders such as grade, tumor 

size, node status, receptor status, and therapy (HR = 4.61, 95%CI 1.35-15.71, p = 0.02) 

(Table 2.3 and Figure 2.5a).  No statistically significant associations with overall survival 

were observed for the diffuse or punctate staining patterns in either the univariate or 

multivariate analysis (Table 2.4, Figures 2.6a and 2.7a). In the analysis of recurrence-free 

survival, the effect estimates for IRS-2 staining patterns were similar in direction and 

magnitude as those found in the analysis of overall survival. 
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The effect of IRS-2 membrane pattern on overall survival was analyzed within 

each clinical parameter individually.  From this analysis, the only clinical parameter to 

show a significant association with IRS-2 localization at the membrane was PR negative 

(PR-) status.  Univariate analysis revealed that patients with tumors that were PR- and 

stained positive for IRS-2 at the membrane had significantly worse survival outcomes 

when compared with patients with tumors that were PR- but did not have IRS-2 

membrane staining (p = 0.04).  To examine further the association of IRS-2 membrane 

staining and PR expression with regard to patient survival, the data were analyzed by PR 

status together with IRS-2 membrane staining status.  As shown in Figure 2.5b, decreased 

survival was observed only in the PR- tumors that exhibited IRS-2 membrane staining (p 

= 0.03).  Expression of IRS-2 at the membrane did not confer decreased survival in 

patients with tumors that expressed PR (p = 0.40). 

 

Statistical analysis of the tissue microarray dataset (Set 2) produced results 

consistent with the findings from Set 1 (Table 2.3, Figure 2.5c,d).  Though not 

statistically significant, IRS-2 at the membrane nearly doubled risk of death.  Among PR- 

tumors, membrane staining conferred a statistically significant, nearly six-fold decrease 

in overall survival on multivariate analysis (p = 0.01).  When PR status and membrane 

staining were evaluated in combination, PR- tumors with membrane IRS-2 exhibited a 

decrease in overall survival compared to all other subtypes (p = 0.021), as we had 

observed for the original tumor dataset (Set 1). 
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The effect estimates for IRS-2 membrane staining were not statistically different 

between the two datasets: p-value from the heterogeneity test was 0.47 among all cases 

and 0.74 among PR- cases.  When Sets 1 and 2 were analyzed as a pooled dataset with a 

total tumor number of 258, the observed trends from the individual datasets became even 

stronger (Table 2.3, Figure 2.5e,f). On multivariate analysis of the pooled dataset, tumors 

with IRS-2 at the membrane exhibited a significant decrease in overall survival (p = 

0.01), and this trend was even more highly significant among PR- tumors (p < 0.001).  As 

with each independent set, PR negative status in combination with the IRS-2 membrane 

staining pattern was associated with a significant decrease in overall survival compared to 

all other subtypes in the pooled dataset (HR = 3.36, 95%CI 1.58-7.16, p = 0.002, as 

compared to PR-/memb-).  

 

The individual and pooled datasets were also analyzed for the effect of diffuse 

and punctate IRS-2 staining on overall survival of patients with PR- tumors (Table 2.4, 

Figures 2.6 and 2.7).  On multivariate analysis, the diffuse staining pattern improved 

survival in patients with PR- tumors in the individual and pooled datasets, although not to 

the extent that PR+ status improved survival.  These results were statistically significant 

only in Set 2 and the pooled dataset (p = 0.03 and 0.02, respectively).  In PR+ tumors, 

there was no further benefit of the diffuse staining pattern on overall survival rates.  A 

significant effect on survival of combined punctate staining and PR status was observed 

upon univariate analysis in the pooled dataset only (p = 0.02).  However, on multivariate 

analysis, this effect appears to be due to PR status alone. 
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DISCUSSION 

In this study, we present the first report of IRS-2 expression in normal human 

breast and breast tumors.  In the normal breast, IRS-2 is expressed strongly in the 

myoepithelial cell layer, with a lower level of diffuse cytoplasmic staining in the luminal 

epithelial cells.  This expression pattern persists in benign breast disease.  In invasive 

breast tumors, IRS-2 is localized in one of three staining patterns: diffusely cytoplasmic, 

punctate in the cytoplasm, and at the plasma membrane.  IRS-2 is absent from the 

nucleus in both normal and tumor tissue.  With regard to clinical relevance, IRS-2 

membrane staining is associated with decreased overall survival of breast cancer patients.  

In addition, IRS-2 membrane staining identifies a sub-population of patients with PR- 

tumors that have significantly worse overall survival outcomes.  Taken together, our 

results demonstrate that IRS-1 and IRS-2 have distinct intracellular localization patterns 

in human breast tumors, and they reveal a potential role for IRS-2 in the aggressive 

biology of PR- breast tumors. 

 

Our observation that IRS-1 and IRS-2 are expressed in distinct intracellular 

compartments reveals a potential mechanism for their divergent roles in breast cancer 

[54]. The targeting of IRS-1 and IRS-2 to unique intracellular compartments would 

localize the signals that are generated and determine access of these adaptor proteins to 

distinct subsets of downstream effectors.  As a result, different functional outcomes 

would occur.  In the nucleus, IRS-1 interacts with ER-α and regulates its transcriptional 

activity [63].  IRS-1 can also interact with β-catenin, the androgen receptor, and upstream 
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binding factor-1 to positively regulate target gene expression [145, 146].  Regulation of 

genes such as Cyclin D and c-Myc is likely to contribute to the IRS-1-dependent 

stimulation of proliferation [145, 147].  In contrast, IRS-2 is excluded from the nucleus 

and instead can be found in the cytoplasm or at the cell membrane in many invasive 

breast carcinomas. The localization of IRS-2 at or near the cell membrane would provide 

access to downstream effectors that are involved in regulating dynamic adhesive and 

cytoskeletal rearrangements that are required for cell movement [148].  Membrane 

recruitment of IRS-2 would also localize its signaling to regulate the surface expression 

of glucose transporter 1 (GLUT1) to promote aerobic glycolysis [59]. 

 

Our finding that membrane localization of IRS-2 is associated with poor 

prognosis supports the hypothesis that IRS-2-mediated signaling promotes tumor 

progression and metastasis [53, 56-58].  Upon ligand stimulation, the IRS proteins are 

recruited to upstream receptors where they are phosphorylated on tyrosine residues and 

initiate signaling [33].  We hypothesize that IRS-2 at the cell membrane is more likely to 

be tyrosine phosphorylated and actively signaling than the population of IRS-2 that is 

diffusely expressed in the cytoplasm because the upstream activating receptors are 

present at the cell membrane.  In support of this hypothesis, diffuse localization of IRS-2 

was associated with improved survival outcomes in patients with PR- tumors in our 

study.  The population of punctate IRS-2 may result from internalization of the adaptor 

proteins with surface receptors [149, 150].  However, the question of whether receptor 

internalization would enhance or attenuate signaling remains to be determined. 
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Generation of phospho-specific antibodies that can distinguish “active” from “in-active” 

IRS-2 will be necessary for future studies to confirm the functional status of the 

membrane, diffuse cytoplasmic, and punctate populations of IRS-2.  It will also be 

important to investigate the expression and activity of upstream regulatory receptors, 

such as the IGF-1R or insulin receptor, to establish their connection with IRS-2 

localization. 

 

For tumors exhibiting membrane staining, those that are PR- demonstrate the 

worst overall survival outcomes. Loss of PR expression during disease progression, 

especially following endocrine therapy, is associated with decreased survival [151-154].  

In general, loss of PR expression is indicative of a more aggressive tumor behavior.  To 

date, a biological explanation for the increased aggressiveness associated with PR- 

tumors has not been fully elucidated.  The loss of PR expression is thought to represent a 

down-regulation of ER signaling, a pathway that positively regulates IRS-1 [155].    

Previous work in our lab has shown that loss of IRS-1 results in upregulation of IRS-2 

expression and function and promotes tumor progression [54].  In PR- tumors, 

downregulation of IRS-1 function due to absent ER activity would enhance IRS-2 

signaling, leading to increased metastatic potential and risk of death.  The fact that we did 

not observe significant correlations between ER expression, IRS-2 membrane staining, 

and survival may be due to the fact that many of the ER+ tumors in our dataset were PR-, 

indicating that the ER pathway was not active [156].  Alternatively, loss of PR expression 

may be the result of enhanced IGF-1R/IRS-2 signaling through PI3K/Akt/mTOR, which 
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can downregulate PR expression independent of ER activity [157].  Further studies are 

warranted to determine if specific signaling pathways, particularly PI3K/Akt/mTOR, are 

preferentially activated in PR- tumors with IRS-2 membrane localization.  Interestingly, 

patients with PR+ tumors that express IRS-2 at the membrane did not exhibit 

significantly diminished survival outcomes in our combined dataset.  This finding 

supports the hypothesis that ER signaling, and potentially IRS-1, may be dominant with 

regard to suppressing the impact of IRS-2-mediated signaling.  Additional studies to 

address this question will be important to understand fully the cross-talk between these 

hormone and growth factor signaling pathways. 

