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Figure 4-7. CRY2 fiber pathways in monarch brain. 
(A) Schematic representation of frontal section illustrating the topology of CRY2 

fibers at CT 15 using antibody CRY2-R42. A similar pattern of CRY2 fiber 

staining was found using antibody CRY2-GP51 (see Figure S13). PI, pars 

intercerebralis; PL, pars intercerebralis; OL, optic lobe; CB, central body. 

(B) CRY2 staining in central body (CB). PL, pars lateralis; PI, pars intercerebralis. 

(C–E) CRY2 fibers between PL and PI. SP, superior protocerebral bridge. CRY2 

staining was not visible in central body on this section because the section is cut 

at a different plane. 

(F and G) CRY2 fibers between pars lateralis and optic lobe (OL); LO, lobula; ME, 

medulla. 

(H) CRY2 staining in corpora cardiaca (CC) and corpora allata (CA). 

(I and J) Circadian oscillation of CRY2 staining in the central complex. (I) CRY2 

staining in upper and lower central body of the central complex at CT 15. (J) 

CRY2 staining in upper and lower central body of the central complex at CT 9. 

(K) Semiquantitative assessment of CRY2 staining in central body (CB) over the 

circadian day. Each value is mean ± SEM of five animals. Similar results were 

found in a replicate experiment using either CRY2-R42 or CRY2-GP51. 
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Figure 4-S13. CRY2 staining in monarch brain using antibodies R42 and 
GP51. 
(A and B) Double-labeling immunofluorescence of CRY2 staining in three cells in 

the PL using R42 (A) and GP51 (B). The fourth cell was out of the plane of 

section. 

(C and D) Double-labeling immunofluorescence of CRY2 staining in a cell in the 

PI using R42 (C) and GP51 (D). All CRY2 positive cells in PI were co-localized 

with the two antibodies. 

(E and F) CRY2 fluorescence in lower division of the central body (CB) using 

either R42 (E) or GP51 (F). 

(G and H) CRY2 DAB staining in upper and lower subdivisions of the CB using 

either R42 (G) or GP51 (H). 
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Table 4-S1. Monarch clock genes expressed in DpN1 cell line. 
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Table 4-S2. Degenerate primer sequences. 
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CHAPTER V: FUNCTIONAL ANALYSIS OF INSECT CRY2: 

NUCLEAR ACCUMULATION AND TRANSCRIPTIONAL 

REPRESSION 

This chapter represents a manuscript which is still under preparation. I 

designed and generated all the constructs and performed the experiments. I also 

analyzed the data and wrote the manuscript. Patrick Emery provided critical 

feedback about the writing. Steven Reppert provided guidance of the 

experimental design and manuscript composition.   

A. Abstract 

Nuclear entry is critical for transcriptional repression. Although 

overexpressed monarch butterfly CRY2 (dpCRY2) alone was predominantly 

cytoplasmic in Drosophila Schneider 2 (S2) cells, both PER and CLK:CYC were 

able to promote the nuclear accumulation of dpCRY2. We obtained similar 

results in DpN1 cells with overexpressed dpCRY2. To understand how 

endogenous CRY2 localization was regulated under 12h:12h LD cycles, we used 

dsRNA to knockdown different clock genes in DpN1 cells and examined the 

subsequent dpCRY2 localization at ZT4 and ZT16 (ZT4, 4 hours after light-on; 

ZT16, 4 hours after light-off), the peak and trough of dpCRY2 nuclear localization, 
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respectively. We concluded that the nuclear accumulation of CRY2 at ZT4 

requires the presence of PER. We are also interested in how dpCRY2 inhibits 

dpCLK:dpCYC mediated transcription. We tested the transcriptional inhibitory 

activities of different insect CRY2 deletion constructs using luciferase reporter 

assay in S2 cells. We were able to map the transcriptional inhibitory activity of 

insect CRY2 onto the conserved photolyase-like domain of the protein. 

B. Introduction 

Circadian clock provides adaptive advantages to organisms ranging from 

prokaryote to human by synchronizing their daily and seasonal activities to 

environmental changes. Insect clocks regulate many important biological 

processes like egg hatching, adult eclosion, and time-compensated sun compass 

orientation (Saunders, 2002).  

At the molecular level, animal clocks are driven mainly by a negative 

transcriptional feedback loop (Stanewsky, 2003). In the Drosophila melanogaster 

central clock, a pair of transcriptional activators, CLOCK (CLK) and CYCLE 

(CYC), activate the expression of period (per) and timeless (tim) by binding to E-

box enhancer elements. The protein products of per and tim accumulate in the 

cytoplasm and then enter the nucleus to repress their own transcriptions by direct 

binding to CLK/CYC (Lee et al., 1998). The nuclear translocation of PER and TIM 

is necessary for the initiation of transcriptional repression (Chang and Reppert, 

2003; Nawathean and Rosbash, 2004; Saez and Young, 1996). The accurate 
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timing of this event is thought to be critical for maintaining a near 24-h period 

(Curtin et al., 1995). The mechanism of PER and TIM nuclear entry is not well 

understood. PER and TIM form heterodimers (Zeng et al., 1996) and enter the 

nucleus co-dependently (Hunter-Ensor et al., 1996; Myers et al., 1996; Saez and 

Young, 1996; Vosshall et al., 1994), but not necessarily together (Meyer et al., 

2006; Shafer et al., 2002). Protein kinases like DOUBLETIME (DBT) and 

CASEIN KINASE 2 (CK2) can delay PER and TIM nuclear accumulation 

indirectly by destabilizing both proteins (Akten et al., 2003; Lin et al., 2002; 

Meissner et al., 2008; Price et al., 1998; Smith et al., 2008; Suri et al., 2000). 

