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ABSTRACT 

 

The cardiac conduction system is responsible for maintaining and orchestrating the 

rhythmic contractions of the heart.  Results from lineage tracing studies indicate that precursor 

cells in the ventricles give rise to both cardiac muscle and conduction cells. Using chick 

embryonic hearts, we have found that Notch signaling plays an important role in the 

differentiation of cardiac muscle and conduction cell lineages in the ventricles. Notch1 

expression coincides with a conduction marker at early stages of conduction system 

development. Mis-expression of constitutively active Notch1 (NIC) in early heart tubes exhibited 

multiple effects on cardiac cell differentiation. Cells expressing NIC had a significant decrease in 

the expression of cardiac muscle markers, but an increase in the expression of conduction cell 

markers.  Loss-of-function studies further support that Notch1 signaling is important for the 

differentiation of these cardiac cell types. Functional electrophysiology studies show that the 

expression of constitutively active Notch1 resulted in abnormalities in ventricular conduction 

pathway patterns. 

 

 During cardiogenesis, groups of myocardial cells become separated from each other, and 

migrate to form the trabeculae.  These finger-like projections found within the ventricular 

chamber coalesce to generate the muscular portions of the interventricular septum, the thickened 

myocardium, and future sites of the conduction system.  We have found that Notch signaling 

regulates the migration of cardiac cells during cardiogenesis.  Over-expression of constitutively 
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active Notch causes cells to localize more centrally within the heart, while loss-of-Notch 

function results in cells distributed within the periphery of the heart.  Staining of heart sections 

shows that Notch signaling regulates the expression of N-cadherin, the predominant adhesion 

molecule in cardiomyocytes.  We find that the effects of Notch on cell migration are two-fold: 

delamination and cell motility.  Time-lapse studies demonstrate that Notch signaling increases 

cell motility, but does not affect speed or directionality of migration.  Furthermore, we find that 

the effects of Notch on cell migration is independent of its effects on differentiation. 
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CHAPTER I: Introduction 
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1.1 Congenital and acquired heart diseases 

 
 

Intricate signaling, transcriptional, and translational networks regulate key cellular 

decisions that drive the assembly of stem and progenitor cells into functional organs.  

Insights into these processes will provide us with the opportunity to develop new 

therapies for human diseases.   

 

A molecular network of cellular decisions controlling cardiac cell fate, myocyte 

differentiation and cardiac cell migration is required for the proper formation of the heart, 

the first organ to form and function during embryogenesis.  The complexity of these gene 

regulatory cascades explains the vulnerability of the heart to perturbations before birth 

and into old age.   

 

Congenital and acquired heart diseases represent the principle noninfectious cause of 

morbidity and mortality worldwide.  Congenital cardiac malformations, the most 

common of birth defects, occur in 1% of the population worldwide [1].  Another 1-2% 

harbor more subtle cardiac abnormalities that become apparent with age.  In the United 

States, heart disease is the number one killer of both men and women [2].  Another 5 

million survive with insufficient cardiac function.  Deciphering the key regulatory 

networks that govern proper cardiogenesis may lead to development of new therapies.   
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1.2 Cardiac development 

 

The primary heart field and early cardiac transcription factors 

The heart is the first organ to form and function during embryogenesis (Figure 

1.1).  In the chick embryo, at Hamburger and Hamilton (HH) stage 3, (embryonic day 7 

(E7) in the mouse), the cells that are destined to form the heart arise in the anterior third 

of the primitive streak, excluding Hensen’s node.  Between HH stages 3 and 4 in the 

chick, these cells migrate bilaterally to form the left and right heart fields, also referred to 

as the primary heart field [3].  The basic helix-loop-helix (bHLH) transcription factors, 

Mesp1 and Mesp2, are required for the migration of these precardiac mesoderm cells.  

Mesp1 and Mesp2 double-deficient mouse embryos exhibit defects in the development of 

the cardiac and anterior-cephalic mesoderm [4].  Additionally, lineage analysis has 

demonstrated that the majority of the cells in the myocardium, and endocardium are 

derived from Mesp1 expressing mesoderm [5, 6].   

  

Cardiomyocytes are produced in response to factors, including members of the 

bone morphogenetic protein (BMP) family, sonic hedgehog, fibroblast growth factor 

(FGF) 8, and Crescent, which are secreted from the endoderm [7].  These cardiogenic 

signals activate the expression of one of the earliest markers of heart precursor cells, 

Nkx2.5 [8].  In Drosophila, the Nkx2.5 homologue, tinman, is required for heart  
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Figure 1.1: Overview of heart development in the mouse.  A: In the mouse, at embryonic 

day 7 (E7), Heart precursors arise from the anterior third of the primitive streak (blue and 

yellow), but not from the node (dark grey).  B: As development proceeds, at around E7.5, 

the precursors migrate bilaterally forming the left and right primary heart fields.  C: By 

E8, the primary (blue and yellow) and secondary (green) heart fields undergo anterior-

medial migration and fusion to form the cardiac crescent.  D: At E8.5, the linear heart 

tube is generated by fusion of the cardiac crescent at the embryonic midline.  The primary 

heart field gives rise to the left ventricle (blue), right ventricles (purple), and atria 

(yellow), while the secondary heart field contribute to the outflow tract (green).  E: 

Between E9.5-E10, the heart tube loops to the right to form a C-shaped structure.  EMT 

is initiated in the AV canal (red) and outflow tract (green), and generates the cardiac 

valves and septa.  F: Schematic drawing of the developed embryonic heart.  G, H: Mouse 

embryonic hearts at E9.5 and E11.5. 
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formation, and activates the transcription of Mef2, which is necessary for myocyte 

differentiation [10].  Likewise, in Xenopus, mutations in Nkx2.5 block heart formation 

[11].  In mouse, however, Nkx2.5 is dispensable for recruitment of cells to the cardiac 

lineage and heart development arrests at the beginning of cardiac looping [12].   

