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Background. Malaria and Epstein-Barr virus (EBV) infection are cofactors in the pathogenesis of endemic
Burkitt lymphoma (eBL). The mechanisms by which these pathogens predispose to eBL are not known.

Methods. Healthy Kenyan children with divergent malaria exposure were measured for responses to EBV latent
and lytic antigens by interferon (IFN)–g enzyme-linked immunospot (ELISPOT) assay and interleukin (IL)–10
ELISA. Phytohemagglutinin (PHA), purified protein derivative (PPD), and T cell epitope peptides derived from
merozoite surface protein (MSP)–1, a malaria blood-stage antigen, were also evaluated.

Results. Children 5–9 years old living in an area holoendemic for malaria had significantly fewer EBV-specific
IFN-g responses than did children of the same age living in an area with unstable malaria transmission. This effect
was not observed for children !5 years old or those 19 years old. In contrast, IFN-g responses to PHA, PPD, and
Plasmodium falciparum MSP-1 peptides did not significantly differ by age. IL-10 responses to EBV lytic antigens,
PPD, and PHA correlated inversely with malaria exposure regardless of age.

Conclusions. Children living in malaria-holoendemic areas have diminished EBV-specific T cell immuno-
surveillance between the ages of 5 and 9 years, which coincides with the peak age incidence of eBL.

Burkitt lymphoma was first described in African chil-

dren in 1958 [1]. The highest incidence of endemic

Burkitt lymphoma (eBL) is in equatorial Africa and

Papua New Guinea (5–15 cases/100,000 children) [2,

3]. Within Africa, there is an uneven geographic dis-

tribution of eBL, which led Dalldorf [4] in 1962 to

suggest that malaria may be a risk factor for lympho-
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magenesis. In fact, there is a strong correlation between

residence in areas of intense, perennial malaria trans-

mission (i.e., holoendemic malaria) and the incidence

of eBL [3, 5].

eBL, the first human cancer discovered to have a viral

etiology, is associated with Epstein-Barr virus (EBV)

infection [6]. EBV is restricted to humans and infects

the vast majority of the world’s population [7]. In coun-

tries such as Kenya, EBV infection generally occurs by

2 years of age [8–11] and persists for life as a latent

infection in memory B cells [12]. The lytic phase of

viral replication is thought to occur after plasma cell

differentiation [13–15]. The virus is periodically shed

in the saliva, suggesting that there is ongoing lytic-cycle

reactivation [16].

Immunosurveillance and control of EBV is domi-

nated by CD8+ human leukocyte antigen (HLA) class

I–restricted cytotoxic T lymphocyte (CTL) interferon

(IFN)–g responses to both latent and lytic viral epitopes

[17, 18]. An EBV-specific CD8+ T cell subset that has

reduced cytotoxicity and that secretes interleukin (IL)–

10 has also been described [19]. Two possible but not
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Table 1. Study participant demographics.

Site, characteristic

Age group

All1–4 years 5–9 years 10–14 years

Kisumu

Study participants enrolled, no. 32 36 36 104

Hemoglobin level, mean, g/dL 9.7 12.2 12.5 11.6

Children with malaria-positive smear,a % 77 72 83 77

Body temperature, mean, �C 36.9 36.7 37.0 36.9

Nandi

Study participants enrolled, no. 36 48 43 127

Hemoglobin level, mean, g/dL 12.0 12.9 13.5 12.8

Children with malaria-positive smear,a % 8 14 26 16

Body temperature, mean, �C 37.2 37.3 37.0 37.2

a Plasmodium falciparum prevalence differed significantly between study sites ( ).P ! .0001

mutually exclusive models have been proposed to explain how

holoendemic malaria could affect EBV latency and immunity

in children and thereby increase the risk of eBL: suppression

of EBV-specific T cell immunity and/or expansion of the la-

tently infected B cell pool (reviewed in [20, 21]). The few studies

that have investigated the role played by malaria in T cell con-

trol of EBV-infected B cells in clinical samples have used an in

vitro regression assay that measures the ability of T cells to

control the outgrowth of EBV-transformed B lymphocytes [22–

24]; regression of colonies is thought to be mediated by T cells

that express CD8 and produce IFN-g [25, 26]. Using this assay,

Moss et al. [23] found that adults living in malaria-holoendemic

regions of Papua New Guinea had impaired EBV-specific T cell

responses. Later observations from The Gambia reported that

children experiencing acute clinical malaria had impaired EBV-

specific T cell immunity [22, 24]. However, conclusions from

this earlier work were based on a relatively small number of

children or on adults with mature T cell immunity, whose

responses might differ from those of children. In addition,

regression assays do not identify the effector T cells or cytokine

mediators involved in the control of EBV-infected B cells, and

no distinction was made between EBV-specific immunosup-

pression and generalized depression of T cell immunity.