Recent studies also suggested that kinases like DBT and SHAGGY (SGG) may 

directly regulate PER/TIM nuclear entry (Cyran et al., 2005; Harms et al., 2004). 

Drosophila CRYPTOCHROME (CRY, type I CRY) functions as a blue light 

receptor for circadian light entrainment inside the clock neurons (Emery et al., 

1998; Stanewsky et al., 1998), by mediating the light-dependent TIM degradation 

(Lin et al., 2001).  

The mouse clock is based on a similarly organized negative transcriptional 

feedback loop, with mCRY1 and mCRY2 (both belong to type II CRY gene family) 

and mPER1-2 forming the negative limb of the feedback loop (Reppert and 

Weaver, 2002). mCRYs and mPERs also undergo rhythmic nuclear 

accumulation (Lee et al., 2001), the mechanism of which is even less studied 

than that of Drosophila. mCRYs and mPERs seem to enter the nucleus co-

dependently to initiate negative feedback with mPERs in rate limiting amounts in 
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vivo. Protein kinases, including CK1ε and δ, might be involved in nuclear 

translocation of mPERs and mCRY1 (Takano et al., 2004; Vielhaber et al., 2000). 

The monarch butterfly (Danaus plexippus) clock shows characteristics from 

both Drosophila and mouse clock, in which a Drosophila-like CRY1 (type I CRY) 

functions as a circadian photoreceptor, while a vertebrate-like CRY2 (type II CRY) 

functions as a major repressor of dpCLK:dpCYC-mediated transcription (Zhu et 

al., 2008). DpCRY2 undergoes rhythmic nuclear translocation in putative clock 

neurons, and the peak of its nuclear accumulation is well correlated with the 

maximal transcriptional repression. We recently characterized a monarch 

butterfly cell line called DpN1, which shows light-driven oscillations in both mRNA 

and protein levels of various clock genes (Zhu et al., 2008). Interestingly, 

DpCRY2 cellular localization also undergoes rhythmic changes under Light:Dark 

(LD) cycles in DpN1 cells. Importantly, the peak of nuclear accumulation of 

dpCRY2 in DpN1 cells is also well correlated with the maximal transcriptional 

repression of the per mRNA oscillation. Thus, DpN1 cell could potentially serve 

as a model to study nuclear translocation of type II CRY in a circadian-like 

context.  

Another model we use to study type II CRY function is S2 cells, a Drosophila 

cell line, which has been used extensively to study clock function. Many aspects 

of insect and mammalian circadian clocks have been reproduced in S2 cells, 

including Drosophila PER repressing dCLK:dpCYC-mediated transcription, 

silkmoth (Antheraea pernyi) PER repressing apCLK:apBMAL-mediated 
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transcription, and mouse CRY1-2 repressing mammalian CLK:BMAL1-mediated 

transcription (Chang et al., 2003; Chang and Reppert, 2003; Darlington et al., 

1998; Kume et al., 1999; Shearman et al., 2000b). S2 cells have also been used 

to study nuclear translocation of Drosophila PER and TIM (Meyer et al., 2006; 

Nawathean and Rosbash, 2004; Saez and Young, 1996). Importantly, Drosophila 

cyc is the only core clockwork gene endogenously expressed at functional level 

in S2 cells (Darlington et al., 1998). The lack of clock genes in S2 cells is an 

advantage for our study, because there should be minimal interactions between 

the transfected genes and the endogenously expressed ones. Furthermore, 

dCYC cannot activate transcription when paired with monarch CLK (data not 

shown). 

The first question we investigated is how dpCRY2 nuclear localization is 

regulated. We first examined dpCRY2 cellular localization in transiently 

transfected S2 cells and then in DpN1. To understand how endogenously 

expressed dpCRY2 localization was regulated, we used dsRNA to knockdown 

different clock genes in DpN1 cells and examined the subsequent dpCRY2 

localization. We are also interested in how dpCRY2 inhibits dpCLK:dpCYC-

mediated transcription after its nuclear entry. We went back to S2 cells for its 

“clean” clock background, and tested the transcription-inhibitory activities of 

different insect CRY2 deletion constructs using luciferase reporter assays.  
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C. Results 

1. Nuclear accumulation of dpCRY2 can be increased by co-expressing 

dpCLK:dpCYC or dpPER in S2 cells 

To understand the mechanism of nuclear entry of dpCRY2, we first looked at 

the cellular localization of V5 tagged dpCRY2 in S2 cells using 

immunocytochemistry (ICC). Each positively stained cell examined was 

categorized as one of the following staining patterns: nuclear (N), cytoplasmic (C), 

or both nuclear and cytoplasmic (B). The percentage of each staining was 

calculated by dividing the number of cells of each staining by the total cell 

number examined. 