 

Our study is the first report on the expression of IRS-2 in human breast cancer.  

The fact that the correlations of IRS-2 membrane localization and poor outcomes in PR- 

patients were observed in tumors from two separate institutions and in both whole tumor 

sections and a tissue array support the validity of these observations.  However, to 

confirm IRS-2 localization as a predictive biomarker in breast cancer, these results need 

to be carefully validated through evaluation of a much larger cohort of patients with 

longer follow-up times to increase the statistical power of these findings.  Ideally, a 

prospective study in which tumor biopsies could be taken before and after adjuvant 

treatment would better control for effects of therapy on IRS-2 localization.   We 

established rules to classify the IRS-2 staining pattern in our study to address the 

subjectivity of determining IRS-2 localization, and two independent investigators were in 

greater than 90% concordance with identifying the localization pattern.  Analysis of 
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additional cohorts of patients by independent investigators will be important to confirm 

that the identification of IRS-2 staining patterns is not investigator-dependent.  The 

molecular mechanisms underlying the present findings also require further investigation.  

The membrane IRS-2 staining pattern could represent activation of specific pathways, 

which promote aggressive tumor behavior.  Receptor activation upstream, as well as 

activation of downstream signaling pathways need to be evaluated and correlated to IRS-

2 expression patterns.  In vitro studies in cell lines are also needed to further explore the 

role of the localization of IRS-2 in breast carcinoma cell motility, invasion, and 

metabolism.   

 

In summary, we have identified an IRS-2 staining pattern that has prognostic 

significance for the overall survival of breast cancer patients.  This association was found 

to be even stronger for patients with PR- tumors.  Evaluation of IRS-2 staining patterns 

could potentially be used to identify patients with PR- tumors who would most benefit 

from aggressive treatment.  
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INTRODUCTION 

 The insulin receptor substrate (IRS) proteins are cytoplasmic adaptors for the 

insulin-like growth factor receptor (IGF-1R), and they play a major role in determining 

the cellular response to stimulation by IGF-1 [135, 158-160].  IGF-1 signaling has been 

implicated in many aspects of breast cancer including breast tumor initiation and 

progression, as well as resistance to therapy [6, 130-132].  High serum IGF-1 levels are 

associated with an increased risk of developing breast cancer, and breast cancer patients 

have higher levels than healthy controls [3, 4].  The receptor tends to be overexpressed 

and hyperactivated in breast carcinoma cells [5, 6]; and inhibition of the receptor 

suppresses cell adhesion, invasion, and metastasis and increases sensitivity to taxol 

treatment [7].  Notably, the IRS proteins facilitate the activation of PI3K downstream of 

IGF-1R, which signals through AKT and mTOR to promote survival, motility, protein 

synthesis, and glucose metabolism [31, 33]. 

 

IRS-1 and -2 are expressed ubiquitously in humans, including in the normal and 

malignant mammary gland epithelium [69].  However, despite considerable sequence 

homology and the ability to activate many of the same downstream signaling effectors, 

IRS-1 and IRS-2 have been shown to play divergent roles in breast cancer [43].  In vitro, 

studies to assess the function of the IRS proteins in breast carcinoma cells have revealed 

that signaling through IRS-1 primarily regulates proliferation and survival, whereas 

signaling through IRS-2 regulates motility, invasion, and glycolysis [53-61].  For 

example, in a model system lacking endogenous IRS protein expression, cells proliferate 
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in response to IGF-1 stimulation when IRS-1 expression is restored ectopically, whereas 

IGF-1 stimulates motility upon restoration of ectopic IRS-2 expression [53].  Treatment 

of non-invasive MCF-7 cells expressing progesterone receptor isoform B (PR-B) with 

progestin increases IRS-2 protein levels and activation, which enhances IGF-1-dependent 

migration [55, 65].  Furthermore, mouse mammary tumor cells derived from Irs-2-/- mice 

exhibit decreased invasiveness, as well as diminished lactic acid production and glucose 

uptake, two measures of glycolysis [58, 59].  In contrast, mouse mammary tumor cells 

lacking Irs-1, and signaling only through Irs-2, are highly invasive [58].  In vivo, 

overexpression of either IRS-1 or IRS-2 in the mouse mammary gland promotes 

mammary tumorigenesis [52].  However, metastasis is diminished in the absence of Irs-2 

expression and increased in the absence of Irs-1 expression [57, 58].  The inactivation of 

Irs-1 by serine phosphorylation in metastatic tumor cells suggests a potential role for Irs-

1 in suppressing metastasis [57]. 

 

 Differential localization patterns of IRS-1 and -2 in human tumors suggest a 

possible explanation for their divergent functions in breast cancer [161].  In normal breast 

tissue, ductal carcinoma in situ (DCIS), and invasive breast tumors, IRS-1 is primarily 

found in the nucleus, as well as expressed diffusely in the cytoplasm, frequently 

correlating with nuclear expression of estrogen receptor (ER), as estrogen is a known 

regulator of IRS-1 expression [49, 62, 63, 136-140, 161].  IRS-1 levels are modulated in 

MCF-7 xenografts in an estrogen-dependent manner [137].  In the nucleus, IRS-1 has 

been implicated in the regulation of estrogen response genes, through its interaction with 
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the ER at estrogen response elements (ERE) in gene promoters [63].  The interaction of 

IRS-1 with β-catenin and its regulation of genes such as c-Myc and Cyclin D1 likely 

contribute to its role in stimulating proliferation [145, 147].  In contrast to IRS-1, IRS-2 is 

not localized to the nucleus, but rather it is expressed either diffusely or in a punctate 

pattern in the cytoplasm or at the cell membrane [161].  The diffuse IRS-2 staining 

pattern is associated with better overall survival, whereas membrane localization of IRS-2 

in breast tumors is associated with decreased overall survival, particularly in PR negative 

(PR-) tumors [161].  Taken together, the human tumor staining data suggest that the 

subcellular localization of IRS-1 and IRS-2 may impact the tumor cell response to 

signaling through these adaptor proteins [161].  

 

 Few studies have investigated the specific subcellular localization of the IRS 

proteins in breast carcinoma cell lines or the impact of localization on their regulation and 

function.   Such studies are vital to uncover the molecular mechanisms underlying the 

divergent functions of these proteins.  In the present study, we assessed the subcellular 

localization of IRS-1 and IRS-2 using immunofluorescence microscopy.  We report that 

IRS-2, but not IRS-1, co-localizes with the microtubule cytoskeleton and demonstrate 

that this localization is required for activation of AKT downstream of IRS-2. 
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MATERIALS AND METHODS 

Cell lines, shRNA, siRNA, and transfection.  The MDA-MB-231, MDA-MB-435, and 

SUM159 cell lines were obtained from the ATCC Cell Biology Collection.  Wildtype 

(WT), Irs-1-/-, and Irs-2-/- mammary tumor cell lines were established from MMTV-PyV-

MT-derived tumors as previously described [58].  A lentiviral vector containing a small 

hairpin RNA (shRNA) targeting IRS-2 was obtained from Open Biosystems (Hunstville, 

AL).  MDA-MB-231 cells were infected with virus, and stably expressing cells were 

selected by the addition of 2 µg/ml puromycin.  Pools of 4 specific short interfering 

RNAs (siRNAs) targeting KIF2A, CLIP170, or luciferase were obtained from 

Dharmacon (Lafayette, CO).  MDA-MB-231 cells were transfected with siRNA diluted 

in Opti-MEM (Invitrogen, Grand Island, NY) using lipofectamine (Invitrogen) for 48 

hours.   

 

Immunofluorescence microscopy.  Subconfluent, adherent cells plated on glass 

coverslips were washed three times with Dulbecco’s PBS and fixed in 3.8% formaldehye 

in Dulbecco’s PBS with 0.5% Tween (PBST) for 1 hr.  Fixed cells were permeabilized in 

0.1% Triton X-100 in PBST for 15 minutes.  Permeabilized cells were blocked for 1 hr 

using 3% BSA in PBST.  Primary antibodies diluted in blocking buffer were added to 

cells and incubated at room temperature for 1 hr.  Secondary antibodies were diluted in 

the same buffer and cells were incubated at room temperature for an additional 30 

minutes.  Cells were washed three times with PBST after each antibody incubation.  After 

the final wash, nuclei were stained by incubating cells for 30 minutes with Draq5 
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(Biostatus, Leicestershire, UK) diluted in PBST.  Coverslips were then mounted on glass 

slides using Prolong Gold (Invitrogen) and allowed to dry overnight.  Edges of the 

coverslips were sealed with nailpolish and slides were viewed on a confocal microscope 

(Leica, Buffalo Grove, IL).  Antibodies used for immunofluorescence include IRS-1 

(#C20, Santa Cruz, Santa Cruz, CA), IRS-2 (#1849, Epitomics, Burlingame, CA), α-

tubulin (#T5168, Sigma-Aldrich, St. Louis, MO), and rictor (#A300-459A, Bethyl, 

Montgomery, TX). 