The study described here investigated the effect of malaria

on EBV immunity and assessed whether the intensity and du-

ration of malaria exposure influences EBV-specific IFN-g and

IL-10 responses in healthy children from 2 epidemiologically

distinct areas of western Kenya that differ markedly in the

incidence of eBL [3, 5, 27, 28]. In addition, malaria-specific

cytokine responses were examined concomitantly to address

the question of whether there are global versus EBV-specific

alterations in T cell immunity in children exposed to malaria.

PARTICIPANTS, MATERIALS, AND METHODS

Participants. Approval for this study was obtained from the

Kenya Medical Research Institute (KEMRI) National Ethical

Review Committee and the Institutional Review Board for Hu-

man Studies at the University Hospitals of Cleveland, Case

Western Reserve University. Written, informed consent was ob-

tained from the guardians or parents of the study participants.

Study participant recruitment and sample collection were

conducted in July–August 2002 in 2 epidemiologically distinct

areas of Kenya (Kisumu District and Nandi District), as de-

scribed elsewhere [11]. The characteristics of the study popu-

lation are summarized in table 1. Children from the holoen-

demic-malaria transmission area are referred to as “Kisumu

children” ( ), and children from the sporadic, unstablen p 104

malaria transmission area are referred to as “Nandi children”

( ). Children (1–14 years old) were enrolled if they hadn p 127

overall good health and were excluded from analysis if they

were EBV seronegative [11]. Of note, 77% of the Kisumu chil-

dren had asymptomatic Plasmodium falciparum infection de-

tected by blood smear, which is typical for resident children

from this area. In contrast, 16% of the Nandi children had

positive blood smears after a recent malaria epidemic, dem-

onstrating the dramatic difference in malaria exposure between

the 2 populations.

Sample collection. Peripheral blood was collected in so-

dium-heparinized tubes and transported to the Case Western

Reserve University laboratory located at KEMRI’s Center for

Vector Biology and Control Research in Kisumu for processing

the same day. Peripheral blood mononuclear cells (PBMCs)

were separated from whole blood by ficoll-hypaque density

gradient centrifugation and suspended in RPMI 1640 (GIBCO)

supplemented with 10% heat-inactivated human AB serum, 50
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Table 2. Epstein-Barr virus (EBV) lytic and latent peptides.

EBV
protein Cycle

Peptide
pool

Amino acid
HLA

restrictionSequence Residues

BRLF1 Lytic EP1 DYC NVL NKE F EBV 28–37 A24

BRLF1 Lytic EP1 RVR AYT YSK EBV 148–156 A3

BZLF1 Lytic EP1 RAK FKQ LL EBV 190–197 B8

BMLF1 Lytic EP1 GLC TLV AML EBV 280–288 A2

EBNA3A Latent EP2 FLR GRA YGL EBV 325–333 B8

EBNA3A Latent EP2 RPP IFI RRL EBV 379–387 B7

EBNA3A Latent EP2 SVR DRL ARL EBV 596–604 A2

EBNA3A Latent EP2 RLR AEA QVK EBV 603–611 A3

EBNA3B Latent EP2 TYS AGI VQI EBV 217–225 A24

EBNA3B Latent EP2 VEI TPY KPT W EBV 657–666 B44

EBNA3C Latent EP2 RRI YDL IEL EBV 258–266 B27

NOTE. EBNA, Epstein-Barr nuclear antigen; HLA, human leukocyte antigen.

mg/mL gentamicin, 10 mmol/L HEPES, and 2 mmol/L gluta-

mine for the cytokine-stimulation assays.