 In S2 cells, dpCRY2 can inhibit dpCLK:CYC without dpPER (Yuan et al., 

2007), which suggested that dpCRY2 should be able to enter the nucleus by 

itself or in the presence of dpCLK:CYC. Since V5 tagged dpCRY2 is as effective 

as untagged dpCRY2 to repress transcription (data not shown), we used 

dpCRY2-V5 for the following study for the convenience of protein detection in 

both Western blot and immunocytochemistry (ICC) in S2 cells. Transiently 

expressed dpCRY2 was largely cytoplasmic (C-67%, B-33%; Table 5-1A). 

DpCLK and dpCYC, when expressed together, were both nuclear (data not 

shown). Co-expression of dpCLK:dpCYC with dpCRY2 resulted in a large shift of 

dpCRY2 from cytoplasm to nucleus (B-1%, N-99%; Table 5-1A).  
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DpPER and dpCRY2 strongly associate with each other in both cell culture 

and monarch brain, as shown by immunoprecipitation (Zhu et al., 2008). 

Moreover, mPERs are suggested to promote mCRYs nuclear entry in the mouse 

clockwork (Lee et al., 2001). DpPER is a nuclear protein in S2 cells (B-1%, N-

99%; Table 5-1A). We therefore tested whether dpPER can affect dpCRY2 

localization in S2 cellls. Co-expression of dpPER with dpCRY2 in S2 cells shifts 

dpCRY2 from cytoplasm(C-67%, B-33%; Table 5-1A) to nucleus (B-34%, N-66%; 

Table 5-1A), but to a lesser extent, compared to co-expression with dpCLK:CYC 

(B-1%, N-99%; Table 5-1A).  

The cytoplasmic accumulation of dpCRY2 transfected alone in S2 cells 

could indicate an inefficient nuclear entry or an imbalanced nuclear export and 

import (export>>import). For example, Drosophila TIM (dTIM) is a cytoplasmic 

protein in S2 cells due to active nuclear export, which can be inhibited by 

Leptomycin B (LMB, a potent nuclear export inhibitor). Thus, LMB treatment of 

TIM-transfected S2 cells leads to nuclear accumulation of TIM (Ashmore et al., 

2003). To test whether CRY2 nuclear accumulation can be increased by LMB, 

we treated S2 cells transfected with dpCRY2 or dTIM with LMB (10μM, 50nM 

final concentration) or DMSO (control). After LMB treatment, dTIM was almost 

completely shifted from cytoplasm (C-96%; DMSO treated) to nucleus (B-11%, 

N-89%; LMB treated) (Table 5-1B). In contrast, dpCRY2 cells only showed 

slightly increased nuclear accumulation of dpCRY2 (from C-65%, B-35% to C-

20%, B-80%, Table 5-1B). This result suggested that the nuclear entry of 
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dpCRY2 alone is indeed inefficient in S2 cells. Thus, the effects of dpPER and 

dpCLK:CYC on promoting dpCRY2 nuclear accumulation is likely mediated by 

increased efficiency of dpCRY2 nuclear entry.  

We then extended these findings to the more relevant cell culture system, 

the monarch DpN1 cells. When overexpressed alone, dpCRY2 was evenly 

distributed between cytoplasm and nucleus (B-100%; Table 5-1C). The higher 

nuclear presence of transiently expressed dpCRY2 in DpN1 cells, as compared 

to that in S2 cells, is probably due to endogenously expressed clock genes 

including clk, cyc, and per (Zhu et al., 2008). Co-expression of dpCLK:CYC or 

dpPER completely shifted cytoplasmic dpCRY2 into the nucleus (N-100%; Table 

5-1C). 

The data presented above suggest that nuclear entry of dpCRY2 is 

ineffective in both S2 cells and DpN1 cells, and co-expression of dpCLK:CYC or 

dpPER can both facilitate nuclear accumulation of dpCRY2. A functional nuclear 

localization sequence (NLS) was mapped in the C-terminal domain of mCRY1 

protein (Chaves et al., 2006). The C-terminal part of dpCRY2 is not conserved 

compared to mCRY1, which may explain the ineffective nuclear entry dpCRY2. 