 

Microtubule co-sedimentation.  Confluent cells on 10 cm plates were washed twice 

with PBS and extracted for 20 minutes in 500 µL PEM (100 mM PIPES, pH 6.9, 2 mM 

EGTA, 1 mM magnesium chloride) containing 0.1% Triton X-100.  Debris was removed 

by centrifugation at 14,000 rpm for 10 minutes at 4oC.  Microtubules were polymerized 

by incubating 400 µl of lysate at 37oC for 1 hr with 10 µM taxol (Sigma-Aldrich), 1 mM 

GTP, and 1 mM DTT.  Lysates were also incubated on ice for 1 hr with 10 µM 

nocodazole (Sigma-Aldrich) and 1 mM DTT as a negative control for microtubule 

precipitation.  Following the incubations, polymerization reactions were layered over a 

20% sucrose/PEM cushion prewarmed to 37oC.  Microtubules were then pelleted at 

100,000 x g for 1 hr at 35oC by ultracentrifugation using a TLA-110 rotor (Beckman 

Coulter, Brea, CA).  Pellets were resuspended in 1X Laemmli sample buffer and boiled 

for 5 minutes.  The samples were resolved by SDS-PAGE and transferred to 

nitrocellulose membranes for immunoblot analysis. 

 



59

Immunoblotting.  Cells were solubilized at 4oC in RIPA lysis buffer (25 mM Tris, pH 

8.0, 0.1% sodium dodecyl sulfate, 1% sodium deoxycholate, 1% Nonidet P-40, 150 mM 

sodium chloride, 10 mM sodium fluoride, 1 mM sodium orthovanadate) containing 

protease inhibitors (Roche, Basel, Switzerland). Cell extracts containing equivalent 

amounts of protein were resolved by SDS-PAGE and transferred to nitrocellulose 

membranes. The membranes were blocked for 1 h with a 50 mM Tris buffer, pH 7.5, 

containing 0.15 M NaCl, 0.05% Tween 20, and 5% (wt/vol) dry milk or 5% bovine 

serum albumin (BSA), incubated overnight at 4oC in the same buffer containing primary 

antibodies and then incubated for 1 h in 5% blocking buffer with milk containing 

peroxidase-conjugated secondary antibodies. Proteins were detected by enhanced 

chemiluminescence (Biorad, Hercules, CA). The following antibodies were used for 

immunoblotting: IRS-1 (#C20, Santa Cruz), IRS-2 (#420293, Calbiochem, Gibbstown, 

NJ; #3089, Cell Signaling, Danvers, MA), p85 (#05-212, Millipore, Billerica, MA), IGF-

1Rβ (#3025, Cell Signaling), phospho-mTOR S2481 (#2974, Cell Signaling), phospho-

mTOR S2448 (#2971, Cell Signaling), mTOR (#2972, Cell Signaling), rictor (#A300-

459A, Bethyl), raptor (#2280, Cell Signaling), phospho-S6K (#9205, Cell Signaling), 

S6K (#9209, Cell Signaling), phospho-AKT S473 (#9271 and #4060, Cell Signaling), 

phospho-AKT T308 (#2965, Cell Signaling), AKT (#sc-8312, Santa Cruz), α-tubulin 

(#T5168, Sigma-Aldrich), phospho-MAPK (#9106, Cell Signaling), MAPK (#9102, Cell 

Signaling), CLIP170 (#sc-28325, Santa Cruz), KIF2A (#ab37005, abcam, Cambridge, 

MA), KIF3A (#ab11259, abcam), KIF11 (#NB500-181, Novus Biologicals, Littleton, 

CO), dynein (#sc-13524, Santa Cruz), GAPDH (#A300-642A, Bethyl), peroxidase-
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conjugated goat anti-rabbit IgG (Jackson, West Grove, PA), and peroxidase-conjugated 

goat anti-mouse IgG (Jackson). 

 

Immunoprecipitation. Cells were extracted using either a 20 mM Tris, pH 7.4 buffer 

containing 1% Nonidet P-40, 136.9 mM sodium chloride, 10% glycerol, and 10 mM 

sodium fluoride (NP-40 buffer) or a 40 mM HEPES, pH 7.5 buffer containing 120 mM 

sodium chloride, 1 mM EDTA, 0.3% CHAPS, and 50 mM sodium fluoride (CHAPS 

buffer).  Both buffers also contained 1 mM sodium orthovanadate and protease inhibitors 

(Roche).  Aliquots of cell extracts containing equivalent amounts of protein were 

incubated overnight at 4°C with antibodies and protein A sepharose beads (Amersham 

Biosciences, Piscataway, NJ) with constant agitation.  The beads were washed three 

times in extraction buffer.  Laemmli sample buffer was added to the samples, which were 

then incubated at 95°C for 15 minutes.  Immune complexes were resolved by SDS-

PAGE, transferred to nitrocellulose membranes, and immunoblotted as described.  The 

following antibodies were used for immunoprecipitation: IRS-2 (Bethyl Custom 

Immunochemistry Services), IRS-1 (#C20, Santa Cruz), IGF-1R (#3025, Cell Signaling), 

CLIP170 (#sc-28325, Santa Cruz), rabbit IgG (#sc-2027, Santa Cruz), and mouse IgG2b 

(#ab18421, abcam). 

 

Permeabilization assay.  Cells grown to subconfluency on coverslips were washed once 

with 1x PBS and then extracted for 5 seconds in a membrane/soluble extraction buffer 

(0.2% Triton X-100, 100 mM KCl, 200 mM sucrose, 10 mM EGTA, 2 mM magnesium 
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chloride, 200 µM sodium vanadate, 1 mM PMSF, and 10 mM Pipes, pH 6.8) [162].  

Following extraction, cells were immediately fixed in 3.8% formaldehyde in 1X 

Dulbecco’s PBS containing 0.1% Tween.   Immunofluorescent staining was performed as 

described. 

 

Drug treatment and stimulation.  Cells were either serum starved overnight or for 4 

hours in plain medium.  Drugs were added to the medium for the specified time periods 

prior to stimulation with IGF-1.  Nocodazole was used at a concentration of 1 µM for 30 

minutes, vinblastine (Sigma-Aldrich) at a concentration of 18 nM for 30 minutes, and 

taxol at a concentration of 20 µM for 2 hours.  The mouse tumor cell lines were treated 

with nocodazole at a concentration of 10 µM for 1 hour.  All drugs were obtained from 

Sigma-Aldrich (St. Louis, MO).  At the end of the treatment period, cells were stimulated 

for 5 minutes with 20 ng/ml human recombinant IGF-1 (R&D Systems, Minneapolis, 

MN) prior to lysis. 

 

Cell cycle analysis. For analysis of DNA content, adherent cells were collected by 

trypsinization and combined with non-adherent cells from the culture medium.  After 

centrifugation, the cell pellet was washed once in cold PBS, and the cells were then fixed 

in 70% ethanol and stored overnight at -20oC.  The fixed cells were washed once in PBS 

and then resuspended in PBS containing 0.1% Triton-X-100, 0.1 mM EDTA, 0.05 mg/ml 

RNAse A (50 U/mg) and 50 µg/ml propidium iodide.  The cells were analyzed by flow 
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cytometry using a Becton Dickinson (Franklin Lakes, NJ) FACSCalibur after a 1 hour 

incubation at room temperature. 
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RESULTS 

IRS-1 and IRS-2 have distinct intracellular localizations 

To investigate the localization of IRS-1 and IRS-2 in human breast carcinoma 

cells, SUM159 and MDA-MB-231 cells treated with or without IGF-1 stimulation were 

evaluated by immunofluorescence microscopy.  IRS-1 exhibited both cytoplasmic and 

nuclear localization, whereas IRS-2 was exclusively localized within the cytoplasmic 

compartment, similar to the distribution we had observed previously in human tumors.  

Although IRS-1 was diffusely distributed in a punctate manner throughout the cytoplasm, 

IRS-2 staining exhibited a more organized pattern, reminiscent of microtubules.  The 

subcellular localization of IRS-1 and IRS-2 were investigated further by costaining the 

cells with antibodies that recognize tubulin (Figure 3.1a-h).  IRS-2 showed a considerable 

overlap with tubulin staining and was closely associated with microtubules when viewed 

under higher magnification (Figure 3.1a-h).  In contrast, IRS-1 did not show any co-

localization with tubulin (Figure 3.1i). 

 

MDA-MB-231 cells were treated with drugs that alter microtubule stability to 

determine if the localization of IRS-2 is dependent upon the microtubule cytoskeleton.  

Taxol (paclitaxel), a taxane drug commonly used in cancer treatment, stabilizes 

microtubules, whereas nocodazole causes depolymerization of the tubulin cytoskeleton. 