Peptide selection. Molecular HLA class I genotyping was

performed previously on a random, unrelated subset of resi-

dents from each study population [29]. The frequency of HLA

class I alleles was similarly heterogeneous in Kisumu and Nandi

but not significantly different from each other. Therefore, our

selection of HLA class I–restricted epitope peptides did not

create a response bias between study populations that would

result from differences in HLA genotype [29]. Previously de-

scribed HLA class I–restricted EBV epitope peptides from im-

munodominant lytic and latent antigens [17, 18] were selected

and pooled. Peptides from EBV lytic (BRLF1, BZLF1, and

BMLF1) and EBV latent (Epstein-Barr nuclear antigen [EBNA]

3A, EBNA3B, and EBNA3C) antigens were selected on the basis

of their predicted binding affinities to prevalent HLA alleles in

our study population (table 2). Peptides were synthesized and

purified to 195% by high-performance liquid chromatography

and were lyophilized for stability (Sigma Genosys). Peptides

were reconstituted in 30% (wt/vol) dimethyl sulfoxide and di-

luted in sterile PBS (GIBCO) to a concentration of 0.1 mg/mL.

EBV peptides were pooled so that each peptide was used at a

final concentration of 10 mg/mL.

Malaria-specific cytokine responses were assessed using pre-

viously described T cell epitopes of merozoite surface protein

(MSP)–1, a protein expressed during the erythrocytic stage of

the parasite life cycle. A C-terminal peptide referred to as M1

(VTHESYQELVKKLEALEDAV; residues 20–39) [30] and an N-

terminal peptide referred to as M2 (GISYYEKVLAKYKDDLE;

residues 1467–1483) [31] were used for ex vivo cytokine-stim-

ulation assays. The specificity of malaria-peptide responses was

tested on PBMCs from 20 malaria-unexposed adult US vol-

unteers. EBV-seropositive US PBMC donors had robust cyto-

kine responses to the EBV peptides but lacked responses to the

malaria peptides (data not shown). Two positive controls were

used to stimulate PBMCs/well: the mitogen phytohe-51 � 10

magglutinin (PHA; Sigma-Aldrich) at 1 mg/mL and purified

protein derivative (PPD) at 10 mg/mL (Tubersol 5 TU, Ameri-

source Bergen). PBS was added to PBMCs/well as the60.5 � 10

negative control and represented the background level of IFN-

g produced by unstimulated cells.

Cytokine assays. IFN-g enzyme-linked immunospot (ELI-

SPOT) assays were performed using sterile Millipore MAIP

ELISPOT 96-well microtiter plates precoated at 4�C overnight

with 5 mg/mL human anti–IFN-g monoclonal antibody (En-

dogen M-700A). The plates were washed with sterile PBS and

blocked with 10% heat-inactivated fetal bovine serum. PBMCs

plated at cells/well plus stimulant were incubated at60.5 � 10

37�C in 5% CO2 for 72 h. Plates were washed and a second

biotinylated anti–IFN-g monoclonal antibody (Endogen M-

701B) was applied (0.75 mg/mL) for 1.5 h at 37�C, followed by

washing, incubation with a 1:2000 dilution of streptavidin-

conjugated horseradish peroxidase (DAKO P0397) for 2 h at

room temperature, washing, and color development by addi-

tion of 1% 3-amino-9-ethyl-carbazole in 0.1 mol/L acetate

buffer catalyzed by 0.015% hydrogen peroxide. The reaction

was stopped after 10–20 min by washing with distilled water.

Plates were dried in the dark at room temperature. The number

of spot-forming units per well was counted using ImmunoSpot

scanning and imaging software (version 4; Pharmingen). Re-

sults are expressed as spot-forming units per PBMCs.61 � 10

IL-10 ELISAs were performed after PBMC stimulation under

conditions similar to those of the IFN-g ELISPOT assay but

with a final concentration of cells/well in 200 mL of60.2 � 10

complete RPMI in U-bottom microtiter plates (Microtest; BD).

Cell culture supernatants were removed after 72 h and tested
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Table 3. Aggregate cytokine responses, by children (1–14
years old) with divergent malaria exposure.

