Voyager Therapeutics - A Spinout from UMass Gene Therapy and RNAi Technologies

Guangping Gao
University of Massachusetts Medical School

May 20th, 11:15 AM

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Genetics and Genomics Commons, Pharmaceutics and Drug Design Commons, Therapeutics Commons, and the Translational Medical Research Commons

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
VOYAGER THERAPEUTICS

- A SPINOUT FROM UMass
GENE THERAPY AND RNAi TECHNOLOGIES

Guangping Gao, PhD
CCTS Mini Symposium
May 20, 2016
GENE THERAPY STRATEGIES: AN OVERVIEW
1. G. Gao is a cofounder of Voyager Therapeutics, a biopharmaceutical company and holds equity in the company.

2. G. Gao is an inventor on patents with potential royalties licensed to Voyager and other biopharmaceutical companies.
GENE THERAPY STRATEGIES: AN OVERVIEW
Drug Development

- Conventional versus Gene Tx

Cost: $3 Billions

GT drug development:
- starts with a specific therapeutic agent
- skips the drug discovery phase
Progress in Gene Therapy

- Driven by Vector Platform Development

Gene Therapy

- The path to today & beyond

1990: First human gene therapy for ADA via retrovirus (Sept 14, 1990)

1994: Gao G entered the field

2002: Discovery of AAV8

2008: AAV2 gene transfer to treat LCA (2008)

2011: CAR-T-cell therapy (2011)

2011: AAV8 to treat hemophilia B (2011)

2012: Glybera approved by EMA

Clinical trial for X-linked ALD (2014)

HORAE GTC

University of Massachusetts Medical School
COMMERCIALIZATION OF GENE THERAPY
- RAPID TRANSFORMATION IN THE PAST FEW YEARS

More Gene Tx companies founded and went public

More and more investment $ into Gene Tx

Year 2013

Year 2014

Q 1, 2015

Year 2015

Proj ect i on

GT Investment $ in billion

0

5

10

15

COMMERCIALIZATION OF GENE THERAPY
- RAPID TRANSFORMATION IN THE PAST FEW YEARS

AAV companies go to IPO faster & faster

More than 200 gene therapy companies globally

✅ More than 200 gene therapy companies globally
WHY UMMS?
- A WORLD LEADER IN RNAi, DEGENERATIVE NEUROLOGICAL DISEASE RESEARCH & AAV GENE THERAPY

- Our faculty have made key advances
 - World leading scientists in RNAi research (Mello, Ambros, & Zamore)
 - World leading physician scientists in neurodegenerative disorders
 - Brown for Amyotrophic Lateral Sclerosis
 - Aronin for Huntington Disease
 - World leading rAAV gene therapy scientists
 - First to discover novel primate AAVs for efficient and stable gene transfer (Gao, 2002)
 - First to use AAV gene therapy in patients with 4 INDs (Flotte 1995)

- Horae Gene Therapy Center
 - A >12,000 Ft² state-of-art research facility on the 6th floor of Albert Sherman Building
 - Research home for 15 faculty and affiliated faculty members, > 60 trainees and staff
IMPORTANT MILESTONES IN FOUNDING & GROWING OF VOYAGER

- Initially approached by 3rd Rock Venture
- Re-engagement by 3rd Rock Venture
- Voyager signed license agreement with UMMS for RNAi and rAAV technology platforms
- Continued discussions w/t 3RV on “AAVian”
- $45 M series A funding by 3RV & formally launching of Voyager
- $845 M committed by Sanofi/Genzyme for strategic collaboration w/t Voyager in CNS gene therapy
- Voyager secured $60 M series B funding from “Crossover” investors
- Voyager IPO $225 M cash
Company Founders

Voyager was founded by world leaders in the fields of AAV gene therapy, expressed RNA interference and neuroscience.

Krystof Bankiewicz, M.D., Ph.D.
Kinetics Foundation Chair in Translational Research and Professor in Residence of Neurological Surgery and Neurology, University of California at San Francisco

Guangping Gao, Ph.D.
Director, University of Massachusetts Medical School (UMMS) Gene Therapy Center & Vector Core; Scientific Director, UMMS-China Program Office; Professor of Molecular Genetics and Microbiology, UMMS

Mark Kay, M.D., Ph.D.
Dennis Farrey Family Professor, Head, Division of Human Gene Therapy, Departments of Pediatrics and Genetics, Stanford University School of Medicine

Phillip Zamore, Ph.D.
Howard Hughes Medical Institute Investigator; Gretchen Stone Cook Chair of Biomedical Sciences, Professor of Biochemistry and Molecular Pharmacology, and Co-Director of the RNA Therapeutics Institute, University of Massachusetts Medical School (UMMS)
Company Highlights

Robust product engine to engineer, optimize, manufacture and deliver AAV gene therapies

Pipeline of five programs for severe CNS diseases

Lead program, VY-AADC01, for advanced Parkinson’s disease with human POC expected in H2:2016

Strategic collaboration with Genzyme — gene therapy “know-how”

Strong financial position with ~$225 million of cash following IPO in November 2015, no debt

Management team and scientific founders that have pioneered significant advances in AAV gene therapy and neuroscience, and have extensive CNS drug development expertise (Steve Paul, MD, CEO)
Why CNS?

- Significant unmet medical need
- Genetically-validated targets
- Targeted delivery to regions of the brain & broader delivery to the spinal cord is achievable
- Durable transgene expression as CNS cells are terminally differentiated
- Immune-privileged site

Why AAV?

- Ability to target a variety of tissue & cell types within the CNS
- >1,300 patients (200 in CNS) treated, no AAV-related SAEs to date
- AAV does not readily integrate into the target cell genome, reducing potential for oncogenesis
- Ability to manufacture at commercial quality and scale
Commercial Scale AAV Manufacturing Capabilities

Process R&D
- Process R&D center at Voyager’s headquarters
- Research grade baculovirus / Sf9 production system
- Up to 250L bioreactor capacity
- Proprietary reagents for new capsids and constructs

Large Scale Research Capacity
- Collaboration with UMass Medical School
- Research grade baculovirus / Sf9 production system
- Up to 500L bioreactor capacity

Commercial Scale cGMP Capacity
- Collaboration with MassBiologics
- cGMP baculovirus / Sf9 production system
- Up to 1,000L bioreactor capacity
- Voyager retains IP and key process know-how
Robust Strategic Collaboration with UMMS

Voyager and UMMS collaborate under a broad strategic partnership to advance AAV gene therapy research, manufacturing and education

Research Collaboration
- Pilot grant program focused on understanding & optimizing AAV vectors for therapeutic use
- Licenses and sponsored research focused on novel AAV technology
- Opportunities for UMMS participation in Voyager clinical trials

Production & Manufacturing
- AAV vector supply from the UMMS Gene Therapy Vector Core to support Voyager research projects
- Partnership with MassBiologics to advance AAV process development & GMP production for Voyager product programs

Educational Support
- Postdoctoral training program
- Sponsorship of annual lecture series on AAV-mediated gene therapy
- Opportunities for Voyager to support graduate fellowships in the area of central nervous system AAV gene therapy