May 20th, 12:30 PM

Inhibition of Bromodomain Proteins in Treatment of Diffuse Large B-cell Lymphoma

Sally E. Trabucco
University of Massachusetts Medical School, Sally.Trabucco@umassmed.edu

Rachel M. Gerstein
University of Massachusetts Medical School, Rachel.Gerstein@umassmed.edu

Andrew M. Evens
Tufts Medical Center

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat

Part of the Biochemistry Commons, Cancer Biology Commons, Hemic and Lymphatic Diseases Commons, Neoplasms Commons, Oncology Commons, Therapeutics Commons, and the Translational Medical Research Commons

http://escholarship.umassmed.edu/cts_retreat/2014/posters/121

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Sally E. Trabucco, Rachel M. Gerstein, Andrew M. Evens, James E. Bradner, Leonard D. Shultz, and Dale L. Greiner

Comments
Abstract of poster presented at the 2014 UMass Center for Clinical and Translational Science Research Retreat, held on May 20, 2014 at the University of Massachusetts Medical School, Worcester, Mass.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This is available at eScholarship@UMMS: http://escholarship.umassmed.edu/cts_retreat/2014/posters/121
Only ~50% of patients with diffuse large B-cell lymphoma (DLBCL), the most common and aggressive subtype of non-Hodgkin’s lymphoma, enter long-term remission after standard chemotherapy, and patients who do not respond to treatment have few options. Therefore, there is a critical need for effective and targeted therapeutics for DLBCL. Recent studies highlight the incidence of increased c-MYC protein in DLBCL and the correlation between high levels of c-MYC and poor survival prognosis of DLBCL patients, suggesting that c-MYC is a compelling therapeutic target for DLBCL therapy. The small molecule JQ1 suppresses c-MYC expression through inhibition of the BET family of bromodomain proteins. We show that JQ1 efficiently inhibited cell proliferation of human DLBCL cells regardless of their molecular subtypes, suggesting a broad effect of JQ1 in DLBCL. After JQ1 treatment, initial G1 arrest in DLBCL cells was followed by either apoptosis or senescence. In DLBCL cells treated with JQ1, we found that c-MYC expression was suppressed in the context of the natural, chromosomally-translocated or an amplified gene locus. Furthermore, JQ1 treatment significantly suppressed growth of DLBCL cells engrafted subcutaneously and improved survival of mice engrafted with DLBCL cells intraperitoneally. These results demonstrate that inhibition of the BET family of bromodomain proteins, and consequently c-MYC, has the potential clinical utility in DLBCL treatment.