Assay, stimulant

Proportion (%) positive

PKisumu Nandi

IFN-g ELISPOT assay

EP1 36/104 (34.6) 52/117 (44.4) .14

EP2 30/104 (28.8) 41/117 (35.0) .32

M1 17/103 (16.5) 26/113 (23.0) .23

M2 25/104 (24.0) 31/113 (27.4) .57

PPD 90/103 (87.4) 103/115 (89.6) .61

PHA 92/104 (88.5) 109/117 (93.2) .22

IL-10 ELISA

EP1 2/104 (1.9) 22/126 (17.5) .0001

EP2 1/104 (1.0) 6/126 (4.8) .095

M1 5/104 (4.8) 14/126 (11.1) .084

M2 7/104 (6.7) 18/126 (14.3) .067

PPD 30/102 (29.4) 76/123 (61.8) .00001

PHA 68/104 (65.4) 103/127 (81.1) .0067

NOTE. Not all children had a sufficient peripheral blood mononuclear cell
yield to test every stimulation condition, as reflected by the denominators.
Boldface type indicates a significant difference ( ) between Kisumu andP ! .05
Nandi children for that stimulant. ELISPOT, enzyme-linked immunospot;EP1,
Epstein-Barr virus (EBV) lytic peptide pool; EP2, EBV latent peptide pool; M1
and M2, malaria peptides; PHA, phytohemagglutinin; PPD, purified protein
derivative.

Figure 1. Proportion of interferon (IFN)–g enzyme-linked immunospot
(ELISPOT) responders, by age group. The proportion of IFN-g ELISPOT
responders was compared between study sites according to the following
age groups: 1–4-year-olds (A), 5–9-year-olds (B), and 10–14-year-olds
(C). Black bars show positive responders from Kisumu, and white bars
show positive responders from Nandi. Stimulation conditions included
the following: an Epstein-Barr virus (EBV) lytic peptide pool (EP1); an EBV
latent peptide pool (EP2); malaria peptides (M1 and M2); purified protein
derivative (PPD); and phytohemagglutinin (PHA). Asterisks indicate that
significantly fewer 5–9-year-olds from Kisumu responded to the EBV lytic
( ) and EBV latent ( ) peptide pools than did Nandi childrenP p .003 P p .03
of the same age (x2 Fisher’s exact test).

for IL-10 by ELISA as described elsewhere [27]. Values for

baseline (unstimulated) culture supernatants were subtracted

from those for the peptide/mitogen-stimulated culture super-

natants. The concentration of cytokine secreted was determined

against a standard curve by use of recombinant IL-10 with a

sensitivity of 10 pg/mL.

Data analyses. Analyses were conducted using SAS (ver-

sion 8.2; SAS Institute). An IFN-g ELISPOT response was con-

sidered to be positive if the proportion of spot-forming units

in the stimulated well was significantly greater than that in the

unstimulated background well by a x2 Fisher’s exact test (P !

). Proportions of responders were compared across study.05

sites and age categories by use of a x2 Fisher’s exact test. An

IL-10 ELISA response to the malaria peptides was considered

to be positive if it was 12 SDs above the mean response for

the malaria-naive negative controls; the cutoff value for MSP-

1 M1 and M2 peptides was 40 pg/mL. Responses to EBV pep-

tides were found only for PBMCs from EBV-seropositive do-

nors (data not shown). A x2 test for homogeneity was used to

determine whether the proportion of children with IFN-g and

IL-10 responses was significantly different from that of the

adults. Continuous values of IFN-g precursor frequency or IL-

10 ELISA values among positive responders were compared

across study sites by use of a 2-sided Wilcoxon (Mann-Whitney

U) rank sum test. The correlation between an individual’s re-

sponse to both cytokines was assessed by use of the McNemar

test.

RESULTS

IFN-g responses in children with differing exposure to malaria.

Aggregate IFN-g ELISPOT responses in 1–14-year-old children
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Figure 2. Magnitude of interferon (IFN)–g enzyme-linked immunospot (ELISPOT) responses, by each age group. The magnitude of Epstein-Barr virus
(EBV) lytic (A) and latent (B) IFN-g responses was compared by age group and by residence (Kisumu vs. Nandi) for positive responders only. IFN-g
responses are expressed as spot-forming units per peripheral blood mononuclear cells (PBMCs). The no. of spot-forming units for each61 � 10
responder is represented as black circles for Kisumu children and as white squares for Nandi children, and a median bar is shown for each age
group.

from the malaria-holoendemic area in Kisumu District and the

malaria epidemic–prone area in Nandi District are shown in

table 3. No significant differences in IFN-g ELISPOT responses

to the EBV lytic peptide pool (EP1: BRLF1, BZLF1, and

BMLF1), the EBV latent peptide pool (EP2: EBNA3A, EBNA3B,

and EBNA3C), MSP-1 T cell epitopes (M1 and M2), PPD, or

PHA were observed when children of all ages with different

cumulative malaria exposure were compared.

