Immune features that afford protection from clinical disease versus sterilizing immunity to *Bordetella pertussis* infection in a nonhuman primate model of whooping cough

Keith A. Reimann
University of Massachusetts Medical School

Aaron J. Belli
University of Massachusetts Medical School

Sarah Fulco
University of Massachusetts Medical School

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat

Part of the [Bacterial Infections and Mycoses Commons](http://escholarship.umassmed.edu/bacterial_infections_and_mycoses_commons), [Immunoprophylaxis and Therapy Commons](http://escholarship.umassmed.edu/immunoprophylaxis_and_therapy_commons), and the [Respiratory Tract Diseases Commons](http://escholarship.umassmed.edu/respiratory_tract_diseases_commons)

Reimann, Keith A.; Belli, Aaron J.; Fulco, Sarah; Warfel, Jason M.; Wang, Rijian; Cavacini, Lisa; Papin, James F.; Merkel, Steven F.; Merkel, Tod J.; and Klempner, Mark S., "Immune features that afford protection from clinical disease versus sterilizing immunity to *Bordetella pertussis* infection in a nonhuman primate model of whooping cough" (2016). *UMass Center for Clinical and Translational Science Research Retreat*. 70.

http://escholarship.umassmed.edu/cts_retreat/2016/posters/70

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information

Keywords
whooping cough, bordetella pertussis, immune mechanisms

Comments
Sarah Fulco participated in this study as a medical student in the Senior Scholars research program at the University of Massachusetts Medical School.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This poster abstract is available at eScholarship@UMMS: http://escholarship.umassmed.edu/cts_retreat/2016/posters/70
Immune features that afford protection from clinical disease versus sterilizing immunity to *Bordetella pertussis* infection in a nonhuman primate model of whooping cough

Keith A. Reimann, DVM¹, Aaron J. Belli, BS¹, Sarah Fulco, BS¹, Jason M. Warfel, PhD², Rijian Wang, MD, PhD¹, Lisa A. Cavacini, PhD¹, James F. Papin, PhD³ Tod J. Merkel, PhD², Mark S. Klempner, MD¹

¹MassBiologics, University of Massachusetts Medical School, Boston, MA; ²Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD; ³University of Oklahoma Health Sciences Center, Oklahoma City, OK

The respiratory bacterial infection caused by *Bordetella pertussis* (whooping cough) is the only vaccine-preventable disease whose incidence has been increasing over the last 3 decades. To better understand the resurgence of this infection, a baboon animal model of pertussis infection has been developed. Naïve baboons that recover from experimental pertussis infection are resistant both to clinical disease and to airway colonization when re-challenged. In contrast, animals vaccinated with acellular pertussis vaccine and experimentally challenged do not develop disease, but airways remain colonized for 4-6 weeks. We explored the possibility that the IgG antibody response to pertussis infection is qualitatively different from antibodies induced by acellular pertussis vaccination.

IgG was purified from pertussis-convalescent baboons shown to be resistant to pertussis disease and airway colonization. Purified IgG contained high titers to pertussis toxin, pertactin, and filamentous hemagglutinin. This pertussis-immune IgG or control IgG was passively transferred to naïve, juvenile baboons before experimental airway pertussis inoculation. The control animal that received normal IgG developed a typical symptomatic infection including leukocytosis, cough and airway colonization for 4 weeks. In contrast, baboons that received convalescent IgG maintained normal WBC counts and were asymptomatic. However, despite remaining asymptomatic, their airways were colonized for 4-6 weeks with *B. pertussis*. All animals developed IgG and IgA anti-pertussis antibody responses. Interestingly, the clearance of *B. pertussis* from airways coincided with the emergence of a serum anti-pertussis IgA response.

These studies demonstrate that passive administration of pertussis-specific IgG from previously infected animals can prevent clinical disease but does not affect prolonged airway colonization with *B. pertussis*. This outcome is similar to that observed following acellular pertussis vaccination. Understanding immune mechanisms—other than IgG—that are capable of preventing airway colonization with *B. pertussis* will be critical for developing more effective vaccines to prevent whooping cough.

Keith A. Reimann, DVM
MassBiologics
University of Massachusetts Medical School
617-474-3260
keith.reimann@umassmed.edu