Cells were evaluated for IRS-2 localization following short-term treatment with each 

drug.  Taxol treatment increased the fluorescence detection of IRS-2, although total IRS-

2 levels were unchanged, as evidenced by immunoblot (Figure 3.2a,b).  IRS-2 co-
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localization with tubulin remained after treatment with taxol.  In contrast, treatment with 

nocodazole resulted in a redistribution of IRS-2 in the cytoplasm and a decrease in 

fluorescence detection, despite unchanged total protein levels (Figure 3.2a,b).  These 

changes in the detection of IRS-2 after treatment with taxol and nocodazole suggest that 

the interaction of IRS-2 with microtubules may alter antibody recognition.  Treatment of 

cells with taxol rendered IRS-2 resistant to solubilization by detergent (Triton X-100), 

supporting a direct association of IRS-2 with microtubules, rather than an indirect 

association through vesicle binding (Figure 3.2c).  The ability of IRS-2 to interact with 

the microtubule cytoskeleton was demonstrated further by microtubule co-sedimentation.  

Upon taxol-mediated polymerization of tubulin in MDA-MB-231 cell lysates, IRS-2 was 

detected in the microtubule pellet after high speed centrifugation (Figure 3.2d). 

 

IGF-1R signaling is dependent upon the microtubule cytoskeleton. 

To investigate the role of the microtubule cytoskeleton in IGF-1 signaling, MDA-

MB-231 cells were stimulated with IGF-1 after treatment with taxol or nocodazole to 

stabilize or disrupt microtubules, respectively.  IGF-1 signaling was measured by 

assessing the phosphorylation status of downstream signaling effectors by immunoblot 

analysis of total cell lysates.  Although taxol treatment had no affect on AKT activation 

(Figure 3.3a), treatment with nocodazole significantly reduced phosphorylation of AKT 

at both threonine 308 (T308) and serine 473 (S473) (Figure 3.3b).  In contrast, MAPK 

and S6K activation were not affected by nocodazole treatment (Figure 3.3c). A similar 

inhibition of AKT activation was observed when cells were treated with vinblastine, a 
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second drug that also disrupts microtubules and is frequently used in chemotherapy 

regimens (Figure 3.3d) [114].  Taken together, these results suggest that an intact 

microtubule cytoskeleton is required for activation of AKT by IGF-1 signaling.  The 

absence of an effect of nocodazole on MAPK and S6K supports that the inhibition of 

AKT activation is not due to a global downregulation of kinase activation in these cells, 

but rather a specific effect on the AKT axis.   

 

To investigate the mechanism by which nocodazole disrupts AKT activation, 

phosphorylation of the IGF-1R and IRS proteins and IRS/PI3K association were 

examined.  Treatment with nocodazole had no effect on IRS-1 or -2 tyrosine 

phosphorylation or association with the p85 regulatory subunit of PI3K (Figure 3.4).  

However, phosphorylation of the IGF-1R β-subunit was increased by IGF-1 following 

nocodazole treatment (Figure 3.4).  The IGF-1R is internalized upon activation and either 

recycled to the cell surface or targeted for lysosomal degradation [150, 163, 164].  This 

process likely requires trafficking along microtubules.  Upon dissolution of the 

cytoskeleton by nocodazole treatment and subsequent loss of this receptor trafficking 

pathway, the activated receptor may accumulate at the cell surface or in early endosomes, 

resulting in sustained activation.  Taken together, these results suggest that nocodazole 

does not disrupt activation of AKT upstream at the level of receptor activation or PI3K 

recruitment to the IRS proteins. 

 



71



72

 mTOR complex 2 (mTORC2), comprised of several proteins including mTOR 

and rictor, phosphorylates AKT on S473.  Phosphorylation of the mTORC-2-associated 

site serine 2481 (S2481) on mTOR was used as a readout for activation of this complex 

[165].  Nocodazole treatment abolished the IGF-1-dependent increase in phosphorylation 

at this site (Figure 3.5a), suggesting that an intact microtubule cytoskeleton is required 

for IGF-1-stimulated mTORC2 activation and subsequent phosphorylation of AKT.  Of 

note, the mTORC1-dependent site serine 2448 (S2448) on mTOR was unaffected by 

nocodazole treatment (Figure 3.5a), consistent with maintenance of S6K activity (Figure 

3.3c) following microtubule disruption and suggesting an mTORC2-specific effect of 

nocodazole in these cells [165].  We hypothesized that mTORC2 activity might be 

disrupted by nocodazole due to an association of the complex with microtubules, which is 

required for proper activation and function.  Indeed, both mTOR and rictor co-

sedimented with taxol-stabilized microtubules in MDA-MB-231 cell lysates (Figure 

3.5b).  Consistent with this result, immunofluorescence studies revealed a partial 

localization of rictor along microtubules in MDA-MB-231 (not shown) and SUM159 

cells (Figure 3.5c-f). 

 

IRS-2, but not IRS-1, requires the microtubule cytoskeleton to activate AKT 

MDA-MB-231 cells express both IRS-1 and IRS-2 but signal preferentially 

through IRS-2 in response to IGF-1R activation.  To determine if there is a selective role 

for the microtubule cytoskeleton in IRS-1 or IRS-2 mediated signaling, mammary tumor 

cells derived from PyMT:WT, PyMT:Irs-1-/- or PyMT:Irs-2-/- mice were treated with 
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nocodazole and stimulated with IGF-1.  WT cells demonstrated a modest reduction in 

AKT activation after treatment with nocodazole (Figure 3.6a).   PyMT:Irs-1-/- cells, 

which signal exclusively through Irs-2, exhibited a significant decrease in IGF-1-

dependent AKT activation following treatment with nocodazole, similar to the reduction 

observed in MDA-MB-231 cells (Figure 3.6a).   In contrast, AKT activation increased 

significantly in PyMT:Irs-2-/- cells in response to IGF-1 stimulation following nocodazole 

treatment (Figure 3.6a).   These results suggest that only IGF-1 signaling through IRS-2 

is dependent on an intact microtubule cytoskeleton.  Signaling to AKT through IRS-1 is 

not microtubule-dependent. 

 

The selective role of IRS-2 in the sensitivity of cells to microtubule disruption 

was explored further by knocking down IRS-2 in MDA-MB-231 cells through stable 

transfection with a specific shRNA.  The knockdown efficiency achieved in these cells 

was ~80%.  Total AKT activation in response to IGF-1 stimulation was reduced 

markedly in the shIRS-2 cells compared to parental cells, consistent with an IRS-2 

dependence for IGF-1 signaling in this cell line (Figure 3.6b).  Treatment of the shIRS-2 

cells with nocodazole caused an additional small reduction in AKT activation, suggesting 

that the remaining IRS-2 present in the cell (~20%) is still signaling to AKT through a 

microtubule-dependent mechanism (Figure 3.6b).  mTORC2 activation was also 

evaluated by measuring S2481 phosphorylation.  Stimulation with IGF-1 increased 

phosphorylation at this site two-fold over basal levels in MDA-MB-231 cells (Figure 

3.6b).  Treatment of these cells with nocodazole abolished this IGF-1-induced
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 upregulation of S2481 (Figure 3.6b).  When IRS-2 expression was suppressed, S2481 

was not increased by IGF-1 stimulation, even in the presence of an intact microtubule 

cytoskeleton, suggesting that both IRS-2 and intact microtubules are required for 

mTORC2 activation downstream of IGF-1 in these cells (Figure 3.6b). 

 

To investigate further the connection between IRS-2 and microtubule dependent 

AKT activation, a panel of cell lines differing in IRS status was tested for their response 

to nocodazole.  The results are summarized in Table 3.1.  Cell lines that signal 

predominantly through IRS-2, due either to lack of IRS-1 expression or diminished IRS-1 

activation in response to IGF-1, responded to treatment with nocodazole by 

downregulating AKT and mTORC2 activity (Table 3.1).  These cell lines, MDA-MB-

231, MDA-MB-435, and PyMT:Irs-1-/-, also exhibited greater morphological changes in 

response to nocodazole treatment (Table 3.1, Figure 3.7).  In contrast, AKT and 

mTORC2 activity remained at or above basal levels following nocodazole treatment in 

cell lines that signal predominantly through other means, including SUM159, PyMT:Irs-

2-/-, and PyMT:WT (Table 3.1).  These same cell lines also maintained a more normal 

overall cell morphology, despite solubilization of the microtubule cytoskeleton (Table 

3.1, Figure 3.7). 