Because malarial infection and clinical morbidity are highest

in children !5 years old and because protection against malaria

is acquired with age and duration of exposure to malaria [32,

33], we categorized the study participants into age groups as

follows: (1) 1–4 years old, when malaria susceptibility is the

greatest and the peak incidence of eBL has not yet been reached;

(2) 5–9 years old, when malaria susceptibility is declining and

the incidence of eBL is greatest; and (3) 10–14 years old, when

antimalaria immunity has developed and the incidence of eBL

has declined. IFN-g ELISPOT responses were analyzed accord-

ing to age group and compared between the malaria-endemic

study sites. Although the proportion of EBV-specific responders
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Figure 3. Proportion of interleukin (IL)–10 enzyme-linked immunospot
(ELISPOT) responders, by age group. The proportion of IL-10 ELISA re-
sponders was compared between study sites according to the following
age groups: 1–4-year-olds (A), 5–9-year-olds (B), and 10–14-year-olds
(C). Black bars show positive responders from Kisumu, and white bars
show positive responders from Nandi. Stimulation conditions included
the following: an Epstein-Barr virus (EBV) lytic peptide pool (EP1); an EBV
latent peptide pool (EP2); malaria peptides (M1 and M2); purified protein
derivative (PPD); and phytohemagglutinin (PHA). Asterisks indicate that
significant differences between Kisumu and Nandi children were observed
among 5–9-year-olds for EP1 ( ) and PPD ( ) and amongP p .009 P ! .001
1–4-year-olds for PPD and PHA ( , for both). Among children 10–P ! .001
14 years old, the P value for the difference between Kisumu and Nandi
children for EP1 was .051.

was similar for Kisumu and Nandi children aged 1–4 and 10–

14 years (figure 1A and 1C), fewer 5–9-year-old children from

Kisumu than from Nandi produced IFN-g to both the EBV

lytic (EP1, 21.6% vs. 53.1%; ) and the EBV latent (EP2,P p .003

18.9% vs. 40.8%; ) peptides (figure 1B). In contrast,P p .03

the proportion of IFN-g responders to the MSP-1 peptides,

PHA, and PPD did not significantly differ by age group or

malaria exposure. Interestingly, when the proportion of EBV

responders was compared between age groups among the Ki-

sumu children, the lowest proportion was found in the 5–9-

year-olds (18.9%) compared with the 1–4-year-olds (43.8%)

and the 10–14-year-olds (25.7%) ( ). This age-associatedP ! .001

loss of EBV-specific IFN-g response was not observed for the

Nandi children.

We next compared the magnitude of IFN-g responses among

the Kisumu and Nandi children with positive ELISPOT re-

sponses. The range of positive IFN-g responses was highly

variable: 12–836 sfu/ PBMCs for EP1 and 16–132261 � 10

sfu/ PBMCs for EP2. Median responses were not sig-61 � 10

nificantly different between age groups and study sites for either

of the EBV peptide pools (figure 2).

IL-10 responses by children with differing exposure to

malaria. Aggregate IL-10 ELISA responses in 1–14-year-old

children from the malaria-holoendemic area in Kisumu and

malaria epidemic–prone area in Nandi are shown in table 3.

We observed significantly fewer IL-10 responders to the EBV

lytic peptide pool ( ), PPD ( ), and PHAP p .0001 P p .00001

( ) in children from Kisumu than from Nandi. InP p .0067

contrast, the proportion of IL-10 responders to the EBV latent

peptide pool and the malaria peptides was similar between

study sites.