The nuclear accumulation of dpCRY2 is likely mediated by the possible NLS of 

either PER or CLK:CYC complex. Indeed, in the mouse clock, efficient nuclear 

entry of mPER2-mCRY1 complex requires NLS of mPER2 (Chaves et al., 2006). 
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2. Rhythmic nuclear accumulation of dpCRY2 in DpN1 cells can be 

disrupted by dsRNA knockdown of dpPER or dpCLK:dpCYC  

We have previously shown that endogenously expressed dpCRY2 changes 

its cellular localization during the 12h:12h light:dark cycle in DpN1 cells (Zhu et 

al., 2008). Nuclear dpCRY2 peaks at ~ZT4 and is coincident with the maximum 

repression of dpCLK:CYC-dependent transcription, as indicated by the low levels 

of per mRNA. On the other hand, PER, CLK, and CYC are all nuclear proteins 

across the LD cycles in DpN1 cells (data not shown). As suggested by the results 

from transiently transfected S2 cells and DpN1 cells, both dpCLK:CYC and 

dpPER can contribute to the nuclear accumulation of dpCRY2. To test the 

possible roles of PER and CLK:CYC in the rhythmic nuclear accumulation of 

endogenously expressed dpCRY2, we used double-stranded RNAs (dsRNA) to 

knock down expression of per or clk/cyc and used ICC to examine the 

subsequent cellular localization of dpCRY2 at ZT4 and ZT16, corresponding to 

the anticipated peak and trough times of dpCRY2 nuclear accumulation, 

respectively.  

Because dsRNA against per can lead to significant reduction in both PER 

and CRY2 abundance (Zhu et al., 2008), we used submaximal amount of per 

dsRNA and were able to obtain efficient PER knock-down (~80% reduction, 

Figure 5-1A), and yet only partially reduce dpCRY2 level (~40% reduction, Figure 

5-1A). At ZT4, PER knockdown led to a substantial shift of dpCRY2 to the 

cytoplasm (Figure 5-1B) compared to the control GFP dsRNA treated cells 
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(Figure 5-1B). At ZT16, there was no significant difference in dpCYR2 

localization observed between per dsRNA treated cells and GFP dsRNA treated 

cells (Figure 5-1C). Western blots confirmed that dpCLK and dpCYC expression 

levels were not affected by per dsRNA (Figure 5-1A). To rule out the possibility 

that the change of dpCRY2 localization at ZT4 was a direct result of decreased 

dpCRY2 abundance, we used cry2 dsRNA to knockdown dpCRY2 level directly. 

dpCRY2 localization was only slightly shifted to the cytoplasm at ZT4 (Figure 5-

1B). Clk and cyc dsRNA not only caused significant reduction in CLK and CYC 

abundance, but also led to a substantial reduction in PER abundance (Figure 5-

1A), probably due to decreased per transcription. Although clk and cyc dsRNAs 

both resulted in an impaired nuclear localization of dpCRY2 at ZT4 (Figure 5-1B), 

these effects could be explained by the reduced PER abundance.  

The above evidence from endogenously expressed dpCRY2 in DpN1 cells is 

consistent with the role of PER promoting dpCRY2 nuclear accumulation, while 

the roles of CLK and CYC are less clear. 

3. The photolyase-like domain of dpCRY2 is sufficient to inhibit 

dpCLK:dpCYC dependent transcription in S2 cells 

In the mouse clock, mCRYs physically associate with mCLK:BMAL1 upon 

entering the nucleus to shut down transcription (Lee et al., 2001). To further 

understand how monarch CRY2 inhibits dpCLK:dpCYC dependent transcription, 

we tested dpCRY2 deletion mutants to identify the region responsible for 

inhibiting dpCLK:CYC dependent transcription in S2 cells.  
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Sequence alignment of selected vertebrate CRYs and insect type II CRYs 

revealed that they all possess a conserved photolyase-like core domain 

occupying ~500 aa (amino acid) of their N-terminus (Figure 5-2A). They also 

have a largely unconserved C-terminal extension, except for a short sequence 

called the coil-coil domain (CC domain, Figure 5-2A; see below) immediately 

after the photolyase-like domain, which is highly conserved across all species 

examined.  

In a recent study of mouse CRY, deletion of the mCRY1 C-terminal 

extension (Figure 5-2A) totally abolished its ability to repress mCLK:BMAL1 

dependent transcription in cultured mammalian cells (Chaves et al., 2006). 

Deletion of the CC domain significantly reduced the inhibitory activity of mCRY1, 

while deletion of the rest of the C-terminal extension (tail, the region 3’ to the CC 

domain, Figure 5-2A) had no effect on mCRY1 inhibitory activity. It was also 

shown that the CC domain is the binding site for the mPERs and mBMAL1. 

Since the CC domain is highly conserved between vertebrate CRY and 

insect type II CRYs (Figure 5-2A), we were interested to know whether the CC 

domain of insect type II CRYs also plays a critical role in transcriptional inhibition. 

We tested three insect CRY2 proteins whose tails (C-terminal extension after CC) 

vary in length (Figure 5-2A and B): monarch CRY2 (dpCRY2), Tribolium 

castaneum (the red flour beetle) CRY2 (tcCRY2), and Anopheles gambiae 

(mosquito) CRY2 (agCRY2). As expected, the highly variable tails from the three 

insect CRY2s were dispensable for transcriptional inhibition, as all three tail 
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deletions (dpCRY2ΔT, agCRY2ΔT, and tcRY2ΔT) were still capable of fully 

repressing dpCLK:CYC (Figure 5-2C). 