 

Mechanism of IRS-2 interaction with microtubules   

One mechanism by which IRS-2 could associate with the microtubules is through 

an interaction with molecular motor proteins that transport organelles, protein complexes 
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and mRNAs to specific destinations within the cell.  The kinesin family of motor proteins 

mediates transport primarily in an anterograde direction from the minus to the fast 

growing plus end of the microtubule, whereas dynein mediates transport in the retrograde 

direction.   There are 45 kinesin superfamily members (KIFs) in mice and humans, all of 

which share a highly conserved motor domain but have unique “cargo-binding” domains 

that determine their specific interactions and transport of cargo [129].   To investigate the 

possibility that IRS-2 interacts with microtubules indirectly through a molecular motor 

protein, we assessed its ability to interact with either dynein or specific KIFs that had 

been previously implicated in either insulin/IGF-1 signaling (KIF3A) or in cancer 

(KIF2A and KIF11) [166-170].  KIF2A co-immunoprecipitated with IRS-2 from MDA-

MB-231 cell extracts, and this interaction was confirmed in PyMT mouse mammary 

tumor cells (Figure 3.8a,b).  No interaction of IRS-2 with KIF3A, KIF11, or dynein was 

detected (Figure 3.8a).   The association of IRS-1 with the same motor proteins was also 

examined to determine if a unique potential for IRS-2 to traffic along microtubules might 

be responsible for the divergent roles of these two adaptor proteins in breast cancer.  

Indeed, KIF2A and the other motor proteins tested did not co-immunoprecipitate with 

IRS-1 (Figure 3.8c).   To determine if the association of IRS-2 with KIF2A is required for 

the stimulation of AKT activation by IGF-1, KIF2A expression was suppressed using 

siRNA, which resulted in a knockdown efficiency of ~80%.  When KIF2A expression 

was suppressed, AKT phosphorylation at the S473 site was decreased by 20-30% (Figure 

3.8d).  In contrast, suppression of the plus end binding protein CLIP-170, which also 

interacts with IRS-2, was shown not to affect AKT activation (Figure 3.8e,f). 



82



83



84

IRS-2 determines cellular responses to microtubule disruption  

The role of IRS-2 in mediating functional outcomes associated with microtubule 

disruption was assessed by cell cycle analysis of parental and shIRS-2 MDA-MB-231 

cells after treatment with nocodazole or vinblastine for 48 hours.   A significant increase 

in the sub-G1 population occurred in response to both nocodazole and vinblastine 

treatment, consistent with an induction of apoptosis (Figure 3.9a,b).  In contrast, after 48 

hrs of treatment, shIRS-2 cells did not die, but rather underwent a G2/M arrest (Figure 

3.9a-d).  These results suggest that cells that signal through IRS-2 may be more 

susceptible to drugs which depolymerize microtubules and respond by undergoing 

apoptosis, consistent with downregulation of the pro-survival protein AKT.  Cells that 

must signal to AKT through other means, as in the IRS-2 knockdown cells, are less 

susceptible to death from these drugs because they are capable of maintaining AKT 

activity in the absence of intact microtubules. 
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DISCUSSION 

 We report in the current study that IRS-2, but not IRS-1, co-localizes with the 

microtubule cytoskeleton in breast carcinoma cell lines.  Depolymerization of 

microtubules by nocodazole or vinblastine disrupts the localization pattern of IRS-2, 

whereas stabilization with taxol preserves its localization, and enhances the resistance of 

IRS-2 to solubilization by detergent.  Disruption of the microtubule cytoskeleton inhibits 

AKT activation in cells that signal preferentially through IRS-2, without affecting 

activation of IGF-1R, PI3K, or IRS-2 upstream, nor signaling through S6K and MAPK, 

suggesting that an intact microtubule cytoskeleton is required specifically for IRS-2-

dependent AKT activation.  Intact microtubules are also required for mTORC2 activation 

in response to IGF-1.  IRS-2, but not IRS-1, associates with the kinesin family member 

KIF2A, and this interaction is important for the activation of AKT through IRS-2, as 

suppression of KIF2A expression decreased IGF-1-dependent AKT activation.  

Treatment of parental MDA-MB-231 cells that express IRS-2 with either nocodazole or 

vinblastine resulted in significant levels of cell death.  However, cells with reduced IRS-2 

expression underwent G2/M arrest instead of cell death, suggesting that the expression of 

IRS-2 determines the cellular response to microtubule-disrupting drugs.   The interaction 

of IRS-2, but not IRS-1, with KIF2A and the association of IRS-2 with the microtubule 

cytoskeleton provides a mechanism by which signaling downstream of these adaptor 

proteins can be targeted to distinct intracellular compartments to promote divergent cell 

functions in breast cancer. 
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 We have demonstrated that an intact microtubule cytoskeleton is required for 

activation of AKT downstream of IRS-2.  The interaction of IRS-2 with microtubules 

suggests two possible mechanisms for its action.  Microtubules may act as a scaffold for 

an IGF-1R/IRS-2 signaling complex, bringing together kinases and their substrates in 

close proximity.  Such a mechanism has been suggested previously for IRS-1 and insulin 

receptor signaling [124].  Alternatively, but possibly not mutually exclusive, the ability of 

IRS-2 to traffic along the microtubules may be required for proper activation of AKT.  

Our data suggest that an intact microtubule cytoskeleton is required for the trafficking of 

the internalized IGF-1R as microtubule disruption results in an accumulation of the 

activated receptor, likely because it is no longer being targeted for a degradation 

pathway.  Internalization may allow trafficking of the activated receptor along the 

microtubules to a subcellular location where signaling to activate AKT can occur, and 

this is regulated by its interaction with IRS-2.  Our finding that IRS-2 associates with the 

kinesin KIF2A suggests a potential mechanism for the role of the microtubules in 

supporting signaling through IRS-2.  Kinesins generally function in anterograde transport 

of protein complexes and vesicles, suggesting an involvement in trafficking IRS-2 toward 

the plasma membrane where it can interact with IGF-1R and become phosphorylated.  

However, the kinesin-13 family to which KIF2A belongs is also characterized by tubulin 

depolymerizing activity [129, 171].  Depolymerization of tubulin at microtubule plus 

ends might allow for limited retrograde movement to bring two vesicles together or to 

“pull” a vesicle containing the internalized receptor into the cell.  Another kinesin, KIF3, 

has been shown to facilitate the translocation of endosomal vesicles containing GLUT4 to 
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the cell surface for exocytosis in response to insulin; and in preadipocytes, KIF3A 

facilitates recruitment and activation of IRS-1 to the microtubules at the basal body of the 

primary cilium to promote activation of AKT [166, 167].  If KIF2A has a similar role in 

IGF-1R/IRS-2 signaling, the microtubules are likely serving both purposes, as a scaffold 

to organize signaling complexes and as a pathway for trafficking of signaling components 

to specific subcellular locations. 

 

The association of IRS-2 with microtubules and the kinesin KIF2A suggests a 

mechanism underlying the differing functions of IRS-1 and IRS-2 in breast carcinoma 

cells.  Whereas IRS-2 is closely associated with the cytoskeleton and appears to require 

intact microtubules for proper signaling, IRS-1 does not co-localize with tubulin or 

interact with KIF2A, consistent with a previous report that IRS-1 function and 

localization is not microtubule-dependent [172].  Localization of these two proteins to 

distinct subcellular compartments in breast carcinoma cells could impact access to 

substrates and signaling outcomes, explaining their divergent roles in breast cancer.  

Specifically, the unique association of IRS-2 with microtubules could explain this 

protein’s ability to support signaling for motility, metabolism, and tumor progression.  

For example, motility and invasion require a dynamic cytoskeleton, which is mediated in 

part by microtubules and microtubule-associated proteins.  In addition to interacting with 

KIF2A, we discovered that IRS-2 also associates with CLIP-170, a plus-end binding 

protein involved in tip dynamics.  CLIP170 has been shown to regulate invasion in 

MDA-MB-231 cells through interactions with Rac1 [173].  With regard to metabolism, 
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we have previously reported that trafficking of glucose transporter 1 (GLUT1) to the cell 

surface is dependent on IRS-2 and is regulated by PI3K/mTor signaling [59].  GLUT4 

translocation to the membrane in adipocytes has been shown to be dependent on intact 

microtubules, suggesting that IRS-2 may regulate GLUT1 translocation by directing 

movement of vesicles along microtubules to the plasma membrane [59, 174].  Future 

studies will be needed to explore the role of microtubule integrity and association with 

IRS-2 on invasion and motility, glycolysis, and GLUT1 trafficking. 

 

In our model system, IGF-1-induced phosphorylation of mTOR at the mTORC2-

associated site S2481 was regulated by both IRS-2 and microtubule integrity.  Consistent 

with this finding, the mTORC2 component rictor partially localizes along microtubules.  