 

Nkx2.5 cooperates with the GATA family of zinc-finger transcription factors to 

activate cardiac gene expression [13].  The Drosophila GATA gene, Pannier, identifies 

cardiac cells because forced expression of Pannier results in additional cardiac cells [14].  

In vertebrates, three GATA genes, GATA4-6, are expressed in the heart [15].  GATA4 

deficient mouse and GATA5 zebrafish null embryos exhibit cardiac bifida (bilateral heart 

tubes), and fewer cardiac myocytes [16, 17].  GATA6 null mice die prior to heart 

induction around E5.5-E7.5 due to defects in the extraembryonic endoderm [18, 19].  

Loss-of-function studies in Xenopus and zebrafish, using antisense morpholinos, 

demonstrated a role for GATA6 in the differentiation of the cardiac lineage, in the 

maturation of cardiac progenitors [20].    

 

Secondary heart field 

In the developing mouse and chick heart, in addition to the primary heart field, the 

existence of a secondary heart field has been identified, and has been found to contribute 

to the formation of the heart.  The secondary heart field is located in the splanchnic 

mesoderm that underlies the floor of the caudal pharynx.  These cells express Nkx2.5, 

GATA4, and Nkx2.8 [21].  In the chick, the secondary heart field generates the smooth 
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muscle cells of the distal outflow tract [22].  In the mouse, these cells migrate to the 

arterial pole [21].  Additionally, these cells were found to contribute to the outflow tract 

and the right ventricle in the mouse FGF10 enhancer trap line, and in the LacZ knockin 

mutant of Nkx3.1 [23, 24].   

 

Formation of the heart tube  

Anterior-medial migration of cells from the right and left heart fields, and 

subsequent fusion at the anterior end leads to formation of the cardiac crescent (See 

Figure 1.1) [9].  The cardiac crescent cells, which initially all have cardiomyogenic 

potential, become subdivided into ventral myogenic and dorsolateral nonmyogenic 

populations [25].  The ventral myogenic domain gives rise to the myocardium of the 

heart tube, while the dorsolateral nonmyogenic subpopulation contribute to the 

mesocardial and pericardial roof cells [25].    Subsequent folding of the embryo leads to 

fusion of the cardiac crescent at the midline to generate a linear tube-like structure that 

consists of an outer myocardial cell layer, and an inner endocardial cell layer [3, 7, 26].  

The myocardial and endocardial cell layers are separated by a layer of extracellular 

matrix called the cardiac jelly.   

 

Heart Looping 

At HH stage 10 in the chick, or ~ E9.5-E10 in the mouse, the linear heart tube 

begins to undergo heart looping (See Figure 1.1).  The primitive ventricular region bends 

toward its ventral side, and simultaneously rotates to the right.  In this way, the original 
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left and right sides of the heart tube become the ventral and dorsal sides of the looped 

heart.  After ventricular looping has started, the primitive outflow tract is displaced to the 

right.  Later, the ventricular portion shifts from its originally cranial position to its final 

position caudal to the atria, and the conus from its right lateral position to the position 

ventral to the right atrium [7, 27].   

 

Left-right asymmetry in the heart 

The direction of cardiac looping is regulated by an asymmetric axial signaling 

system that designates the positions of the organs [28].  Several left-right determinants 

have been identified, and include BMP4, Shh, N-cadherin, beta-catenin, Nodal, Lefty, 

Pitx2, and FGF8.  For example, in the chick, BMP4 is active on the right side of 

Hensen’s node, while Shh is restricted to the left [29].  Additionally, N-cadherin is 

expressed on the right side, while beta-catenin is found in the left [30].  Lefty is involved 

in limiting Nodal expression on the left, and preventing spreading of left-sided signals to 

the right [31].  In the left side, the bicoid-type homeobox gene, Pitx2, acts downstream of 

Nodal.  Both overexpression and ablation of Pitx2 cause laterality defects [32-34].  In the 

mouse, FGF8 appears to be a left determinant [35].   

 

Cardiac valve formation 

 Concomitant with heart looping, and chamber formation, the endocardial cushions 

form, and remodel to generate the outflow and atrioventricular valves, as well as portions 

of the atrial and ventricular septa [3, 7].  Endocardial cushions arise as a result of 
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swelling of the cardiac jelly due to invasion of endothelial cells.  Signaling between the 

myocardial and endocardial cell layers in the cushion region, mediated by the TGF-ϐ 

protein family, stimulates the transformation of endocardial cells into mesenchymal cells 

[36].  These cells migrate into the cushions, and differentiate into fibrous tissues of the 

valves [3, 7].   

 

1.3 Chamber formation and trabeculation 

 After cardiac looping, individual cardiac chambers become morphologically 

distinguishable (Figure 1.2).  The morphological and contractile properties, in addition to 

the patterns of gene expression, differ in each cardiac chamber. The iroquois-related 

homeobox protein Irx4 labels ventricular progenitor cells in the cardiac crescent [37].  In 

the chick, Irx4 is involved in establishing chamber-restricted gene expression [38].  The 

T-box gene, Tbx5, marks the atrial compartment of the myocardium [39].  In mice, 

ablation of Tbx5 results in severe hypoplasia of the atrial and left ventricular chambers, 

while the right ventricle and outflow tract are unaffected [39].  CoupTFII, a nuclear 

receptor, is expressed in atrial precursors, and is required for atrial growth [40].  Retinoic 

acid (RA) also plays a role in chamber formation; RA-deficient quail embryos have 

oversized ventricles, and hypoplasic atria [41].   

 

One of the hallmarks of ventricular chamber formation is the formation of 

trabeculae, characteristic finger-like projections, consisting of cardiomyocyte sheets,  
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Figure 1.2: Chamber formation and trabeculation 

A: A “lumen cast” of a human embryonic heart at 4 weeks of development.  B: Drawing 

of a section of the heart at the same stage.  The cardiac chambers become 

morphologically distinguishable after cardiac looping.  Myocardial cells in the compact 

myocardium proliferate and migrate into the ventricular lumen to generate the trabeculae, 

characteristic finger-like projections indicative of ventricular chamber formation.  