We further deleted the CC domain from the three CRY2s and constructed 

dpCRY2ΔTCC, tcCRY2ΔTCC and agCRY2ΔTCC (Figure 5-2B). We also made a 

CC only deletion of dpCRY2, called dpCRY2ΔCC (Figure 5-2B). dpCRY2ΔTCC 

and dpCRY2ΔCC are both unstable (Figure 5-2D), which make it difficult for 

further investigation. tcCRY2ΔTCC and agCRY2ΔTCC, on the other hand, were 

both expressed at normal levels (data not shown). Importantly, they were still 

able to effectively repress dpCLK:CYC dependent transcription (Figure 5-2E).  

The above evidence indicates that the photolyase-like core domain of insect 

type II CRYs is sufficient to repress dpCLK:CYC dependent transcription, while 

the conserved CC domain and the unconserved tail is dispensable for the 

inhibitory activity of insect CRY2s. This is in marked contrast to the finding with 

mCRY1 indicating that the CC domain is essential for its inhibitory function  

Another important function of mCRY1 CC domain is to bind mPER1-2 

(Chaves et al., 2006). We thus examined the interactions between different 

insect type II CRY deletions and dpPER by co-immunoprecipitation (co-IP). The 

low expression level of dpCRY2 CC deletions (dpCRY2ΔTCC and dpCRY2ΔCC) 

(Figure 5-2D) prevented us from assessing the possible dpPER binding functions 

of the CC domain in the monarch protein. We thus tested three tcCRY2 deletion 

constructs: tcCRY2, tcCRY2ΔT and tcCRY2ΔTCC for their ability to interact with 
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dpPER. One of the deletion construct, tcCRY2ΔTCC, failed to pull down dpPER, 

while full length tcCRY2 and tcCRY2dT both strongly bind to dpPER (Figure 5-3). 

Our data indicate that the photolyase-like domain of insect CRY2 is sufficient 

to inhibit dpCLK:dpCYC dependent transcription in S2 cells. Despite being highly 

conserved across insects and vertebrates, the CC domain of insect CRY2 seems 

not to be involved directly in transcriptional repression. The CC domain, however, 

does serve as a binding site necessary for interaction between tcCRY2 (possibly 

all insect CRY2s including dpCRY2) and dpPER. 

D. Discussion 

Nuclear entry of key repressor proteins within the circadian clock is tightly 

regulated to ensure accurate timing (Gallego and Virshup, 2007). In the mouse 

clock, mCRY1-2 are the major clock repressors and their nuclear entry is 

suggested to be regulated by interaction with PER1-2 (Lee et al., 2001; 

Shearman et al., 2000b). Here we show that over-expression of dpPER was 

capable of shifting cytoplasmic dpCRY2 to the nucleus in both S2 cells and DpN1 

cells (Table 5-1A and C). More importantly, dsRNA against per led to decreased 

dpCRY2 nuclear staining at ZT4 and subsequently disrupted the rhythmic 

dpCRY2 nuclear accumulation in DpN1 cells under LD cycles  (Figure 5-2B), 

consistent with the role of PER promoting nuclear accumulation of dpCRY2.  

The mechanism of how dpPER regulates dpCRY2 cellular localization 

seems to be complicated, because dpPER itself is always in the nucleus in our 
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ICC experiments (data not shown). dpPER undergoes temporal phosphorylation 

changes, with a notable increase in hyperphosphorylated form at ZT4 (Figure 5-

2A) (Zhu et al., 2008). Phosphorylation of dpPER could increase the binding 

affinity between dpPER and dpCRY2 and lead to dpCRY2 nuclear accumulation. 

This could be tested by co-immunopreciptation experiments to compare the 

binding affinity of PER and CRY2 between ZT4 and ZT16. The involvement of 

phosphorylation in dpCRY2 nuclear localization can also be tested by dsRNA 

knock-down of kinase(s). Initial candidates will be DOUBLETIME (DBT), since its 

Drosophila homologue is a major kinase responsible for dPER phosphorylation 

(Price et al., 1998) and regulates its protein abundance, as well as cellular 

localization (Bao et al., 2001; Cyran et al., 2005; Nawathean et al., 2007). 

Preliminary data showed that dbt dsRNA in DpN1 cells led to increased 

hypophosphorylated PER and increased overall PER abundance (data not 

shown). Interestingly, the rhythmic CRY2 nuclear accumulation was abolished 

with decreased nuclear accumulation at ZT4, similar to the result from the per 

dsRNA treated cells (data not shown).   