To our knowledge, regulation of mTORC2 activity by either IRS-2 or the microtubules is 

a novel finding.  Our study of a panel of breast carcinoma and mammary tumor cell lines 

suggests that this regulation is likely cell type dependent, as this phenomenon was only 

detected in the cell lines that respond to nocodazole by downregulating AKT and that 

have demonstrated a preference for IRS-2 in mediating signaling downstream of IGF-1R 

(Table 3.1).  Further studies will be needed to confirm that S2481 phosphorylation on 

mTOR does in fact define activation of mTORC2 in this system.   In addition, the effect 

of microtubule disruption on the activation of other downstream effectors of mTORC2, 

such as the AGC kinases Serum- and Glucocorticoid-induced Protein Kinase 1 (SGK1) 

and Protein Kinase C (PKC) should be assessed to understand the full impact of IRS-

2/microtubule-dependent signaling in breast carcinoma cells [83, 86]. 
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The results of our study have implications for the use of microtubule-disrupting 

drugs, such as vinblastine, for the treatment of breast cancer.  Our data indicate that 

signaling through IRS-2 is associated with tumor cell response to these drugs, whereas 

signaling through alternate pathways, such as through IRS-1, is independent of 

microtubules and unaffected by these chemotherapeutic drugs.  These differential 

responses raise the possibility that IRS-2 expression or activation could be used as a 

biomarker to identify patients for treatment with these drugs.   We reported previously 

that expression of IRS-2 at the cell membrane is associated with a statistically significant 

decrease in overall survival in breast cancer patients [161].  We hypothesize that IRS-2 at 

the cell membrane is indicative of active signaling, and patients with this staining pattern 

may be more sensitive to microtubule-disrupting drugs than patients without active IRS-2 

signaling.    In order to test this hypothesis, a large cohort of patients, as well as accurate 

treatment and recurrence information, would be required in order to draw the appropriate 

correlations with statistical significance.  The results of our study are consistent with the 

work of other groups that suggest that AKT plays a central role in the tumor cell response 

to microtubule-disrupting drugs [175-178].  Our data reveal that the mechanism by which 

a tumor cell upregulates AKT activity will also influence response to these drugs.  

Finally, there is evidence to support that the expression of KIF2A, which has microtubule 

depolymerizing activity, may influence tumor cell response to microtubule disrupting 

drugs [179].  Therefore, the interaction of IRS-2 with KIF2A may also contribute to its 

impact on sensitivity to these drugs, and assessing KIF2A expression may also aid in the 

selection of patients for treatment. 
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CHAPTER IV 
 
 
 

Discussion 
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Summary of Findings 

 I have examined the localization of insulin receptor substrate-2 (IRS-2) in breast 

cancer and its relevance to downstream signaling, response to therapy, and patient 

outcomes.  In human breast tumors, IRS-2 exhibited three distinct staining patterns: 

diffuse cytoplasmic, punctate cytoplasmic, and at the plasma membrane [161].  The 

plasma membrane staining pattern was associated significantly with poor overall 

survival, particularly when examined in combination with progesterone receptor (PR) 

negativity [161].  In contrast, patients whose tumors exhibited diffuse cytoplasmic 

staining trended toward improved survival outcomes [161].  In human breast carcinoma 

cell lines, IRS-2 was found specifically to associate with the microtubules.  Upon 

disruption of the microtubule cytoskeleton, insulin-like growth factor-1- (IGF-1)-induced 

activation of AKT and mTORC2 was suppressed, suggesting that the microtubules are 

required for signaling downstream of IRS-2.  In support of a trafficking mechanism, IRS-

2 was found to interact with the microtubule motor protein KIF2A, whose suppression 

results in a partial inhibition of AKT phosphorylation.  Cell cycle analysis also revealed 

that suppression of IRS-2 in the nocodazole-sensitive MDA-MB-231 cell line resulted in 

a relative resistance to drug-induced cell death.  Taken together, my data suggest that 

signaling through IRS-2 to AKT is microtubule-dependent and denotes sensitivity to 

microtubule disruption. 
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Explanation for Divergent Roles of IRS-1 and IRS-2 

 The results of my studies have uncovered an explanation for the divergent roles of 

IRS-1 and IRS-2 in breast cancer despite sequence homology and similar activities.  

Differential localization of IRS-1 and IRS-2 appears to direct differential signaling.  

Specifically, signaling to AKT and mTOR through IRS-2 is microtubule-dependent, 

whereas signaling through IRS-1 is not.  Disruption of the association of IRS-2 with 

microtubules and microtubule associated proteins (MAPs) results in a partial inhibition of 

downstream signaling, while signaling through IRS-1 is unaffected.  My results suggest 

that the unique localization of IRS-2 to the microtubules directs its signaling and 

functions. 

 

I hypothesize that the unique ability of IRS-2 to promote movement, whether in 

the form of cell motility, local invasion, or distant metastasis, is due to its association 

with the microtubule cytoskeleton.  IRS-2 may play a special role in the dynamic changes 

which take place during cell movement, especially considering its association with the 

tubulin depolymerase KIF2A.  In addition, the ability of IRS-2 to regulate GLUT1 

trafficking, likely along microtubules, may be due to its localization there.  The signals 

which IRS-2 promotes from the cytoskeleton for glucose transport and glycolysis might 

be involved in producing the local chemical changes that allow destruction of the 

basement membrane and subsequent invasion.  The same signals may be transmitted 

through IRS-1, but in contrast, localization of these signals to an alternative cytosolic 

compartment or to the nucleus would result in a very different cellular outcome.  In order 
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to fully evaluate this hypothesis, a similar study to my own would have to be performed 

for IRS-1.  The specific compartment to which IRS-1 is localized in the cytoplasm should 

be identified and this localization similarly disrupted in order to evaluate the role of that 

localization in directing downstream signaling.  If possible, pending identification of the 

domains which specify localization, IRS-1 could be forced to the cytoskeleton and IRS-2 

to the as of yet unidentified compartment to which IRS-1 normally localizes to determine 

if localization does in fact define the signaling capabilities of these two proteins. 

 

Clinical Relevance of IRS-2 Expression Patterns in Tumors 

 Localization of IRS-2 to the plasma membrane in a set of invasive tumors was 

associated with poor survival, both in the entire tumor set and in the PR negative (PR-) 

subset [161].  We and others have previously reported that IRS-2 is associated with 

motility, invasion, and aerobic glycolysis, all mediators of tumor progression [56, 59, 60, 

67], and we have shown in a mouse model that Irs-2 is a promoter of tumor metastasis 

[54].  Taken together, we hypothesize that the plasma membrane staining pattern, which 

is associated with poor prognosis, likely represents enhanced IRS-2 activity, perhaps due 

to interaction with membrane-bound receptors [161].  In contrast, the diffuse cytoplasmic 

pattern was associated with improved survival, indicating that IRS-2 may be inactive in 

this context [161].  Further studies are warranted to determine if these expression patterns 

represent IRS-2 activation status, ideally through direct evaluation of IRS-2 

phosphorylation either through phosphotyrosine immunoblot of IRS-2 

immunoprecipitates from tumor lysates or through production of a specific phospho-IRS-
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2 antibody for direct evaluation of tumor lysates or paraffin sections.  Alternatively, 

pathway activation could be studied through evaluation of IGF-1Rβ activation in the 

same manner. 

 

 It is plausible that IRS-2 expression patterns in breast tumors might be useful as 

biomarkers following a larger, long-term study.  Although the membrane staining pattern 

was associated with poor survival in the entire dataset, the potential use of IRS-2 as a 

biomarker may be most useful for PR- disease, as the membrane staining pattern was 

only found to be statistically significant within this subgroup upon multivariate analysis 

compared to other prognostic indicators (ie. node status, estrogen receptor (ER) 

expression, HER2 expression, etc.) [161].  The ability to predict better or worse survival 

is particularly useful in the PR- setting, as these aggressive tumors are associated with 

poor survival rates and more recurrent disease [151-153].  A patient lacking the 

membrane staining pattern that is statistically more likely to survive PR- disease might 

warrant more aggressive (and subsequently more toxic) treatment, as the survival benefit 

might outweigh the morbidity associated with drug toxicity.  Alternatively, the membrane 

staining pattern may denote a particularly aggressive PR- tumor, warranting more 

aggressive treatment, while a patient with PR- disease lacking the IRS-2 membrane 

staining pattern might forgo such treatment due to their improved prognosis.  Further 

studies analyzing detailed treatment outcomes are required to determine how IRS-2 

staining pattern information might be used to predict patient response to conservative 

versus aggressive treatment approaches in patients with PR- breast cancer. 
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 IRS-2 expression patterns might also be of clinical utility in guiding more specific 

treatment decisions.  My studies have shown that IRS-2 activity is associated with more 

cell death in response to treatment with microtubule-disrupting drugs.  If the plasma 

membrane expression pattern is indeed representative of active IRS-2, then by extension, 

this pattern would represent enhanced sensitivity to microtubule-disrupting drugs like 

vinorelbine, a vinca alkaloid commonly used in the treatment of breast cancer [114].  