Coalescence of the trabeculae generates the thickened myocardium, interventricular 

septum, and future sites of the conduction system.  OFT: outflow tract; AVC: 

atrioventricular canal; RA: right atrium; LA: left atrium; RV: right ventricle; LV: left 

ventricle 
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lined by endocardial cells.  Trabeculae are generated when myocardial cells in the 

ventricular segment proliferate, and migrate into the ventricular lumen [42-44].  

Coalescence of the trabeculae forms the interventricular septum, thickened myocardium 

of the ventricles, and future sites of the conduction system [45].  The basic helix-loop-

helix transcription factors dHAND/HAND2 and eHAND/HAND1 are differentially 

expressed in the right and left ventricles, respectively.  Deletion of HAND2 in mice 

results in hypoplasia of the right ventricle [46].  Conversely, over-expression of HAND2 

in mice significantly upregulated expression of trabecular markers [47].  Homozygous 

null mice for neuregulin-1 and its receptors ErbB2 or ErbB4 exhibit defective ventricular 

chamber formation, and absent trabeculation [48-50].  Injection of NRG-1 into the 

ventricular chamber of mouse embryos induced trabecular marker expression without 

increasing cardiomyocyte proliferation [51].  Contrary to neuregulin-1, both BMP10 and 

the rho-associated coiled-coil kinases (ROCKs) regulate ventricular chamber formation 

and trabeculation by controlling cardiomyocyte proliferation; inactivation of BMP10 or 

ROCK causes ventricular hypoplasia and decreased trabeculation due to decreased 

proliferative activity of cardiomyocytes [52, 53].   

 

1.4 Cardiac conduction system 

 

Components of the conduction system 

The specialized tissues of the cardiac pacemaking and conduction system drive 

and coordinate the rhythmic contractions of the heart.  Atrial components of the 
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Figure 1.3: Components of the conduction system 

A: The working myocardium of the heart consists of the right and left atria (RA, LA) and 

right and left ventricles (RV, LV).  The atrial conduction system is composed of the 

pacemaking tissues of the sinoatrial node (SAN) and the atrioventricular node (AVN), 

while the ventricular conduction system consists of the fast-conducting components 

comprising the atrioventricular bundle (AVB), the left and right bundle branches (BB), 

and the peripheral ventricular conduction system (PVSC), also known as the Purkinje 

fibers.  B: Schematic drawing showing the apex to base contraction of the heart.  The 

action potential is initiated at the SAN, and then travels to the AVN.  After exiting the 

AVN, the action potential rapidly spreads along the His bundle and its branches.  It then 

spreads throughout the ventricular chambers via a network of fibers, known as Purkinje 

fibers.  PV: pulmonary veins; S/I CV: superior/inferior caval vein; CFB: central fibrous 

body; MV: mitral valve; TV: tricuspid valve; END: endocardium; EPI: epicardium; 

MYO, myocardium. 
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fibers are components of the ventricular conduction system (See figure 1.3) [27, 54].  The 

intrinsic rhythm of the heart is determined by the cardiac pacemaker, the sinoatrial (SA) 

node.  The SA node sits at the inflow tract of the right atrium.  The pacemaker activity is 

the first element to function in the cardiac conduction system.  In the cardiac muscle, 

cells with the most rapid inherent rhythm set the rate of contraction of the myocardium.  

The heterogeneous cells of the SA node display the most rapid rhythm, and thereby act as 

the pacemaker of the heart.  The node is richly innervated by both the sympathetic and 

parasympathetic nervous system.  The pace making action potential is produced by a 

slow depolarization that involves a number of ion channels, including T- and L-type 

calcium channels [54].  Little is known, however, about the mechanisms that induce and 

maintain the pacemaker cells of the heart.   

 

Following initiation of a cardiac action potential within the SA node, the electrical 

impulse is propagated through the muscular tissues of the atria, and focuses into the  

atrioventricular (AV) node.  The AV node sits at the junction of the atria and ventricles, 

and generates a momentary delay in the propagation of the action potential.  Cells of the  

AV node are interspersed with connective tissue and vasculature.  In mammals, a thin 

layer of atrial myocardium separates the AV node from the endocardium.  In the 

periphery of this region, cells adopt a flat and spindle-like morphology, while fibers 

found more deeply are irregularly shaped.  The AV delay first becomes evident when the 

looping heart undergoes morphogenic constriction to divide the atrial and ventricular 

chambers.  Myocytes of the AV node express the gap junction protein, connexin45.  
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These channels are characterized by high voltage sensitivity and low permeability, which 

contribute to the slow conduction in the AV canal [54].  However, like the SA node, the 

mechanisms that are responsible for normal AV nodal development remain obscure.   

 

After exiting from the AV node, the action potential rapidly spreads along the His 

bundle and its distal branches.  The action potential finally spreads throughout the 

ventricular chambers via a network of fibers known as the Purkinje fibers.  His first 

described the bundle of cells that form a connection between the atrial and ventricular 

chambers in the mammalian heart.  The His bundle originates at the posterior right atrial 

wall, and passes over the upper margin of the ventricular septal muscle.  It then bifurcates 

near the aorta into a right and a left bundle branch.  The left and right bundle branches 

lead into the Purkinje fibers, which are distributed widely throughout the left and right 

ventricles.  The tips of the Purkinje fibers are coupled to muscle cells via gap junctions, 

and initiates an apex to base contraction of the ventricle in the mature heart [54].  

Whether the development of the atrial and ventricular conduction components requires 

the same molecular pathways, or whether they are independently generated and 

physically coupled is unknown. 

 

Origins and development of the conduction system 

Cells of the conduction system are characterized by reduced numbers of 

myofibrils, and a higher accumulation of glycogen than working myocytes [55, 56].  

Ventricular conduction cells of the avian heart express high levels of connexin 42, a gap 
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junctional protein, absent or present at lower amounts in cardiac muscle cells [57].  