Children were grouped by age as described above, and the

proportion of IL-10 responders to each stimulus was then com-

pared by study site (figure 3). Analysis of age-specific IL-10

responses to the EBV lytic peptides (EP1) demonstrated that

5–9-year-old Kisumu children had significantly fewer responses

( ) than did Nandi children of the same age. ThereP p .009

were also fewer EP1 responders in the 10–14-year-old group

of Kisumu children compared with Nandi children of the same

age ( ). There were not enough children younger thanP p .051

5 years with IL-10 responses to EP1 to show significant dif-

ferences; however, no Kisumu children produced IL-10 in re-

sponse to EP1, compared with 11% of Nandi children. The

proportion of IL-10 responders to the EBV latent peptides

(EP2) was too low to show any significant differences within

age groups between the Kisumu and Nandi children. PPD- and

PHA-driven IL-10 responses were significantly less frequent in

1–4-year-olds ( ), and PPD-driven IL-10 responses wereP ! .001

also less frequent in 5–9 year olds from Kisumu than from

Nandi ( ). The proportion of IL-10 responders to PPDP ! .001

and PHA was similar for older Kisumu and Nandi children.

IL-10 responses to the MSP-1 peptides were either absent or

infrequent in children 1–4 years old regardless of study site and

appeared to be similarly infrequent in the older age groups.

The magnitude of IL-10 responses was compared between

age groups (figure 4). The median levels of IL-10 expressed by

the Nandi children in response to the EBV lytic peptides were
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Figure 4. Magnitude of interleukin (IL)–10 enzyme-linked immunospot (ELISPOT) responses, by age group. The magnitude of Epstein-Barr virus (EBV)
lytic (A) and latent (B) IL-10 responses was compared by age group and by residence (Kisumu vs. Nandi) for positive responders only. IL-10 responses
are expressed as picograms per milliliter. The level of IL-10 for each responder is represented as black circles for Kisumu children and as white
squares for Nandi children, and a median bar is shown for each age group.

similar between age groups. There were few or absent IL-10

responses to the EBV lytic and latent peptide pools in the

Kisumu children. The Nandi children had a similar paucity of

IL-10 responses to the EBV latent peptides.

Concordance of EBV-specific IFN-g and IL-10 responses.

The concordance of cytokine responses was examined to de-

termine whether IFN-g nonresponders instead expressed IL-

10. We found that the children were able to express both IFN-

g and IL-10 in response to PHA and PPD but that they tended

to express either IFN-g or IL-10 in response to EBV peptides.

As shown in figure 3, too few children produced IL-10 in re-

sponse to the EBV lytic or latent peptides to reach statistical

significance, yet only 8 of the 88 children with IFN-g responses

to the EBV lytic peptides had concomitant IL-10 responses

regardless of malaria exposure. Similar findings were observed

for responses to the EBV latent peptides. Only 4 of the 71

children with IFN-g responses also produced IL-10.

DISCUSSION

Malaria has been identified as a cofactor in the etiology of eBL

on the basis of the geographic overlap between the prevalence

of this childhood cancer and residency in areas of high malaria

endemicity. Although earlier work using in vitro regression as-

says of EBV outgrowth in peripheral blood suggests that ma-

larial infection suppresses antiviral immunity and thereby fa-
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vors the emergence of neoplastic B cells, the immune basis of

this suppression has not been characterized in detail [22–24].

By comparing IFN-g and IL-10 responses to EBV epitopes in

a cross-section of healthy 1–14-year-old children living in 2

geographically proximate areas of western Kenya in which ma-

laria endemicity ranges from holoendemic (Kisumu) to unsta-

ble and epidemic prone (Nandi), we made several observations

that add to our knowledge of how malaria alters EBV immunity.

First, there was an age-related loss of T cell IFN-g responses

to EBV lytic and latent HLA class I–restricted epitopes in 5–

9-year-old children resident in the malaria-holoendemic area

relative to younger and older children from the same area as

well as children in all age groups from the epidemic-prone area.

Second, the magnitude of IFN-g responses (when a response

was present) was not dependent on age or past malaria ex-

posure. Third, IL-10 responses to EBV lytic peptides, PPD, and

PHA were significantly less frequent in Kisumu children than

in Nandi children, but this difference was resolved in children

19 years old. Considered in the context that the peak age in-

cidence of eBL is 5–9 years [34], these data lend further cre-

dence to the notion that intense malaria exposure during the

first 9 years after birth suppresses CTL IFN-g activity and im-

munosurveillance against EBV-infected B cells at a time when

neoplastic B cells are likely to emerge.

