INTRODUCTION: The ACGME Residency Review Committee in Psychiatry has stipulated that general psychiatry trainees develop “competency in applying supportive, psychodynamic, and cognitive-behavioral psychotherapies to both brief and long-term individual practice.” Residency programs are required to demonstrate and faculty are required to verify that trainees have attained the required competencies. Yet no generally accepted reliable and valid measure of psychotherapy competency has yet been developed. Several measures are widely used to assess resident competence in psychotherapy [2,7].

- Evaluation by individual psychotherapy supervisors [3,4]
- Rating of resident’s conduct of psychotherapy in live, recorded, or transcribed performance
- Training portfolios
- Performance on a multiple choice examination such as the Columbia Psychodynamic Psychotherapy Competence Test [5]

Resident self-assessment such as the Counseling Self-Evaluation Inventory (COSE), a self-report instrument designed to assess confidence and self-efficacy [6]

There have been few studies examining the reliability and validity of available competency assessment measures, and little empirical research examining the success of training programs in developing trainee competency in psychotherapy.

The current study had two goals:

1. To examine the changes in various performance measures as residents progress through training
2. To explore correlations among various measures of psychotherapy competence

METHODS: We conducted a retrospective analysis of all available data for residents in our program from July 2000 through July 2009 (63 residents), including:

1) Psychiatry Resident in Training Examination (PRITE) – Globally normalized score and Psychosocial Therapies subscore
2) Columbia Psychodynamic Psychotherapy Competence Test (CPPCT) - Scores (given as percentile rank among all examinees)
3) Counseling Self-Evaluation Inventory (COSE) – Scores on the COSE were collected for all PGY1 or PGY2 residents, however, COSE assessments were not routinely collected for PGY3 and PGY4 residents in the early years of this study.

The analysis used an average of 34 of 37 items on the COSE due to inadvertent omission on some forms.

- Supervisor ratings - Averaged global supervisor ratings of resident performance (5 point scale) in the following areas: formulation skills; psychoanalytic interventions; tolerance of uncertainty; transference, countertransference, boundaries; ability to utilize different conceptual models; humancentric qualities; practice-based learning (self evaluation, integration of feedback into practice); communication and interpersonal skills; working with difficult patients.

Statistical analyses were performed with the Statistical Package for Social Sciences, SPSS. Analyses comparing performance in different training years were done using unpaired t tests (two tail) on pooled data for each training year. Correlations were done using paired data for individual residents to derive Pearson two-tailed correlation coefficients. Due to missing data, the N for correlations was often less than the total N.

RESULTS: Figures 1-3 show changes in COSE, PRITE, and CPPCT by training year.

DISCUSSION
• The negative correlation between supervisor rating and COSE scores suggests a possible supervisory reaction to overconfidence or inflation of ratings to boost confidence.
• The relative lack of correlations may mean measures assess different aspects of performance, lack validity, or merely reflect the small N’s in our study.

CONCLUSIONS: Resident self-assessment does not appear to reflect competency as assessed by supervisors, or knowledge as assessed by objective tests. Global supervisor evaluations do not appear to reliably measure competency. Standardized supervisor assessment instruments are needed. Further work is needed to develop reliable, valid measures of competency.

REFERENCES:
1. ACGME Program Requirements for Graduate Medical Education in Psychiatry (Effective: July 1, 2007)

Correlation of Measures of Psychotherapy Competency in Psychiatry Residents
Julia Matthews, PhD, MD; Sheldon Benjamin, MD; Mohit Chauhan, MD; Mary Zanetti, EdD
UMass Medical School, UMass Memorial Healthcare, Worcester, MA; *Austin Medical Center, Mayo Health System, Austin, MN

Table 1: Number of Residents with Available Data

<table>
<thead>
<tr>
<th>PRITE</th>
<th>PGY-1</th>
<th>PGY-2</th>
<th>PGY-3</th>
<th>PGY-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>67</td>
<td>54</td>
<td>41</td>
<td>31</td>
</tr>
</tbody>
</table>

Table 2: Correlations Among Measures of Competence

<table>
<thead>
<tr>
<th>Measure</th>
<th>PGY-1</th>
<th>PGY-2</th>
<th>PGY-3</th>
<th>PGY-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPPCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Pearson correlation coefficient, two-tailed, paired analysis

<table>
<thead>
<tr>
<th>Correlated Measures</th>
<th>PGY-1 & PGY-2 vs. PGY-3, PGY-4</th>
<th>PGY-2 & PGY-3 vs. PGY-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSE mean item score</td>
<td>Correlated (r = 0.56)</td>
<td>Correlated (r = 0.51)</td>
</tr>
<tr>
<td>COSE mean percentile</td>
<td>Correlated (r = 0.53)</td>
<td>Correlated (r = 0.48)</td>
</tr>
</tbody>
</table>

There were no significant correlations between the COSE and PRITE scores.