Conduction cells also express genes usually associated with neural and skeletal tissues, 

including neurofilament antigens [58], HNK-1 [54, 59-62], EAP-300 [63], 

acetylcholinesterase [64], and a slow skeletal muscle isoform of the myosin heavy chain 

[65].  The co-expression of both neural and muscle genes have led to the proposal of two 

possible origins of the conduction system: myogenic and neurogenic.  In the chick, from 

E2-3, neural crest cells initiate migration from the hindbrain, and enter the tubular heart 

at E4, forming the neuronal and glial elements of cardiac ganglia.  Analysis of clonal 

populations of myocytes tagged with replication-defective retroviral constructs encoding 

ϐ-galactosidase demonstrated that ϐ-gal+ clonal populations contained both conduction 

cells and working myocytes [66].  Following microinjection of retrovirus into the neural 

folds at the hindbrain of HH8-10 embryos, no virally tagged cells could be traced into the 

conduction cell lineage, excluding the contribution of neural crest cells to the conduction 

system [67].  This provided compelling evidence for a common lineage for cardiac 

conduction cells and working myocytes.     

  

Due to the close proximity of conduction cells to arterial vessels, it has been 

demonstrated that the recruitment of conduction cells from myocardial clones occurs as a 

result of paracrine signals from endocardial and endothelial cells of the coronary arteries, 

including endothelin-1 (ET-1) and neuregulin-1 (NRG-1).  In vitro, cultured chick 

embryonic myocytes can be induced to express conduction cell markers with endothelin-

1, which is produced by endothelial cells lining the coronary arteries [68].  Supporting 
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these results, co-expression of the ET-1 precursor, preproendothelin, and endothelin 

converting enzyme-1 (ECE-1) in vivo caused cardiomyocytes to express conduction cell 

markers [69].    The proteolytic activity of ECE-1 is required to process ET-1, so that it 

may bind to its receptors.  While the receptors are ubiquitously expressed by all 

myocytes, ECE-1 is expressed specifically in the endothelial cells of coronary arteries 

and the endocardium [69].  Hemodynamic forces regulate the expression of ECE-1, and 

are crucial in demarcating the location of conduction cell recruitment [70].  Using a 

transgenic mouse line in which LacZ delineates the conduction system, it was 

demonstrated that addition of neuregulin-1 to mouse embryos is sufficient to induce 

ectopic expression of LacZ.  Optical mapping showed electrophysiological changes in 

activation pattern, upon treatment with neuregulin-1, consistent with additional 

recruitment of conduction cells [71]. 

  

Several transcription factors, including HF-1b, Nkx2.5, Tbx5, and Id2, have been 

shown to play important roles in conduction system development.  Mice deficient in HF-

1b, a SP1-related transcription factor, exhibit sudden death, associated with ventricular 

tachycardia and AV block, due to defective differentiation of conduction cells [72, 73].  

Nkx2.5 knockout mice display a hypoplastic atrioventricular (AV) node, and ventricular 

conduction defects associated with decreased conduction cells [74, 75].  Similarly, Tbx5 

haploinsufficiency in mice exhibited defects in the atrioventricular and bundle branch 

conduction systems, due to a maturation failure of conduction cells. Electrophysiological 

testing revealed the presence of right-bundle-branch block consistent with failed 
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maturation of the AV node [76].  Recently, the generation of mice with compound 

haploinsufficiency of Tbx5 and Nkx2.5 or Tbx5 and Id2 revealed defective conduction 

system formation due to inhibition of ventricular conduction cell specification, placing 

these genes in a molecular pathway that coordinates specification of myocytes into the 

conduction cell lineage [77].   

  

1.5 The Notch Signaling Pathway 

 

The Notch signaling pathway is an evolutionarily conversed mechanism used by 

many organisms to regulate a broad spectrum of critical processes, including cell 

differentiation, proliferation, survival and migration, during embryogenesis and in post-

natal development [78-80].  The notch gene was first identified in Drosophila, where the 

first mutant allele gave rise to notches on the margins of the wing blades.  The notch gene 

encodes a cell surface type I single-pass transmembrane protein receptor (See figure 1.4).  

Vertebrates have four Notch receptors (Notch1-Notch4).  The conserved Notch proteins 

consist of an extracellular portion (NECD) that contains 29-36 tandem epidermal growth 

factor (EGF)- like repeats, and an intracellular portion (NICD) which consists of several 

domains: two nuclear localization signals, a RAM domain, multiple ankyrin repeats, a 

transactivation domain (TAD), and a C-terminal PEST sequence.  In the ER and Golgi, 

Fringe and other glycosyltransferases mediate a series of glycosylation events that 

modify NECD.  In the trans-Golgi network, proteases of the Furin family process  
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Figure 1.4: Overview of Notch signaling 

Notch receptors are composed of an extracellular domain (NECD) containing numerous 

EGF-like repeats, a small transmembrane region (NTM), and an intracellular domain 

(NIC).  In the ER and Golgi, NECD is modified by a series of glycosylation events 

mediated by Fringe and other glycosyltransferases. Furin proteases process Notch 

molecules in the trans-Golgi.  Upon ligand binding, NECD is removed through cleavage 

by the ADAM/TACE/Kuzbanian family of metalloproteases.  NECD remains bound to 

the ligand, and both proteins may be endocytosed by the ligand presenting cell.  The 

receptor then undergoes a second series of cleavage events mediated by the γ-secretase 

complex to release NIC.  NIC translocates to the nucleus and associates with a 

CBF1/Su(H)/Lag-1 (CSL) family transcriptional regulator.  The CSL protein family acts 

as transcriptional repressors in the absence of NIC.  Upon Notch binding, co-repressors 

are exchanged for co-activators, including Mastermind, leading to the activation of target 

genes, including HES family members.  
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newly synthesized Notch molecules.  Subsequently, Notch inserts at the plasma 

membrane as a heterodimer consisting of an extracellular domain (NECD), and a  

membrane tethered intracellular domain (NTM), which interact non-covalently in a Ca2+- 

dependent manner.   