Nuclear localization sequence (NLS) mediates importin-α/β dependent 

protein nuclear translocation (Robbins et al., 1991). NLS have been identified in 

mPER1-2 and mCRY1-2 (Chaves et al., 2006; Hirayama et al., 2003; Sakakida 

et al., 2005). The NLS in the C-terminus (NLSc) of mCRY1 is important for its 

nuclear entry (Chaves et al., 2006). Cellular localization of mCRY1 with the 

mutated NLSc shows a significant shift from nucleus to the cytoplasm. The C-
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terminus of Insect CRY2 is highly variable in sequence, and does not contain a 

conserved NLS. The lack of NLSc could explain the cytoplasmic staining of 

dpCRY2 in S2 cells (Table 5-1A). The NLS in both mCRY1 and mPER2 are 

required for efficient nuclear accumulation of the mCRY1-mPER2 complex 

(Chaves et al., 2006). Since the NLSc is missing from dpCRY2, the possible NLS 

in dpPER might play a critical role in translocating dpPER-dpCRY2 complex into 

the nucleus. Candidate NLS of dpPER can be tentatively identified by sequence 

analysis, and then functionally mapped by testing cellular localization of different 

deletion or mutation constructs of dpPER in S2 cells. Then we would use NLS 

mutated dpPER to test its ability to move dpCRY2 into the nucleus in S2 cells.  

The direct assessment of the possible roles of CLK or CYC in dpCRY2 

nuclear accumulation was complicated by the fact that knock-down of either gene 

led to decreased PER abundance. One approach to overcome this problem 

would be expressing an epitope tagged per under a constant promoter and 

examine CRY2 localization in the cells staining positive for the tag. As described 

in the Result section and further discussed below, tcCRY2 CC/tail deletion 

(tcCRY2ΔTCC) was not able to bind PER in S2 cells (Figure 5-3). We could 

potentially transfect epitope tagged tcCRY2dTCC into DpN1 cells under the 

control of a constant promoter or an E-box promoter, and look at its localization 

at ZT4 and ZT16 by ICC. If this construct can be expressed at a reasonable level 

and it indeed does not interact with PER, it might be able to provide us direct 
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evidence for the roles of CLK and CYC in dpCRY2 localization without the 

involvement of PER. 

The CC domain of mCRY1 is not only necessary for mPER1-2 binding, it is 

also required for full repression of CLK:BMAL1 dependent transcription (Chaves 

et al., 2006). The CC domain of insect type II CRY is highly conserved with their 

vertebrate counterparts. Considering its highly conserved nature, it is not 

surprising that the CC domain is also functionally conserved as the primary 

binding site for PER. However, it was unexpected that the conserved CC domain 

of insect CRY2 is not required for transcriptional repression, as the photolyase-

like core domain of tcCRY2 and agCRY2 was fully capable of repressing 

CLK:CYC dependent transcription in S2 cells (Figure 5-2E). The sharp difference 

between insect CRY2 and mCRY1 could be due to the different cell lines used 

(S2 vs Cos7), and/or the different transcriptional activators involved (monarch 

CLK:CYC vs mouse CLK:BMAL1). In fact, mCRY1ΔTCC (photolyase-like domain 

only) can efficiently repress dpCLK:CYC dependent transcription in S2 cells (data 

not shown).   

The corresponding sequence to the CC domain of type II CRY, although not 

well conserved, also exists in Type I CRY and 6-4 photolyase, both of which 

(dpCRY1 and dp6-4 photolyase) are expressed in monarch butterflies. 

Substitution of dpCRY2 CC domain with the corresponding domain from dpCRY1 

or dp6-4 photolyase might create a stable protein and enable us to examine the 

function of dpCRY2 CC domain directly. Although we mapped insect CRY2 
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inhibitory function onto the photolyase-like core domain, it is a rather large region 

(~500 aa). Further substitutions of different regions of photolyase-like domain of 

dpCRY2 (or other insect CRY2s) with corresponding dpCRY1 or dp6-4 

photolyase sequences, both of which are inactive as transcriptional repressors, 

could help us narrow down the domain(s) important for transcriptional repression. 

Collectively, our data advanced our understanding of how type II CRY 

repress transcription. PER seems to be required for efficient CRY2 nuclear entry 

both in an overexpression system and more importantly in a clock-like context. 

Once entering the nucleus, dpCRY2 can execute its inhibitory function through its 

photolyase-like core domain. However, a lot more has to be done to delineate 

how PER regulates CRY2 nuclear entry in DpN1 cells and the possible roles of 

protein kinases and CLK:CYC in this process. We believe further experiments in 

S2 cells and DpN1 cells will help us understand more about animal clock 

mechanisms. 
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Table 5-1. Transiently expressed dpCRY2-V5 cellular localization.  

