Collaborative Research in Medical Sensing: Wearable Wireless Sensor for Pressure Ulcer Prevention

John McNeill, Ph.D. WPI ECE Department

May 16, 2017

Disclosures

- Grant/Research Support:
 - In-kind support, Boston Scientific

- Graphic content warning: Images of
 - Pressure ulcer wound
 - Porcine model animal experiment

Development of Biomedical Collaboration

GREATEST ENGINEERING	ENGINEERING'S
ACHIEVEMENTS OF	GRAND CHALLENGES
THE 20TH CENTURY	Make solar energy economical
1. Electrification	Provide energy from fusion.
2. Automobile	Develop carbon seques-
3. Airplane	tration methods.
4. Water supply & distribution	Manage the nitrogen cycle.
5. Electronics	Provide access to clean water.
6. Radio & television	Restore & improve urban
7. Agricultural mechanization	infrastructure.
8. Computers	Advance health informatics.
9. Telephone	Engineer better medicines.
10. Air-conditioning & refrigeration	Reverse engineer the brain.
11. Highways	Prevent nuclear terror.
12. Spacecraft	Secure cyberspace.
12 Internet	Enhance Virtual reality.

- General direction: NAE Grand Challenges
 - Health; Sustainability; Security

Collaboration History

2011-12

 MQPs: Wired / Wireless pressure ulcer prevention device Morianos, Jones, Gutierrez; Williams, Truhanovitch, Hause Advisors: Mendelson (BME), Bitar (WPI ECE), Dunn (UMMS)

2015

- McNeill, Dunn meet at UMMS/WPI Research Collaboration event
- \$20K + \$5K WPI/UMMS Seed Grant funding Partial support for MS student Matthew Crivello

2016-17

- McNeill ½ sabbatical at UMMS
- TA support for PhD student Devdip Sen
- 2 MQPs (ECE, BME)
 Agdeppa, Hussain, Kim, Loehle; Ooyama-Searls, Pachucki, Parent Advisors: McNeill, Mazumder, Mendelson

2017-18

- \$25K UMass Technology Commercialization (OTCV) funding
- \$10K Massachusetts Technology Transfer Center (MTTC)

Motivation: Pressure Ulcer *Prevention*

- Painful
- Increases risk for secondary infection
- Wound healing takes up to several months
 - May not heal at all in compromised patients
- Adds \$11B annually to US health care costs
- Demographics: Increasing cost, incidence, prevalence
- → Need compact, low-cost <u>prevention</u> for patients:
 - In hospital setting
 - Confined to bed at home
 - With limited mobility in wheelchairs

Healing of pressure ulcer over several months

Cause: Localized Pressure

- External pressure over ~30mmHg restricts blood flow
- Ischemia; tissue deprived of oxygen
- Can lead to tissue necrosis

Opportunity for Prevention

- Well-known locations on body at risk for pressure ulcer formation
- Location depends on patient environment:
 - Hospital setting
 - Confined to bed at home
 - With limited mobility in wheelchair

Image: http://www.jgh.ca/en/qiPressureUlcerPrevention (accessed 12Aug2016)

System Approach: Pressure Ulcer Prevention

- Device: Low-cost, disposable, wearable sensor patch
- System: Wireless data collection from multiple at-risk sites
- Algorithm: Assess risk from pressure vs. time profile

Device

- Low-cost, disposable, wearable sensor patch
- Measure local pressure, temperature
- Small size, comfortable to wear for long duration

Benefits of Our Approach

- Low cost: \$10 / sensor
- 7-day wearable; disposable
- Meet needs for multiple populations:
 - Caregiver: Reduces workload
 - Doctor: Detailed pressure-time information
 - Patient: Improved independence

Drawbacks of Existing Techniques:

- 2-hour turn protocol
 - Workload, injury risk for caregivers
 - Not supported by controlled trials
- Offloading beds
 - Expensive (> \$10K), fixed location
- Pressure mapping pad
 - Expensive (> \$1K), caregiver interpretation

Commercial Impact

\$11B annual cost in US for pressure ulcer treatment

Potential annual market population:

Hospitals	35.1 million
(2014: No Medicare reimbursement)	
 Nursing homes 	1.4

Long term / residential care1.0

In-home care5.3

Potential Population (5% at risk) 2.1 million Estimated Gross Annual Market > \$120 million

- Demographic demand accelerating
 - Aging, longer lived population

Flexible Wired Prototype

 Implement sensors, measurement circuitry on flexible substrate

Animal Experiment Data Acquisition

- Surgical protocol: Anesthetized pig immobile on back for ~ 7 hours
- Identified at-risk sites for placement of wired sensors
- Acquire data from multiple sites

Closeup of attachment site

Experimental Results

- Pressure, temperature vs. time over 7 hour duration
- Surgical protocol: Animal repositioned every 90 minutes

Experimental Results

- Pressure, temperature vs. time over 7 hour duration
- · Verified ability to resolve threshold, pressure relief events
- Importance of multiple sensors for each at-risk point

Current Status

ECE MQP: Amanda Agdeppa Ali Hussain David Kim Victoria Loehle

6.4 cm

Development Plan Status

Measure pressure, temperature, moisture	Verified	
Wireless self-powered measurement		
Human wearable, biocompatible sensor	IN PROGRESS	
Animal model trials	(OTCV, MTTC, M2D2)	
Evidence based algorithm	FUTURE FUNDING	
Human trials (Class 2)	(NIH, NSF, SBIR, STTR,	
Clinical use	PARTNERS)	

- Licensing most likely path to commercialization
- IP Status: Provisional patent application filed June 2016
 Potential Partners
- Boston Scientific: Wearable sensors
- Johnson & Johnson: Managing diabetes, surgery recovery
- Convatec, Acelity, Smith & Nephew, Medtronic, GE, ...
- → M2D2 support: Preliminary results for future funding Technology: Disruptive shift in pressure ulcer prevention

Interdisciplinary Development Team

UMMS Division of Plastic Surgery

Raymond Dunn, M.D.	Chief; P.I.	Head, Wound Care
Kelli Hickle, M.D.	Resident	Surgical resource
Heather Tessier	Lab Director	Animal model resource

WPI Electrical & Computer Engineering

John McNeill, Ph.D	Professor	Sensor electronics
Xinming Huang, Ph.D	Professor	Internet of Things
Devdip Sen	Student	Prototype fab / test

WPI Biomedical Engineering

Yitzhak Mendelson, Ph.D. Professor Skin-friendly	materials
--	-----------

Acknowledgments

- Supported by a grant from the UMMS/WPI Collaborative Seed Funding Initiative.
- William Appleyard [WPI]
 - Assistance with sensor fabrication
- Heather Tessier [UMMS]
 - Access to experimental resources
 - Compliance with the IACUC-approved protocol

Summary: Lessons Learned

- Find an important problem: Listen to practitioners
 - Reduce cost, improve quality of care
 - Meets needs for majority of patient populations
 - Reduce workload on caregivers
- Clinical partner a must
- Engineers:
 - Interdisciplinary team
 - Different experimental constraints
 - Rapid prototyping
- Need credible plan for entire development cycle
 - Bring in partner resources (business, IP, ...)
- Multiple funding sources
 - Get out of your comfort zone