 

Two families of type I single-pass transmembrane proteins, Delta and Serrate 

(also known as Jagged in vertebrates), have been identified as Notch ligands.  In 

vertebrates, five ligands for the Notch receptor have been identified (Delta1, Delta3, 

Delta4, Serrate1/Jagged1, and Serrate2/Jagged2).  The ligands contain extracellular 

regions that differ in the number of EGF-like repeats.  Additionally, the extracellular 

regions of Jagged ligands also contain a cysteine-rich region.   

 

Notch signaling is initiated upon cell-to-cell contact as a result of interactions 

between Notch receptors and their ligands expressed on neighboring cells.  Upon ligand 

binding, the Notch receptor undergoes a series of successive proteolytic cleavages.  The 

first cleavage occurs extracellularly, close to the transmembrane domain, and is mediated 

by metalloproteases of the ADAM/TACE/Kuzbanian family.  This releases the 

extracellular domain of Notch, and generates a membrane bound form of Notch (NEXT).  

NECD remains bound to the ligand, and are endocytosed by the ligand presenting cell.  

NEXT undergoes two more cleavages, which occurs within the transmembrane domain, 

and is mediated by a multi-protein complex with γ-secretase activity consisting of 

presenilin, nicastrin, APH-1, and PEN-2 proteins.  This second cleavage releases the 
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intracellular domain of the receptor to translocate into the nucleus, where it assembles 

into a ternary complex with the transcription factor CSL/CBF1/Suppressor of Hairless 

(Su(H))/RBP-Jκ through the RAM domain and ankyrin repeats.  In the absence of NICD, 

CSL proteins are part of a repressor complex.  NICD also binds to the Mastermind 

(MAM)/Lag-3 co-activator through the ankyrin repeats, thus converting CSL from a 

transcriptional repressor into a transcriptional activator.  This complex binds specific 

regulatory DNA sequences, and activates the transcription of CSL/Notch target genes, 

including the basic-helix-loop-helix (bHLH) protein families, Hes and Herp (also known 

as Hey, Hesr, HRT, CHF, and gridlock) [78-80].   

 

Notch signaling and differentiation 

The most well documented role of the Notch signaling pathway is in cell fate 

specification and differentiation.    In most cases, Notch signaling acts in a binary cell 

fate decision, where it blocks differentiation towards a primary differentiation fate in a 

cell, and instead drives the cell to a second differentiation program.  Notch signaling 

requires cell-cell interaction, and its effects on binary cell fate decisions are often 

mediated via a mechanism called lateral inhibition.  In an initially homogenous cell 

population, stochastic changes are amplified leading to the differential expression of 

ligand and receptor in opposing cells.  The cell that adopts the primary fate expresses 

high levels of ligand, and low levels of receptor.  The juxtaposing cell takes on the 

secondary fate, and in contrast, expresses high levels of receptor, and low levels of 

ligand.  Initial small differences in ligand and receptor expression become amplified via a 
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feedback mechanism between Notch and Delta.  The ligands and receptors mutually 

repress each others’ expression on neighboring cells.  The mechanism of Delta 

downregulation may be mediated by CSL/CBF1/Suppressor of Hairless (Su(H))/RBP-Jκ- 

induced upregulation of bHLH proteins.  These proteins function as transcriptional 

repressors, and in conjunction with Groucho, down-regulate expression of Achaete-Scute, 

which is necessary for Delta expression.   

 

A classic example of Notch signaling in influencing a binary cell fate decision 

stems from the developing peripheral nervous system in Drosophila.  Mechanosensory 

bristles develop from a pool of pluripotent progenitor cells called sensory organ precursor 

cells (SOPs).  A SOP cell generates two different cell types (IIa and IIb), which in turn 

give rise to either hair and socket cells (from IIa cells) or neuron and sheath cells (from 

IIb cells).  Notch is required at both stages for the specification of particular cell fates; it 

first specifies the IIa cell fate from the SOP cells, and then specifies the identities of the 

socket cell and the sheath cell [81].   

 

In vertebrates, Notch signaling has also been shown to influence neurogenesis; 

Notch signaling promotes glial cell fate by inhibiting neuronal cell fate.  Both gain-of-

function and loss-of-function approaches have demonstrated the role of Notch in cell fate 

specification during neurogenesis.  Retroviral delivery of activated Notch1 into the 

mouse forebrain upregulated glial cell markers, and promoted radial glia identity [82].  

Activation of Notch signaling with soluble Delta ligand in neural crest stem cells 
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promoted the expression of glial markers [83].  Similarly, expression of activated Notch1 

in the rat retina blocked neuronal cell differentiation, and led to the upregulation of 

Muller glial markers [84, 85].  Conversely, conditional inactivation of Notch1 in 

midbrain-hindbrain neuroepithelial cells led to premature neurogenesis, and failed 

differentiation of glial cells [86].  During later steps of neurogenesis, Notch signaling acts 

to specify astrocyte cell fate; transient activation of Notch signaling in neurospheres 

promotes the differentiation of astrocytes, at the expense of neuronal and oligodendrocyte 

differentiation [87].  Likewise, activated Notch1 promotes the differentiation of astroglia 

from rat adult hippocampus-derived multipotent progenitors [88].  Therefore, Notch 

signaling acts on neural stem cells in two steps: by initially inhibiting neuronal fate, while 

allowing for glial cell fate, and then promoting astrocyte differentiation, while inhibiting 

differentiation to both neurons and oligodendrocytes.    

 

During hematopoiesis, both loss-of-function and gain-of-function studies have 

demonstrated the essential role of Notch1 for T-cell lineage commitment [89, 90].  

Conditional inactivation of Notch1, or inhibition of Notch signaling via inducible 

inactivation of RBP-Jκ, in bone marrow progenitors leads to a block in T-cell 

development and promotes B-cell differentiation in the thymus, suggesting that Notch1 

plays a role in the differentiation of early lymphoid progenitors [89, 91, 92].  