 
A  

Constructs Cell type C (% of total cells) B (% of total cells) N (% of total cells) 
dpCRY2-V5  S2 67.4±1.4 32.6±1.4 0 
dpCRY2-V5  + dpCLK:CYC S2 0 1.1±1.1 98.9±1.1 
dpCRY2-V5 +dpPER S2 0 34±1.4 66±1.4 

 

B 

Constructs Cell type C (% of total cells) B (% of total cells) N (% of total cells) 
dpCRY2-V5  S2 64.6±6.5 35.4±4.8 0 
dpCRY2-V5  + LMB S2 19.8±11.8 80.2±11 0 
dTIM-V5 S2 95.6±3.3 4.4±1.9 0 
dTIM-V5 + LMB S2 0 11.1±5.1 88.9±5.1 

 

C 

 

Constructs Cell type C (% of total cells) B (% of total cells) N (% of total cells) 
dpCRY2-V5  DpN1 0 100 0 
dpCRY2-V5+dpCLK:CYC DpN1 0 0 100 
dpCRY2-V5 +dpPER DpN1 0 0 100 

(A) dpCRY2-V5 localization in S2 cells. S2 cells were seeded on 22X22mm 

cover slip and transfected with dpCRY2-V5 (150ng) with or without dpCLK:CYC 

(200ng each) or dpPER (300ng). Cells were processed for immunocytochemistry 

48 hours after transfection using a V5 monoclonal antibody (Invitrogen) and a 

Alexa594 conjugated secondary antibody (Invitrogen). Cells were also stained 

with DAPI to visualize the nuclei. Slides were viewed under a fluorescence 
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microscope, and at least 30 positive stained cells were counted for each slide. 

Each positively stained cell examined was categorized as one of the following 

staining patterns: nuclear (N), cytoplasmic (C), or both nuclear and cytoplasmic 

(B). The percentage of each staining was calculated by dividing the number of 

cells of each staining by the total cell number. The mean ± SEM of three 

replicates are shown. (B) LMB slightly increases dpCRY2 nuclear localization in 

S2 cells. Cells were transfected with either dpCRY2-V5 (150ng) or dTIM-V5 

(200ng). 6 hours before harvest, DMSO (control) or leptomycin B (LMB, to a final 

concentration of 10nM) was added to the cells. Cells were then processed as 

described above. (C) dpCRY2-V5 localization in DpN1 cells. Cells were similarly 

transfected and processed as above, with 200ng of dpCRY2-V5, dpCLK, dpCYC 

and 300ng of dpPER used. 
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Figure 5-1. dsRNA knock-down of PER, CLK, and CYC led to impaired 
CRY2 nuclear entry.  

(A) Protein abundance of PER, CRY2, CLK and CYC in dsRNA treated DpN1 

cells at ZT4 and ZT16. Cells were cultured under 12h:12h light:dark cycles. Cells 

were transfected with dsRNA for 5-h in the light phase of the first LD cycle. 

dsRNA against per, cry2, clk, and cyc were used, as well as dsGFP (Gree 

Fluorescent Protein) as control. Cells were collected at designated time in the 

fourth day in LD and subjected to Western blots. Monarch specific antibodies 

against PER (GP40), CRY2 (GP51), CLK (GP67), and CYC (GP72) were used. 

(B) dpCRY2 localization in dsRNA treated DpN1 cells at ZT4. Cytoplasmic: green, 

Both cytoplasmic and nuclear: orange, Nuclear: blue. (C) dpCRY2 localization in 

dsRNA treated DpN1 cells at ZT16. Cytoplasmic: green, Both cytoplasmic and 

nuclear: orange, Nuclear: blue. 
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Figure 5-2.Photolyase-like domain of insect CRY2 is sufficient to repress 
dpCLK:dpCYC-mediated transcription in S2 cells.  
(A) Domain comparison of mouse CRY1 and three insect CRY2. Dp, Danaus 

plexippuse (monarch butterfly); ag, Anopheles gambiae (mosquito); tc, Tribolium 

castaneum (red flour beetle) (B) Schematic presentation of deletion constructs of 

insect CRY2. (C) Un-conserved tail is dispensable for transcriptional repression. 

The monarch butterfly per E box enhancer luciferase reporter (dpPer4Ep-Luc; 

10ng) was used in the presence (+) or absence (-) of monarch CLK/CYC 

expression plasmids (5ng each). N-terminal FLAG-tagged dpCRY2, and tail 

deleted dp-, ag-, and tcCRY2 (50ng each) was used. Luciferase activity relative 

to β-galactosidase activity was calculated. Each value is the mean ± SEM of 

three independent transfections. (D) CC deletion led to unstable dpCRY2 

proteins. N-terminal FLAG-tagged dpCRY2 deletion constructs (200ng each) 

were used. A monoclonal FLAG antibody was used for Western blot. (E) CC 

domains of agCRY2 and tcCRY2 are dispensable for transcriptional repression. 