Likewise, patients whose tumors exhibit diffuse cytoplasmic IRS-2, which we 

hypothesize is inactive, might be poor candidates for such treatment because these tumors 

are less sensitive to cell death and may be more likely to resist treatment.   In order to test 

this hypothesis, further studies would require a large tumor set, ideally with pre- and 

post-treatment samples.  Detailed treatment information, particularly regarding taxane 

and vinca alkaloid use, would be a necessity.  Response versus recurrence could be 

correlated to IRS-2 expression patterns and activation status to determine if IRS-2 

activity dictates response to these drugs.  In addition, evaluation of downstream signaling 

activation, namely AKT phosphorylation, before and after treatment could be correlated 

to clinical response and development of resistance.  Such a study would also serve to 

elucidate the role of the microtubules and their disruption in the activation of AKT in the 

context of a tumor in vivo, as opposed to cells in culture. 

  

Further Study of the Punctate Cytoplasmic IRS-2 Expression Pattern 

 The punctate cytoplasmic IRS-2 expression pattern did not correlate significantly 

with survival in our study, although there was a trend toward improved outcome [161].  
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We hypothesize that IRS-2 may be associated with an internalized receptor in this context 

[163].  Electron microscopy of select tumors should be used to determine if this is the 

case.  If so, the question of IRS-2 activity remains.  Perhaps the slightly improved 

survival associated with these tumors is due to a sequestration or degradation of the IRS-

2 signal upon internalization with the receptor [164, 180].  It is also possible that IRS-2 is 

associated with a membrane-bound organelle, independent of receptor internalization, 

and co-staining with markers of the endosomal compartments and other organelles may 

be necessary to identify the specific localization of IRS-2 in these tumors. When a 

specific compartment has been identified, further studies should examine the activity of 

IRS-2 in that compartment and the impact of this localization on signaling and response 

to microtubule disruption.  

 

Localization of IRS-2 to an autophagic vesicle is also a possible explanation for 

the punctate pattern of staining.  IRS-2 might be directly involved in the formation or 

activity of autophagic vesicles.  Alternatively, dysregulation of autophagy, as often 

occurs in tumor cells, might result in an accumulation of autophagic vacuoles which may 

contain undegraded proteins, including IRS-2 [181].  In either case, correlation of this 

pattern to tumor aggressiveness and prognosis would be difficult, as autophagy is 

associated with both oncogenic and tumor suppressive activity [181].  Interestingly, in 

vitro treatment of cancer cells with nocodazole or vinblastine causes an accumulation of 

ineffective autophagic vacuoles containing undigested protein.  Perhaps IRS-2 is an 

innocent bystander of normal physiology which becomes accumulated in these vesicles in 



100

the tumor cells of patients who have been treated with vinca alkaloids [182, 183].  

Regarding this possibility, treatment information should be obtained for the patients in 

my study whose tumors exhibited the punctate IRS-2 staining pattern.  In addition, these 

tumors could be evaluated for a marker of autophagy like light chain 3 (LC3), including 

co-immunofluorescence studies with IRS-2 to determine if IRS-2 is co-localized with an 

autophagic vesicle. 

 

The Role of the Microtubules in AKT Activation 

Several groups have demonstrated a role for the microtubules in signaling through 

the PI3K/AKT axis.  Eyster, et al. suggest that the microtubules provide a surface for the 

insulin signaling complex and insulin-stimulated GLUT4 trafficking [124].  In cells with 

constitutively active AKT signaling, inhibition of this pathway with the PI3K inhibitor 

LY294002 destabilizes microtubules, resulting in an enhanced apoptotic response to 

microtubule-disrupting drugs [184].  Hyperactivation of AKT has been shown to increase 

resistance to chemotherapeutics which disrupt microtubules [185].  Consistent with my 

findings, treatment of both normal endothelial cells and tumor cells with drugs that 

disrupt microtubules have been shown to downregulate AKT [186, 187].  This 

downregulation similarly enhances apoptosis [186].  Also consistent with my study, no 

effect of these drugs was found on a panel of other kinases [187]. 

 

 In this study, I have uncovered a role for the microtubules in the activation of 

AKT specifically downstream of IRS-2.  Interestingly, this phenomenon was only 
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observed in cell lines that predominantly signal through IRS-2, as opposed to other 

adaptors, such as IRS-1.  The unique localization of IRS-2 to the microtubules suggests 

that the association of IRS-2 with microtubules, or a MAP, may be required for AKT 

activation.  Indeed, IRS-2 was found to interact with the motor protein KIF2A, and 

suppression of KIF2A partially decreased activation of AKT upon stimulation with IGF-

1.  Furthermore, the association of IRS-2 with KIF2A was unique.  No such association 

was detected with IRS-1, further supporting the IRS-2-specific nature of microtubule-

dependent AKT activation. 

 

 It has been shown that IGF-1R internalization supports sustained phosphorylation 

of AKT and that blocking internalization prevents AKT activation [150].  It has also been 

shown that AKT moves toward the plasma membrane upon stimulation [188].  Based on 

those findings, I propose a model in which trafficking of AKT along microtubules into 

the vicinity of the internalized receptor is required for phosphorylation and activation of 

the protein downstream of IRS-2.  When trafficking is disrupted, with a microtubule-

disrupting drug, for example, the receptor cannot be internalized, nor can AKT be 

trafficked to the activated receptor. 

 

 Internalization and trafficking must not be required for upstream events, as 

microtubule disruption has no effect on IRS tyrosine phosphorylation or association with 

PI3K.  Once activated upon IGF-1 stimulation, IRS-2 would partially facilitate the 

trafficking of this IGF-1R-containing vesicle into the cell through its association with the 
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microtubule depolymerase KIF2A.  Alternatively, KIF2A may cooperate with a 

retrograde motor during internalization, as has been suggested for kinesin-3 in retrograde 

transport of endosomes [189].  The upstream signaling complex is now sitting on the 

microtubule, providing a surface for the interaction of downstream signaling proteins, 

including PDK1, which will associate with phosphatidylinositol (3,4,5)-trisphosphate 

(PIP3) on the outer membrane of the internalized vesicle, and its target threonine 308 

(T308) on AKT which is itself trafficked toward the membrane and associates with PIP3 

under stimulatory conditions.  Phosphorylation of AKT at the mTORC2-dependent serine 

473 (S473) site is similarly microtubule-dependent and requires trafficking of AKT along 

microtubules.  My work has shown that mTOR and rictor associate with the microtubules 

in MDA-MB-231 cells, and this localization likely dictates that intact microtubules and 

the ability of AKT to traffic are required for S473 phosphorylation by mTORC2.  The 

proposed model of AKT activation is outlined in Figure 4.1. 

 

Potential Relevance of KIF2A in Breast Cancer 

 KIF2A is a member of the kinesin-13 family, a group of motor proteins with 

adenosine triphosphatase (ATPase) activity involved in microtubule trafficking and 

regulation of the mitotic spindle [190].  While all kinesins have tubulin depolymerizing 

activity at plus ends, kinesin-13 members are uniquely capable of depolymerizing tubulin 

at both the minus and plus ends of microtubules [191, 192].  The localization and activity 

of KIF2A is partially modulated by phosphorylation [190].  Phosphorylation at the serine 

196 (S196) site by Aurora B results in a downregulation of depolymerizing activity [193].  
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Association with binding partners, particularly plus end binding proteins, further 

modulates the activities of kinesin-13 family members [190].  In this regard, it is possible 

that KIF2A interacts with CLIP170, as I have shown both of these proteins to be 

associated with IRS-2. 

 

 The kinesin-13 family member mitotic centromere-associated kinesin (MCAK) 

has been correlated to tumor progression and poor survival in a variety of studies [194].  

In vitro studies found that suppression of MCAK inhibited the growth of breast cancer 

cells [195].  KIF2A has not been well studied in this context, but one group did find that 

overexpression of KIF2A was associated with lymph node metastasis and advanced stage 

in oral cancer [168].  In terms of treatment, KLP10A, a kinesin-13 family member in 

Drosphila is associated with sensitivity to colchicine [179].  The authors of that study 

suggest that overexpression of tubulin depolymerizing kinesins result in a tubulin 

destabilization that sensitizes cells to pharmacologic microtubule disruption [179]. 

 

 The unique ability of IRS-2 to promote motility and invasion may be due not only 

to its association with microtubules, as discussed previously, but also to its interaction 

with KIF2A.  In HeLa cells, suppression of KIF2A expression by microRNA-183 (miR-

183) is associated with decreased migration [196].  Other kinesins have also been 

implicated in migration and invasion.  In pancreatic cancer cells, treatment with the 

compound dimethylenastron inhibits both migration and invasion by targeting KIF11 

[170].  Overexpression of KIF18A in colorectal cancer cells enhances migration and 
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invasion, while suppression of this kinesin results in the opposite effect [197].  The 

microtubule depolymerase activities of KIF2A, which may be modulated in part by its 

association with components of the IGF-1 signaling pathway, may play a role in the 

dynamic changes in cytoskeletal structure which take place at the leading edge of a 

migrating and/or invading cell. 

