May 20th, 12:30 PM

Crystal protein Cry5B as a novel and powerful anthelmintic

David Koch
University of Massachusetts Medical School, david.koch@umassmed.edu

Zeynep Mirza
University of Massachusetts Medical School, zeynep.mirza@umassmed.edu

Yan Hu
University of Massachusetts Medical School, yan.hu@umassmed.edu

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat

Part of the Chemical Actions and Uses Commons, International Public Health Commons, Medicinal and Pharmaceutical Chemistry Commons, Medicinal-Pharmaceutical Chemistry Commons, and the Parasitic Diseases Commons

http://escholarship.umassmed.edu/cts_retreat/2016/posters/37

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
David Koch, Zeynep Mirza, Yan Hu, Thanh-thanh Nguyen, Gary R. Ostroff, and Raffi V. Aroian

Keywords
soil-transmitted helminths, nematodes, crystal proteins, de-worming drugs

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Crystal protein Cry5B as a novel and powerful anthelmintic

David Koch, BS, Zeynep Mirza, MS, Yan Hu, PhD, Thanh-thanh Nguyen, BS, Gary Ostroff, PhD and Raffi V. Aroian, PhD

Program in molecular medicine, University of Massachusetts Medical School, Worcester, MA 01605-2377

Soil-transmitted helminths (STHs), most notably, hookworms, whipworms, and Ascaris, are nematodes that infect more than 1.5 billion of the poorest people and are amongst the leading causes of morbidity worldwide. Only two classes of de-worming drugs (anthelmintics) are available for treatment, and only one is commonly used in mass drug administrations. New anthelmintics are urgently needed to overcome emerging resistance and to produce higher cure rates. Crystal (Cry) proteins, in particular Cry5B, made by Bacillus thuringiensis (Bt) are promising new candidates. Cry5B has excellent anthelmintic properties against many free-living and parasitic nematodes, including in vivo efficacy against multiple STH infections in rodents (Heligomsmidoes polygyrus and Ancylostoma ceylanicum) and in pigs (Ascaris suum).

An enormous challenge for STHs, very different from most diseases worked on in the developing world, is the requirement that therapies be very cheap (the people infected are very poor and current drugs costs pennies a dose), massively scalable (over 4 billion people are at risk from infection), and have a long shelf life in harsh environments, that have high temperature and humidity and no cold chain.

We will update our progress in several key areas. We will present new data on the in vivo activity of Cry5B against a major human parasite in humans. We will also present data on the whether or not the immune system is required for Cry5B action in vivo. We will also present on our development efforts to produce a deployable version of Cry5B that is cheap, safe, scalable, and stable. These efforts are currently focused on bacterial engineering, expression, and formulation.

Yan Hu, PhD

Research Assistant Professor
Program in Molecular Medicine
University of Massachusetts Medical School
Biotech Two, Suite 219
373 Plantation Street
Worcester, MA 01605-2377
Office: (508)856-8129
Email: yan.hu@umassmed.edu
http://www.worms.se