Transcription-inhibitory activities of tail and tail/CC deletions of agCRY2 and 

tcCRY2 were tested by luciferase reporter assay as described above. Each value 

is the mean±SEM of three independent transfections. Western blot of N-terminal 

FLAG-tagged protein expression levels for each CRY2 construct is depicted 

below the graph. 
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Figure 5-3. CC domain of tcCRY2 is required for dpPER binding.  
S2 cells were transfected with dpPER-V5 and one of the following FLAG-tcCRY2 

constructs: FLAG-tcCRY2, FLAG-tcCRY2ΔT, FLAG-tcCRY2ΔTCC. Cell lysate 

was subjected to immunoprecipitation with a FLAG monoclonal antibody or 

mouse normal IgG (control), and subsequently analysed by Western blot using a 

V5 monoclonal antibody. 
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CHAPTER VI: SUMMARY 

The colorful monarch butterflies undergo an extraordinary long range 

migration every year (Brower, 1995). The circadian clock of the monarch butterfly, 

which underlies the time-compensated sun compass for its navigation (Froy et al., 

2003; Mouritsen and Frost, 2002; Perez et al., 1997), has also been nothing less 

than inspiring.  

Two CRYs play important yet distinct roles in the monarch circadian clock 

(Yuan et al., 2007; Zhu et al., 2005). Monarch CRY1, similar to Drosophila CRY, 

functions as a blue light photoreceptor for circadian entrainment (Zhu et al., 

2008). Monarch CRY2, like its mammalian homologs, functions as a major 

transcriptional repressor of the main feedback loop of the clock. Thus, the 

monarch butterfly circadian clock exemplifies an evolutionarily ancient clock, 

which shows characteristics of two evolutionarily distant clocks: the Drosophila 

clock and the mouse clock. The existence of both CRYs has also been found in 

other insects, including silkmoth (Antheraea pernyi) and mosquito (Anopheles 

gambiae). 

Drosophila, on the other hand, only has the photoreceptive type I CRY. The 

major repressor of Drosophila clock is PER. Interestingly, there is also a 

switchover of the transcriptional activator. In monarch butterfly, dpCLK:CYC 

activates transcription via a C-terminal transactivation domain of dpCYC 
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(unpublished data), which is consistent with the studies of A. pernyi (Chang et al., 

2003) and mouse (Kiyohara et al., 2006; Takahata et al., 2000). It is intriguing to 

propose that the loss of transcriptional repressive type II CRY in Drosophila is 

functionally associated with the loss of the transactivation domain of dCYC and 

the subsequent transfer of the role of the major circadian clock activator from 

CYC to CLK. 

In some other insects, including beetles (Tribolium castaneum) and 

honeybees (Apis mellifera), only the transcriptional repressive type II CRY2 

exists. Considering the dominant role of Drosophila CRY in the light entrainment 

of Drosophila clock (Emery et al., 1998; Emery et al., 2000b; Stanewsky et al., 

1998), it would be interesting to know how these insects entrain to light. Do they 

rely solely on the eyes, or is there a yet to be identified molecule which can 

function as a cell autonomous photoreceptor? It will be interesting to know 

whether the peripheral tissues of beetles or honeybees can be independently 

entrained to light. TIM is expressed in the beetle. Thus it is plausible that the light 

entrainment is still mediated by TIM degradation, probably through opsin-based 

retinal and extraretinal photoreceptors (Gilbert, 1994). The light entrainment 

mechanism in honeybee is even more intriguing since no TIM homolog has been 

found in its genome (Rubin et al., 2006). This suggests a totally different light 

input pathway, which may involve new photo-sensing structures (Spaethe and 

Briscoe, 2005) and an unknown molecular cascades leading to the resetting of 

the molecular oscillations. 
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DpN1 cells, a monarch butterfly cell line, contributed tremendously to our 

understanding of the monarch butterfly clock. In DpN1 cells, a CRY2-centric 

negative feedback loop and a CRY1-dependent light input pathway co-exist and 

give rise to a light-driven clock in these cells (Zhu et al., 2008). Genetic 

manipulations in DpN1 cells, especially double-stranded RNA approach, 

provided some of the strongest evidence so far supporting the photoreceptor role 

of dpCRY1 and transcriptional repressor role of dpCRY2.  DpN1 cells will 

continue to serve as an invaluable tool for insect circadian clock research. 

Immunocytochemistry using monarch specific antibodies against key clock 

protein like CRY1, TIM and CRY2, not only determined the putative clock 

neurons in the monarch brain, but also revealed possible CRY2-positive fiber 

pathways connecting the clock to the central body of the brain (Zhu et al., 2008), 

a likely location for the sun compass in insects (Heinze and Homberg, 2007). 

Further experiments combining electrophysiology and immunostaining should 

help us to link the circadian clock to the sun compass in monarch butterflies. 

Collectively, our work builds a solid foundation for future characterization of 

monarch circadian clock and navigation. One major aspect of future studies will 

be focused on DpN1 cells to elucidate both the CRY1-dependent light input 

pathway and the CRY2-centric transcriptional negative feedback loop. Using a 

high-throughput RNAi strategy, we may discover novel components of the CRY1-

dependent light input pathway in DpN1 cells. Further characterization of the 

candidate genes can be carried out in DpN1 cells and in Drosophila for possible 
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homologs. We will continue to delineate the mechanism of CRY2 nuclear 

translocation. Using co-immunoprecipitation and/or tandem affinity purification, 

we may identify novel components involved in the transcriptional negative 

feedback loop in DpN1 cells.
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