May 20th, 12:30 PM

Rapid Diagnostics for Infectious Disease using Noble Metal Nanoparticles

Chun-Wan Yen
Massachusetts Institute of Technology

Helena de Puig
Massachusetts Institute of Technology

Justina Tam
Winchester Engineering Analytical Center

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat
Part of the Diagnosis Commons, and the Infectious Disease Commons

http://escholarship.umassmed.edu/cts_retreat/2016/posters/33

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Chun-Wan Yen, Helena de Puig, Justina Tam, José Gómez-Márquez, Irene Bosch, Lee Gehrke, and Kimberly Hamad-Schifferli

Keywords
point-of-care, diagnostic devices, nanoparticles

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This poster abstract is available at eScholarship@UMMS: http://escholarship.umassmed.edu/cts_retreat/2016/posters/33
Rapid Diagnostics for Infectious Disease using Noble Metal Nanoparticles

Chun-Wan Yen, PhD,2 Helena de Puig MS,3 Justina O. Tam, PhD,2 José Gómez-Márquez,4 Irene Bosch, PhD,1 Lee Gehrke, PhD,1,5 Kimberly Hamad-Schifferli, PhD3,6

1Institute for Medical Engineering and Science, Massachusetts Institute of Technology Cambridge, MA USA 02139
2Winchester Engineering Analytical Center, Food and Drug Administration. Winchester MA USA 01890
3Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
4MIT Little Devices Lab and the MIT-SUTD International Design Centre
5Dept. of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115
6Dept. of Engineering, University of Massachusetts, Boston, MA 02125

Rapid point-of-care (POC) diagnostic devices are needed for field-forward screening of severe acute systemic febrile illnesses such as dengue, Ebola, chikungunya, and others. Multiplexed rapid lateral flow diagnostics have the potential to distinguish among multiple pathogens, thereby facilitating diagnosis and improving patient care. We present a platform for multiplexed pathogen detection which uses gold or silver nanoparticles conjugated to antibodies to sense the presence of biomarkers for different infectious diseases. We exploit the size-dependent optical properties of Ag NPs to construct a multiplexed paperfluidic lateral flow POC sensor. AgNPs of different sizes were conjugated to antibodies that bind to specific biomarkers. Red AgNPs were conjugated to antibodies that could recognize the glycoprotein for Ebola virus, green AgNPs to those that could recognize nonstructural protein 1 for dengue virus, and orange AgNPs for non structural protein 1 for yellow fever virus. Presence of each of the biomarkers resulted in a different colored band on the test line in the lateral flow test. Thus, we were able to use NP color to distinguish among three pathogens that cause a febrile illness. Because positive test lines can be imaged by eye or a mobile phone camera, the approach is adaptable to low-resource, widely deployable settings. This design requires no external excitation source and permits multiplexed analysis in a single channel, facilitating integration and manufacturing. We will also discuss engineering the nanoparticle physical properties and surface chemistry for improving detection and also optimizing device properties, and expansion of the device to detect other diseases.

Contact:
Kim Hamad-Schifferli
Associate Professor
Department of Engineering
University of Massachusetts Boston
100 Morrissey Blvd.
S-3-078
Boston, MA 02125
+1 (617) 287-6390
kim.hamad@umb.edu
http://eng.umb.edu/~hamad