A secondary goal of our study was to determine whether the

diminished childhood IFN-g–mediated immunity to EBV as-

sociated with holoendemic malaria is antigen specific. On the

basis of the observation that the frequency and strength of IFN-

g production in response to MSP-1 peptides, PPD, and PHA

were similar for children in all age groups from both Kisumu

and Nandi, it appears that the age-related loss of immunity is

specific for EBV. These results do not formally exclude the

possibility that reduced T cell IFN-g responses extends to other

microorganisms that commonly infect children in sub-Saharan

Africa. In this regard, ongoing studies aim to determine whether

CD8+ T cell immunity to cytomegalovirus, a persistent her-

pesvirus that is acquired during childhood in rural Africa, is

modified in a manner that is distinct from or similar to that

of EBV.

The cellular and molecular basis of the age-related changes

in EBV immunity reported here, and why in particular T cell

IFN-g responses in 5–9-year-old children are depressed, remain

to be determined. Several mechanisms may be considered. First,

maturation of dendritic cells in 5–9-year-olds may be impaired

as a consequence of chronic malaria exposure, as has been

reported for in vitro studies of dendritic cells exposed to blood-

stage P. falciparum [35]. Second, chronic malaria exposure may

alter antigen processing by dendritic cells and other antigen-

presenting cells through Toll-like receptor antagonism [36–38].

Third, chronic malaria exposure may lead to increased numbers

of regulatory T cells, which decreases IFN-g production by T

cells. A key feature that these potential immune-evasion strat-

egies do not explain is the “recovery” of effector T cell im-

munity in 10–14-year-old children. To our knowledge, no stud-

ies have investigated the maturation of T cell immunity in

children with chronic malarial infection.

We previously quantified EBV loads in 1–14-year-old chil-

dren from Kisumu and Nandi and found that the highest mean

levels were in the youngest age group (1–4 years old) from

Kisumu, where malaria transmission is intense and stable [11].

The EBV-specific IFN-g responses in the youngest age group

could thus be generated by an effector T cell population that

may not adequately contain viral replication and/or latency.

This notion is supported by the lower magnitude of IFN-g

responses to both lytic and latent EBV peptides in the youngest

children. In this context, we determined in the study partici-

pants described here whether high EBV loads were inversely

proportional to EBV-specific IFN-g responses. No correlation

was observed, a finding similar to that reported in studies of

the impact of HIV infection on EBV immunosurveillance [39].

Future work will determine whether this lack of correlation is

related to transient incompetence or immunosuppression of

EBV-specific CD8+ T cells—for example, failure to produce IFN-

g in response to cognate antigen or the presence of immumo-

regulatory T cells that actively suppress cytokine production.

The role played by IL-10 in the pathogenesis of eBL remains,

at this point, speculative. We have previously found an inverse

relationship between cytotoxicity and IL-10 expression in EBV-

specific CD8+ T cell clones [19], and others have reported that

IL-10 potentiates EBV-mediated B cell transformation by in-

hibiting memory T cells [40]. With regard to P. falciparum,

elevated plasma IL-10 levels correlate with greater parasite den-

sities and less-effective parasite clearance in children 1–4 years

old [41]. There are also data suggesting that natural malarial

infections bias toward Th2-like immunity [42, 43]. We there-

fore hypothesized that children with chronic malarial infection

would have prominent EBV-specific IL-10 responses. Thus, the

overall suppression of IL-10 responses in the younger children

from the malaria-holoendemic area was unexpected. This sup-

pression could be indicative of a global pattern of T cell ex-

haustion as a consequence of repeated malaria exposure. The

inverse relationship between EBV-specific IFN-g and IL-10 re-

sponses is consistent with a model for dominant T cell re-

sponses being either Th1 (IFN-g) or Th2 (IL-10). However,

because there were so few IL-10 responders, the significance of

this finding is unclear at this time. A caveat of this interpretation

is that we measured only human IL-10 and not the viral IL-

10 homologue, BCRF1 [44].

Given that the incidence of eBL is ∼2 cases/100,000 children

[3], it is not feasible to evaluate directly immune risk factors

that precede eBL tumorigenesis. Elucidation of how chronic

malaria exposure contributes to the pathogenesis of eBL will
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therefore require comparison with age-matched children pre-

senting with eBL and prospective study of EBV immunity in

healthy children with differing malaria exposure. This approach

will not only advance our understanding of the role played by

T cell immunosurveillance in controlling EBV latency but also

contribute to understanding how malaria-related immunosup-

pression affects the development of immunity to other common

pathogens and childhood vaccines.
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