Overexpression of NIC in bone marrow progenitors resulted in a reciprocal phenotype 

characterized by ectopic T-cell development in the bone marrow at the expense of B-cell 

development [90].  In addition to its function in the T-cell lineage, Notch signaling is also 
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important in later stages of B-cell development.  Immature bone marrow-derived B-cells 

enter the spleen, where they differentiate into either follicular B-cells (FoBs) or marginal 

zone B-cells (MZBs).  B-cell specific inactivation of RBP-Jκ leads to a loss of MZBs, 

accompanied by an increase in follicular B-cells [93].     

 

In the pancreas of Delta-like1 or RBP-Jκ knockout mice, there is an excess of 

endocrine cells, suggesting that Notch signaling inhibits endocrine-lineage differentiation 

from common exocrine and endocrine progenitors during pancreatic development [94].  

Consistent with this result, activation of Notch in the developing pancreas resulted in a 

disorganized pancreatic epithelium due to reduced numbers of endocrine cells [95].  

These studies demonstrate that Notch signaling is not only used in many different organ 

systems to regulate cell differentiation, but also reiteratively during the maturation of an 

individual organ. 

 

Notch signaling and cell migration 

 Cell migration plays a key role in embryogenesis.  Precise coordination of cell 

migration is required for proper formation of organs.  Not all cells are allowed to leave 

their place of birth.  Cells that are selected to move must convert from a static to a motile 

state, loosen their contacts to the surrounding tissue, and respond to environmental cues 

that ensure the proper onset, directionality, and speed of their movement [96, 97].   Actin 

dynamics at the leading edge provides the key driving force during cell migration, while 

contraction of actin and myosin II filaments moves the cell body.  At the trailing edge, 
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microtubule-dependent targeting of dynamin and endocytosis promotes disassembly of 

adhesion complexes [98-100].   

  

In addition to its key roles in cell fate specification, Notch signaling also 

influences cell migration during organogenesis.  The role of Notch in cell migration has 

been most frequently studied in Drosophila, where inactivation of Notch signaling leads 

to aberrant migration phenotypes.  For example, temperature-sensitive Notch mutants 

display aberrant peripheral glial cell migration [101].  Notch signaling has been shown to 

regulate the movement of anterior boundary cells via the cytoskeletal linker protein, Shot 

[102].  Additionally, inactivation of Notch signaling, via expression of dominant-negative 

Kuzbanian, causes failed border cell migration due to the inability of these cells to detach 

from the follicular epithelium [103, 104]. 

 

Examples of Notch signaling in cell migration in vertebrates include Delta1 null 

mice with delayed and non-segmental migration of neural crest cells [105].  Additionally, 

conditional ablation of Jagged1 in the midbrain-hindbrain boundary in mice causes 

delayed migration with accumulation of cells in the external germinal layer [106].  These 

studies illustrate the requirement for Notch signaling in migration.  However, Notch 

signaling has also been shown to limit cell migration.  In zebrafish, morpholinos directed 

against Suppressor-of-Hairless/RBP-Jκ and Delta-like 4 increased cell migration and 

proliferation during blood vessel sprouting [107].   
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Notch signaling and cardiogenesis 

 In the heart, Notch signaling plays key roles in regulating cardiogenic 

differentiation, proliferation, and epithelial-to-mesenchymal transition (EMT) during 

development.  The expression pattern of Notch receptors in the cardiovascular system 

varies from one receptor to another, in different organisms.  Around embryonic day 8.5 

(E8.5)  in the mouse, Notch1 is expressed mainly in the endocardial layer of the outflow 

tract in the primary heart tube [108].  Later, expression is also found in the 

atrioventricular canal, the aorta, the epicardium, and the trabeculae of the ventricles.  

Notch2 is expressed in the atrioventricular canal, overlapping with Notch1 expression, 

the pulmonary arteries, and the aorta.  Mouse Notch3 is expressed in the aorta, and the 

pulmonary artery.  Whereas, Notch4 is present in the endothelium of the aorta [108].  

Jagged1, Jagged2, and Delta-like4 are all expressed in endothelial cells [109].   

 

In mouse, null mutations in Notch1 and RBP-Jκ cause embryonic lethality and 

pericardial edema [110, 111].  Additionally, mice carrying hypomorphic mutations in 

Notch2 also exhibit embryonic lethality, and pericardial edema [112].  In humans, genetic 

Notch1 haploinsufficiency causes aortic valve disease characterized by calcification 

[113].  Additionally, mutations in Jagged1 causes Alagille syndrome, an autosomal 

dominant disorder characterized by liver, heart, eye, kidney, skeletal and craniofacial 

defects [114].  These studies suggest a role for Notch signaling during cardiac 

development.   
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The expression of Notch1 in the endocardium indicates a role for Notch signaling 

in endocardial development.  Notch signaling regulates EMT during formation of the 

cardiac valve primordia by downregulating expression of E-cadherin [115, 116].  RBP-Jκ 

null mice exhibit impaired EMT due to attenuated expression of Snail, a repressor of E-

cadherin [115].  Moreover, the downstream targets of Notch signaling, Hesr1 and Hesr2, 

play crucial roles in cardiac development.  Hesr2-null mice exhibit defects in AV valve 

formation, and atrial and ventricular septal defects [117-120].  Hesr1/Hesr2 double 

knockout mice show defective trabeculation and septation of the heart due to impaired 

EMT [121]. 

 

Recently, it has been demonstrated that Notch signaling regulates the formation of 

the ventricles, by controlling cell proliferation.  Notch1 and RBP-Jκ knockout mice 

exhibit defective ventricular formation due to attenuated expression of BMP10, which is 

necessary for cell proliferation [122]. 

 

Notch signaling has been reported to play suppressive roles during myocardial 

cell specification in a number of different species.  In Xenopus, interaction of Notch with 

its ligand Serrate suppresses myogenesis, and establishes myocardial and non-myocardial 

domains within the early heart field [123].  Similarly, Notch activity in the Drosophila 

heart prevents myocardial cell fate determination [124].  RBP-Jκ-null embryonic stem 

cells show increased cardiomyogenic differentiation [125].  Consistent with these results, 

constitutive activation of Notch in the mesodermal cell lineage, in mouse, causes 
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deformities of the ventricles and atrioventricular canal due to suppression of myocardial 

differentiation [126]. 