 

 KIF2A expression in breast tumors may also be useful as a biomarker of drug 

sensitivity.  The depolymerizing activity of KIF2A may be partially responsible for the 

sensitivity of MDA-MB-231 cells to microtubule-disrupting drugs observed in my 

studies.  As phosphorylation of KIF2A at the S196 site is associated with inhibition of 

depolymerizing activity, this site could be evaluated in our system and in tumor samples 

to determine if KIF2A depolymerase is active.  If KIF2A is partially responsible for 

sensitivity to nocodazole treatment, low levels of S196 phosphorylation would be 

expected in sensitive cell lines like MDA-MB-231 and PyVMT: Irs-1-/- and higher 

phosphorylation levels (or low total KIF2A levels) in resistant cell lines like SUM159 

and PyVMT: Irs-2-/-.  Taking a step further, based on our hypothesis that the membrane 

expression pattern of IRS-2 in tumors is associated with active signaling and enhanced 

susceptibility to microtubule disruption, high total KIF2A levels and/or low KIF2A 

phosphorylation would be expected.  A patient study might evaluate both total and 

phosphorylated KIF2A in a large set of breast tumors and draw correlations to IRS-2 

expression patterns and activation, AKT phosphorylation, and sensitivity to treatment 

with vinca alkaloids. 
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Potential Role of Microtubules in Differential Signaling to AKT Substrates 

 The association of IRS-2 with microtubules appears to direct specific signals 

downstream of this protein, as opposed to the related IGF-1R adaptor IRS-1.  I 

hypothesize that the microtubules further direct differential signaling downstream of 

AKT.  One study of a panel of drugs found that vinblastine, but not taxol, treatment of 

osteosarcoma cells causes the nuclear accumulation of the forkhead family transcription 

factor FOXO, which regulates cell cycle progression and survival [198, 199].  

Unphosphorylated FOXO is active in the nucleus, and upon phosphorylation by AKT, 

FOXO activity is inhibited by nuclear export [199].  It has also been reported that AKT 

phosphorylated on T308 only, lacking phosphorylation of the mTORC2-dependent S473 

site, is unable to phosphorylate FOXO, although other AKT targets remain activated 

[200].  Taken together, this suggests that the microtubules are required specifically for 

phosphorylation of FOXO by AKT and that this may be due to a requirement of intact 

microtubules by mTORC2 for the S473 phosphorylation on AKT.  Further studies should 

disrupt mTORC2 in my system without disrupting the cytoskeleton to determine if AKT 

deficient in S473 phosphorylation only can still target FOXO in the presence of intact 

microtubules. 

 

Novel Finding that Microtubules May Be Required for mTORC2 Activation 

 We report in this study the novel finding that an intact microtubule cytoskeleton is 

required for activation of mTORC2.  Relatively little is known about the activation and 

activities of this complex.  One study has implicated the ribosome in activation [89].  The 



107

authors of that study found that the active complex physically interacts with the ribosome 

and that this interaction was modulated by insulin signaling [89].  My findings do not 

exclude a role for the ribosome, as ribosomes have been shown to interact with 

microtubules and MAPs [201, 202].  In my study, I found specifically that microtubules 

are required for the mTORC2-associated phosphorylation on mTOR at serine 2481 

(S2481), as well as the mTORC-2 dependent S473 phosphorylation site on AKT.  Further 

studies are warranted to determine if the S2481 site is truly associated with complex 

formation and activity in my system, as well as to determine if the effects of microtubule 

disruption on mTORC2 activity are AKT specific or extend to other mTORC2 targets, 

such as Protein Kinase C-α (PKC-α).  The important question remains whether the 

microtubules directly activate mTORC2 or if they simply serve as a scaffold for the 

interaction of mTORC2 with ribosomes or other activating proteins unknown at this time.  

Disruption of the ribosome-microtubule interaction without disrupting microtubule 

architecture should elucidate the role of this interaction in mTORC2 activation. 

 

Overall Significance 

 The results of my study of IRS-2 expression patterns in breast tumors indicate that 

the plasma membrane localization of this protein is associated with poor survival, 

particularly in PR- disease.  Furthermore, this marker subdivides PR- tumors into better 

and worse survival groups, separating more aggressive disease from less aggressive, 

PR+-like disease.  Following further studies, IRS-2 localization patterns could be used as 

as a biomarker to predict patient outcomes in breast cancer patients with PR- tumors.  
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The current use of ER, PR, and HER2 as markers of prognosis and sensitivity to 

treatment has significant limitations, as patient outcomes frequently fail to match the 

prognosis predicted by receptor status.  This is particularly true of PR- disease, as the 

mechanisms of PR loss vary widely [155].  Given these limitations, the ability to more 

accurately predict survival in this aggressive cancer subtype could be of great usefulness 

in the clinic to guide treatment appropriate to the true prognosis. 

 

 The results of my studies have further implications for the understanding of 

signaling through IRS-2, particularly the involvement of IRS-2 in AKT activation.  

Although it has been previously reported that the microtubules are required for activation 

of AKT in certain cell types and contexts [186, 187], I report the novel finding that 

signaling specifically through IRS-2 is microtubule-dependent.  As AKT regulates a wide 

number of signals for a variety of functions, knowledge of the mechanisms of AKT 

regulation is important for the development of new cancer therapies and circumventing 

resistance.  In addition, these results suggest another potential use for IRS-2 as a 

biomarker in breast cancer, as IRS-2 activity may be associated with enhanced response 

to microtubule-disrupting chemotherapy, such as vinorelbine treatment.  This finding 

could make vinorelbine, commonly used in the advanced stages of the disease, a first-line 

treatment for certain patients who may subsequently have improved outcomes. 

 

 I have also uncovered a role for the kinesin and microtubule depolymerase KIF2A 

in the IRS-2-mediated activation of AKT.  Not only does this finding have potential 



109

implications for therapy with microtubule-affecting drugs, but KIF2A might also be used 

as a biomarker, differentiating tumors which might be more or less susceptible to 

treatment with taxanes or vinca alkaloids.  Furthermore, these results link signaling to 

microtubule dynamics, providing a partial explanation for IRS-2-mediated motility and 

invasion and contributing to the general knowledge of these events in cancer. 

 

Finally, I report the novel finding that both IRS-2 and microtubules regulate 

mTORC2 activity.  Though others have reported a potential role for the ribosome or PIP3 

in mTORC2 activation, very little is known about the mechanism by which this complex 

is activated or its activities [89, 90].  In addition, I report that two complex components, 

rictor and mTOR, are associated with the microtubule cytoskeleton, also a novel finding 

to our knowledge.  Though mTORC2 has been implicated in the regulation of the actin 

cytoskeleton and has been associated with an actin cytoskeletal fraction in cell lysates 

[87, 203, 204], this result suggests that mTORC2 might also regulate the microtubule 

cytoskeleton, suggesting a broader role for this complex in the regulation of trafficking 

and cell architecture previously unknown. 
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APPENDIX 
 
 

 
Interaction of Insulin Receptor Substrate-2 (IRS-2) with 

mTORC2 
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To determine if IRS-2 and rictor interact, IRS-2 was immunoprecipitated from 

MDA-MB-231 cell lysates, and associated proteins were analyzed by Western blot.  

Rictor, but not the mTORC1 component raptor, co-immunoprecipitated with IRS-2 

(Figure A.1a).  Serum starvation and IGF-1 stimulation have no effect on the degree of 

interaction, and the interaction is maintained upon microtubule disruption with 

nocodazole.  When cell extraction was performed using a buffer containing CHAPS 

instead of NP-40, which preserves mTOR-rictor interactions, mTOR also co-

immunoprecipitated with IRS-2 (Figure A.1b).  These results suggest that an IRS-

2/mTORC2 complex is localized to the microtubule cytoskeleton. 

 

The interaction of IRS-2 with rictor in this system might be responsible for the 

microtubule dependence of mTORC2 activation and subsequent AKT phosphorylation on 

serine 473 (S473).  This might also explain why phosphorylation on both threonine 308 

(T308) and S473 on AKT require intact microtubules.  AKT must traffick along 

microtubules in order to associate with both the internalized receptor vesicle to which 

PDK1 is likely localized, as well as mTORC2 which is partially localized to the 

microtubules.  IRS-2 may coordinate both events through its association with the 

microtubules and the kinesin KIF2A, linking the cytoskeleton to both upstream and 

downstream IGF-1 signaling events. 

 

An association of IRS-2 with rictor has been previously reported in the nucleus in 

a mouse model of diabetic nephropathy [205].  In this study, the presence of the nuclear 
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IRS-2-rictor complex was associated with accumulation of activated Protein Kinase C 

(PKC) in the nucleus, which the authors suggest might modulate gene transcription [205].  

It is possible that localization of an IRS-2-mTORC2 complex to the microtubules is 

directing a specific downstream signal from that compartment.  The results of my studies 

would suggest that AKT is the preferential mTORC2 target downstream of the 

microtubules.  Other downstream signals should also be examined, to determine if 

localization of this complex directs differential signaling. 
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