May 20th, 12:30 PM

Sulforaphane Treatment of Children with Autism Spectrum Disorder

Eileen Diggins
University of Massachusetts Medical School, eileen.diggins@umassmed.edu

Andrew Zimmerman
University of Massachusetts Medical School, Andrew.Zimmerman@umassmemorial.org

Kanwaljit Singh
University of Massachusetts Medical School, Kanwaljit.Singh@umassmed.edu

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat
Part of the [Chemicals and Drugs Commons](http://escholarship.umassmed.edu/cts_retreat) and the [Psychiatry and Psychology Commons](http://escholarship.umassmed.edu/cts_retreat)

http://escholarship.umassmed.edu/cts_retreat/2016/posters/9

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Eileen Diggins, Andrew Zimmerman, Kanwaljit Singh, and Susan Connors

Keywords
autism spectrum disorder, Sulforaphane

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This poster abstract is available at eScholarship@UMMS: http://escholarship.umassmed.edu/cts_retreat/2016/posters/9
Sulforaphane Treatment of Children with Autism Spectrum Disorder
Eileen Diggins, BA, Andrew Zimmerman, MD, Kanwaljit Singh, MD, Susan Connors, MD
Division of Neurology, Department of Pediatrics, University of Massachusetts Medical School

Abstract

This clinical trial in autism spectrum disorder (ASD) tests a nontoxic approach to therapy of ASD.

Background: Direct treatment of underlying mechanisms in ASD is limited. Cellular dysfunction in ASD may involve a number of related metabolic pathways. A clinical clue may be found in the “fever effect” in ASD, in which febrile illness dramatically but temporarily ameliorates disordered behavior. Fever stimulates heat shock proteins (HSP) and cellular stress responses that may ultimately lead to improved synaptic function and increased long-range connectivity. The expression of gene transcription by NFE2L2 (Nrf2), which is reduced in ASD, may also increase during fever. Sulforaphane (SF), an isothiocyanate obtained from 3-day-old broccoli sprouts, induces HSP and Nrf2 as well as “cell-protective” responses. SF has several possible modes of action that may benefit ASD through common cellular mechanisms underlying heterogeneous phenotypes. SF crosses the blood brain barrier and is bioavailable orally.

Preliminary data: In a randomized, double-blind, placebo-controlled pilot trial in 44 male adolescents and adults (13-30 years), results showed SF was well tolerated without significant side effects. On average, participants on SF (particularly those with a history of fever effect) showed significantly more improvements in ASD symptoms than placebo participants. Significant improvements for SF participants included social interaction, aberrant/abnormal behavior, repetitive/stereotypical behavior, and verbal communication.

Current study: Our randomized, double-blind, placebo-controlled phase-2 clinical trial at UMass has three aims: To determine: (1) if orally administered SF has measurable effects in children (ages 3-12 years) with ASD; (2) if treatment with sulforaphane is safe and well tolerated; (3) To elucidate cellular biomarkers that support the mechanisms of action of SF in ASD. We hypothesize that SF will have positive effects, and that these effects will be more marked and lasting in the developing – compared to the mature – brain.

Contact Information
Name: Eileen Diggins
Email: Eileen.Diggins@umassmed.edu
Phone: 508-856-4107