 

Our work demonstrates an additional role for Notch signaling in regulating cell 

fate specification during cardiac conduction system development.  Loss-of-function and 

gain-of-function studies demonstrate that Notch signaling promotes cardiac conduction 

cell differentiation, at the expense of cardiac muscle cell differentiation.  Additionally, 

optical mapping studies show that constitutive activation of Notch signaling causes 

abnormal conduction propagation consistent with defective cardiac cell differentiation.   

 

During ventricular chamber formation, characteristic finger-like projections, 

known as trabeculae, are generated.  Trabeculae are formed when myocardial cells in the 

ventricular segment proliferate and migrate into the ventricular lumen.  Coalescence of 

the trabeculae generates the interventricular septum, the thickened myocardium, and 

future sites of the conduction system.  Our results show that Notch signaling regulates the 

migration of cardiac cells during cardiac development.  In vivo studies show that Notch 

signaling regulates the distribution of cardiac cells within the heart, suggesting a role for 

Notch in cell migration.  In vitro studies further demonstrate that Notch signaling 

regulates cardiac cell migration by influencing delamination and increasing cell motility.  

Additionally, in vitro studies demonstrate that the effects of Notch on cell migration are 

independent of its effects on differentiation. 

 



31 
 

 

 

 

 

 

 

 

 

CHAPTER II: Notch signaling plays a key role in cardiac cell differentiation 
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2.1 Abstract 

 

Results from lineage tracing studies indicate that precursor cells in the ventricles 

give rise to both cardiac muscle and conduction cells.  Cardiac conduction cells are 

specialized cells responsible for orchestrating the rhythmic contractions of the heart.  

Here, we show that Notch signaling plays an important role in the differentiation of 

cardiac muscle and conduction cell lineages in the ventricles.  Notch1 expression 

coincides with a conduction marker, HNK-1, at early stages.  Misexpression of 

constitutively active Notch1 (NIC) in early heart tubes in chick exhibited multiple effects 

on cardiac cell differentiation.  Cells expressing NIC had a significant decrease in 

expression of cardiac muscle markers, but an increase in expression of conduction cell 

markers, HNK-1, and SNAP-25.  However, the expression of the conduction marker 

connexin 40 was inhibited.  Loss-of-function study, using a dominant-negative form of 

Suppressor-of-Hairless, further supports that Notch1 signaling is important for the 

differentiation of these cardiac cell types.  Functional studies show that the expression of 

constitutively active Notch1 resulted in abnormalities in ventricular conduction pathway 

patterns. 
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2.2. Introduction 

 

The cardiac conduction system is a specialized tissue responsible for setting, 

maintaining, and coordinating the rhythmic contractions of the heart [54, 127, 128].  

Precisely timed electrical impulses are generated at the sinoatrial node, spread through 

the atrial myocytes,and are received at the atrioventricular node.  This impulse is then 

rapidly propagated along the His bundles and its branches, spreading into the ventricular 

muscle via the Purkinje fiber network.  Although much progress has been made in the 

understanding of heart development [7, 129], the mechanism underlying the development 

of the cardiac conduction system is only partially understood. 

 

Cardiac conduction cells are distinguished by their unique gene expression 

pattern.  Antibodies to Leu-7 (HNK-1) have been used widely to delineate the developing 

conduction system in mammals and in chicken [54, 59-62].  The HNK-1 antibody 

recognizes a complex sulfate-3-glucuronyl carbohydrate moiety, which is present on a 

series of molecules involved in cell adhesion and extracellular matrix interaction.  The 

antibody to SNAP-25 protein, a component of the SNARE complex, has also been used 

to mark the elements of the ventricular conduction system in chick [62].  Among the gap 

junction protein connexins, Connexin40 (Cx40) or the chicken homolog Cx42, has been 

used as a marker for the conduction system in many species [57, 130-132].   
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Retroviral lineage analyses have provided compelling evidence that conduction 

cells are derived from precursor cells in the heart, sharing a common lineage with 

working cardiomyocytes [66, 67].  Clonally related cells are found in both cardiac muscle 

cells and in the conduction system.  Following microinjection of replication-defective 

retrovirus into the cardiac neural crest, however, no virally tagged cells could be traced 

into the Purkinje fiber lineage, excluding contribution from the neural crest.  

 

It has been demonstrated that the selection of conduction cells within myocardial 

clones occurs as a result of paracrine signals from endocardial cells and endothelial cells 

from coronary arteries, including endothelin-1 (ET-1) in chick and Neuregulin-1 in 

mouse [69-71, 133].  Coexpression of preproendothelin (preproET-1) and endothelin 

converting enzyme (ECE-1) in the embryonic myocardium induced myocytes to express 

Purkinje fiber markers [69, 70].  Addition of neuregulin-1 to embryo cultures of CCS-

lacZ mice, in which lacZ delineates the cardiac conduction system, increased lacZ 

expression [71]. Several transcription factors, including Nkx2.5, Tbx5, and HF-1b have 

also been shown to play an important role in the development of the cardiac conduction 

system [72, 74-76, 134-136].  Mouse mutants deficient in either of the transcription 

factors HF-1 b, Tbx5 or Nkx2.5 exhibit defects in the development and function of the 

conduction system. 

 

The Notch signaling pathway is an evolutionarily conserved mechanism used by 

metazoans to control cell fate decisions through local cell interactions [137].  The notch 
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gene encodes a single-pass transmembrane protein receptor that interacts with its ligands, 

Delta and Serrate/Jagged.  Upon binding of the ligand, the intracellular domain of Notch 

(NIC) undergoes proteolytic cleavage, and is translocated to the nucleus. In the nucleus, 

NIC binds to its major downstream effector, Suppressor-of-Hairless [Su(H)].  Su(H) 

binds to the regulatory sequences of the Enhancer-of-Split [E(spl)] locus, upregulating 

the expression of basic helix-loop-helix (bHLH) proteins, which in turn regulate the 

expression of downstream target genes.  Signals transmitted through the Notch receptor, 

in combination with other cellular factors, influence differentiation of various cell types, 

in the nervous system, immune system and pancreas [137]. 

