May 20th, 11:15 AM

The Challenge of Maintaining our Physician-Scientist Workforce (Rare Breed/Endangered Species): Epidemiology & Anecdotes

Tiffany A. Moore Simas
University of Massachusetts Medical School, tiffanya.mooresimas@umassmemorial.org

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat

Part of the Translational Medical Research Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
The Challenge of Maintaining our Physician-Scientist Workforce (Rare Breed/Endangered Species)

Epidemiology & Anecdotes

Tiffany A. Moore Simas, MD, MPH, MEd
Joy McCann Professor of Women in Medicine
Associate Professor of Ob/Gyn and Pediatrics
Director, Ob/Gyn Research Division
Disclosure

- I have no actual or potential conflict of interest in relation to this program/presentation.
Outline

• Who makes up the P-S workforce?
• What are their demographics?
 – Age
 – Gender
 – Race/Ethnicity
 – Specialty
• What Challenges do P-S face?
History

1979: James Wyngaarden, NIH Director - rang warning bells that PS with medical degree was ‘an endangered species’ *(NEJM)*

1996: ‘Nathan Committee’ to address perceived shortfall of PS. Recommended career development grants and LRP to offset PS education debt and encourage research careers.
Physician-Scientist – Who are they?

- Scientists
- With professional degrees
- With training in clinical care
- Engaged in independent research (basic or clinical)
- MD, DO, DDS, DVM ± PhD
- (Not necessarily simultaneously)
- “Bridge”
 - Bench ↔ Bedside
Size and Composition

- Numbers hard to capture
- NIH-funded workforce
- ‘Invisible’
 - Industry
 - Non-NIH funded
 - Unfunded
- 2 categories:
 - Clinical research with patients in practice
 - Laboratory-based research

NIH PSW-WG, 2014
P-S Pool is Decreasing

AMA data from NIH PSW-WG, 2014
Pipeline

If 100 start here

- MD/PhD students (22–30 yrs old)
- Residents and fellows (30–35 yrs old)
- Holding Zone (35–40-yr-olds who are neither fellows nor faculty)
- Junior faculty (40–44 yrs old)

Attrition:
- MD/PhD students (10%–15%)
- Residents and fellows (??%)
- Holding Zone (??%)
- Junior faculty (??%)

< 100 finish here (R01)

J Clin Invest 2015 Oct 1;125(10):3742-7
Pipeline: NIH P-S Pathway
P-S Pool is Aging

- Age profile has increased over past decade.
 - Decline 31-60 years
 - Increase ≥60 years
NIH Funded P-S Pool is Aging

- Average Age of P-S with NIH RPGs (Research Project Grants) has increased
 - Decline 31-50 years
 - Increase ≥50 years

NIH PSW-WG, 2014
Average Age of First Time RPG Awards Increasing

![Graph showing the average age of first-time NIH Research Project Grant awardees, PhD, MD, and MD/PhD degree (FY1999-2012).](image)
P-S Pool is Aging

• Longer training times
• Higher grant success rates for established investigators
• Postponement of retirement
Unequal Participation by Women

- 42% F MD/PhD Grads
- Gender gap with entrance into and promotion in AMC

AAMC, 2013-2014
Unequal Participation by Women

- Large difference in number of M and F applicants.
- No difference in NIH RPG award rates by gender.
Unequal Participation by Women

- Work – Life Balance
- Women still share disproportionate burden for family care responsibilities
 - Child-bearing
 - Start of Lab
- Boundaries
Unequal Participation by Minorities

<table>
<thead>
<tr>
<th>Race/Ethnicity</th>
<th>US Population*</th>
<th>NIH Applicants†</th>
<th>NIH Awardees†</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>64%</td>
<td>70%</td>
<td>74%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>16%</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>African Am</td>
<td>12%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Asian</td>
<td>5%</td>
<td>23%</td>
<td>20%</td>
</tr>
</tbody>
</table>

* Wikipedia (Demography of the United States)
† NIH PSW-WG, 2014
(rounded to nearest whole numbers)
Unequal Participation by Minorities

- Sig growth of Asian and Hispanic awardees #s
- Less growth of African-American and Native American #s
Disparities by Specialties

• 5 career groups:
 1. Medical Specialties (Allergy, Cards, Derm, GI, Neuro)
 2. Surgical specialties (Surg, Urol, Ophtho, Otolaryn)
 3. Other (Phys Med & Rehab, Psych, Other)
 4. Primary care (FP, IM, OBG, Peds)
 5. Hospital-based (Anesth, ED, Path, Rad)
Challenges

• Financial
 – Individual:
 • Increasing education cost & training length - ↑ Debt
 – MD vs MD/PhD
 • ↓ Income Potential
 – Institutional:
 • Certainty of Clinical Revenue – Salary support
 • Uncertainty of Research Funding – Expensive hobby
 – Funding Environment
Challenges

• Time
 – Increased training length
 – All things to all people? – mission tensions
 – Pressures related to finances
 – Work-life balance
 – ‘Tyranny of the Urgent’

• Timing
 – Start clinical care, lab, & family and lab
 – Age out of young investigator perks
Challenges

• Confidence
• Contribution
• Competitiveness
 – RVUs
 – Grants
 – Reviewer perceptions
• Competence
• Coaching (mentors; protectors)
Rewards

• The Bridge
• Personal satisfaction
 – Greater good, more than the individual
 – Intellectual stimulation
 – Thrill of discovery
• Perseverance, tenacity, grit
• Future leadership relevance
Summary

• PS are a rare breed/endangered species.
• PS workforce is aging.
• Women and minorities are under-represented.
• The challenges are numerous.
• The rewards are great.
• We need to redefine the PS and address supports.
DEAN - Summary

• Value of Physician-scientists remains central to mission of academic medicine
• Challenges have stabilized but require ongoing affirmative efforts
• Specific purposeful mechanisms must be developed to ensure ongoing viability of physician-scientist role