May 20th, 12:30 PM

Association between First Trimester Pregnancy Associated Plasma Protein–A and the Development of Gestational Diabetes Mellitus

Aylin Sert
University of Massachusetts Medical School, Aylin.Sert@umassmed.edu

Katherine Leung
University of Massachusetts Medical School, Katherine.Leung@umassmed.edu

Molly E. Waring
University of Massachusetts Medical School, molly.waring@umassmed.edu

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat

Part of the [Female Urogenital Diseases and Pregnancy Complications Commons](http://escholarship.umassmed.edu/cts_retreat), [Maternal and Child Health Commons](http://escholarship.umassmed.edu/cts_retreat), [Obstetrics and Gynecology Commons](http://escholarship.umassmed.edu/cts_retreat), [Translational Medical Research Commons](http://escholarship.umassmed.edu/cts_retreat), and the [Women's Health Commons](http://escholarship.umassmed.edu/cts_retreat)

http://escholarship.umassmed.edu/cts_retreat/2016/posters/77

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Aylin Sert, Katherine Leung, Molly E. Waring, Raziel Rojas-Rodriguez, Silvia Corvera, and Tiffany A. Moore Simas

Keywords
pregnancy, plasma protein-a, gestation diabetes mellitus

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This poster abstract is available at eScholarship@UMMS: http://escholarship.umassmed.edu/cts_retreat/2016/posters/77
Association between First Trimester Pregnancy Associated Plasma Protein–A and the Development of Gestational Diabetes Mellitus

Aylin Sert, MEd¹, Katherine Leung, MPH², Molly E. Waring, PhD²,³,⁴, Raziel Rojas-Rodriguez⁴,⁵, Silvia Corvera, MD⁴,⁵, Tiffany A. Moore Simas, MD MPH MEd²,⁴,⁶

¹ Clinical Translational Research Pathway, University of Massachusetts Medical School
² Division of Research, Department of Obstetrics & Gynecology, University of Massachusetts Medical School/UMass Memorial Health Care
³ Department of Quantitative Health Sciences, University of Massachusetts Medical School
⁴ Graduate School of Biomedical Sciences, University of Massachusetts
⁵ Program in Molecular Medicine, University of Massachusetts Medical School
⁶ Department of Pediatrics, University of Massachusetts Medical School/UMass Memorial Health Care

Work funded by the Worcester Foundation for Biomedical Research. Support for Dr. Waring provided by NIH grant KL2TR000160.

Background: Gestational diabetes (GDM) is a common pregnancy complication with significant cardiometabolic consequences for mothers and offspring. Previous research from our group suggests that adipose tissue IGFBP-5 and its unique metalloprotease PAPP-A (Pregnancy Associated Plasma Protein-A) may play mechanistic roles in GDM development by regulating functional IGF-1 levels and lipid storage and metabolism.

Aim: To examine the relationship between circulating PAPP-A levels and GDM development. We hypothesized that high first trimester PAPP-A levels would be associated with decreased GDM risk.

Methods: A retrospective cohort of women delivering singleton gestations at UMass Memorial Healthcare (2009, 2010, 2014, 2015) was assembled by abstracting electronic medical records. PAPP-A was measured in first trimester (11-14 weeks), and reported as quartiles of multiples of the mean (MoM) based on gestational age and adjusted for maternal weight and race/ethnicity. GDM diagnosis based on standard 2-step protocol (~24-28 weeks; failed 50g 1hr glucola screen then ≥2 abnormal values per Carpenter-Coustan criteria on 100g 3hr glucose tolerance test). Crude and multivariable-adjusted logistic regression models estimated the association between PAPP-A MoM quartiles and GDM.

Results: Women (N=1,251) were 29.7 (SD:5.7) years old and 12.5 (SD:0.6) weeks gestation at PAPP-A measurement. 7.6% (n=95) developed GDM. Median PAPP-A MoM were 0.7 (inter-quartile range [IQR]=0.5-1.0) among women with GDM and 0.9 (IQR=0.6-1.3) among controls; 39% versus 23% were in the 1st quartile, respectively. After adjusting for pre-pregnancy body mass index, nuchal translucency, crown rump length, smoking status, and parity, women with PAPP-A MoM in 2nd, 3rd, and 4th quartiles had 52% (OR=0.48, 95%CI=0.26-0.88), 45% (OR=0.55, 95%CI=0.30-0.99) and 73% (OR=0.27, 95%CI=0.13-0.53) lower odds of GDM compared to women in the 1st quartile.

Conclusion: Higher PAPP-A MoM levels were associated with lower GDM risk. Future studies will assess whether higher PAPP-A levels are associated with enhanced IGF-1 signaling and improved pregnancy metabolic homeostasis.

My contact information is the following:
Aylin Sert, Ed.M.
Cell: 781-367-4756

Editor, AAP Medical Student News
University of Massachusetts Medical School
MD Candidate ~ Class of 2016
aylin.sert@umassmed.edu