 

The Notch pathway has been previously shown to influence cardiogenesis.  In 

Xenopus, it is suggested that the interaction of Notch1 with its ligand Serrate1 apportions 

myogenic and non-myogenic cell fates within the early heart field [123].  In mouse, null 

mutations in both notch1 and RBP-J, the mammalian homolog of Suppressor-of-Hairless, 

leads to embryonic lethality and pericardial edema [110, 111].  The absence of RBP-J in 

mouse ES cells causes an increase in cardiac muscle development suggesting that 

Notch/RBP-J signaling is required for the specification of cell fates within the heart field 

by suppressing cardiomyogenesis [125].  Recently, mutations in Notch1 in humans have 

been shown to cause aortic valve defects and activation of Notch1 in mouse leads to 

abnormal cardiogenesis characterized by deformities of the ventricles and atrioventricular 

canal [113, 126].  Additionally, mutations in various Notch signaling pathway genes, 

including Jagged1, mind bomb 1, Hesr1/Hey1, and Hesr2/Hey2, result in cardiac defects, 
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such as pericardial edema, atrial and ventricular septal defects, cardiac cushion, and valve 

defects [117-121, 138-140].   

 

Here, we demonstrate a role for Notch1 in the differentiation of cardiac cell types 

in the ventricles.  Notch1 mRNA transcripts are expressed in the ventricular conduction 

cell lineage at early stages.  Forced expression of constitutively active Notch1 in 

progenitor cells inhibits muscle marker expression but promotes expression of conduction 

marker HNK-1 and SNAP-25.  Cells expressing constitutively active Notch were 

localized predominantly in the trabeculae where conduction cells are concentrated, and 

not in the future myocardial compact zone.  Loss-of-function study further demonstrates 

the requirement for Notch in this lineage decision.  By optical mapping, we have further 

shown that expression of constitutively active Notch1 resulted in abnormal conduction 

patterns in the heart consistent with a defect in cardiac cell differentiation. 

 

2.3 Results 

 

To study the mechanism of cardiac cell differentiation, we analyzed the 

expression of the notch1 gene by in situ hybridization.  At embryonic days 6 (E6), in situ 

hybridization on heart sections showed that notch1 was expressed in the ventricles and 

the atria, concentrated in a subset of cells in the trabecular myocardium, and 

atrioventricular canal (Figs. 2.1A, B, and data not shown).  Some very weak signals were 

also detected in the endocardium (Fig. 2.1B).  
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Figure 2.1. Expression patterns of notch1 mRNA in the embryonic chick heart, by in situ 

hybridizations on heart sections at embryonic days 3 (HH19), 6 (HH29), and 9 (HH35) 

(E3, E6, E9).  A.  notch1 expression at E6 is shown at a low magnification in the 

ventricles.  B.  The boxed area in A is shown at a higher magnification.  Note the 

expression of notch1 in the myocardium (arrows), in addition to very weak signals in the 

endocardium (arrowhead).  C.  To identify the cells expressing notch1, we 

immunostained the heart section with the antibody HNK-1 (red), after the completion of 

in situ hybridization.  Note that notch1 in situ signals appear to be closely associated with 

cells positive for HNK-1 staining on the plasma membrane at E3 and E6 (arrows).  The 

HNK-1 staining appears subendocardial.  The sections shown are of oblique angles.  At 

E9, many notch1-positive cells are no longer associated with HNK-1 staining.  v: 

ventricles; t: trabecula.  Scale bars in B, C=20 µm; in A=200 µm. 
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To determine which cardiac cell type in the myocardium expressed notch1 

mRNA, we performed in situ hybridization on heart sections using the chick notch1 

probe, followed by immunostaining with markers for different cardiac cell types.  From 

E3 to E6, the notch1 in situ signals in the ventricles were largely associated with staining 

by HNK-1 (Fig. 2.1C).  HNK-1 antibody recognizes a complex carbohydrate moiety on 

the cell surface and has been used extensively as a marker for the ventricular conduction 

system in many species including chick, rat, rabbit and human [59-62, 141-146], and 

overlaps with another conduction system marker, Cx40 (Supplementary Fig. 2.1S).  As in 

situ signals are localized in the cytoplasm whereas HNK-1 staining is found on the 

plasma membrane, the association of the expression patterns suggests that these cells may 

be expressing HNK-1 and notch1.  By E9, however, notch1 in situ signals in the 

ventricles appeared to be concentrated in the grooves between the trabeculae, with 

limited association to HNK- 1 staining (Fig. 2.1C).  This result suggests that notch1 is 

expressed in the ventricular conduction cell lineage at early stages. 

 

To define the role of notch1 in heart development, we first took a gain-of-function 

approach by expressing a constitutively active form of Notch1 in a replication-competent 

avian retrovirus (RCAS-NIC) (Fig. 2.2A).  The truncated protein consisting only of the 

intracellular domain of Notch1 is known to localize largely in the nucleus, and elicits a 

constitutively active phenotype [147].  RCAS-NIC, or a control virus RCAS-GFP, 

encoding green fluorescent protein (GFP), was injected into the early heart tube at HH 9.  

As shown in Fig. 2.2B, by co-staining with the anti-myc and anti-viral GAG antibodies,  
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Figure 2.1S.  In situ hybridization was performed on E6 chick heart sections by using the 

chick Cx40 RNA probe, followed by immunostaining with the antibody HNK-1.  (A) The 

in situ hybridization result is shown at a low magnification in the ventricular region.  (B) 

The boxed area in A is shown at a higher magnification.  The HNK-1 staining patterns in 

the same areas in A, C are shown in B, D, respectively.  Note that the HNK-1 staining 

appears largely fiberous in the trabeculae regions.  There is a close association of the 

Cx40-positive cells and the HNK-1 staining.  Note that a perfect overlap of the two 

signals cannot be expected due to the fact that the blue precipitates from the in situ 

hybridization block fluorescent signal, and HNK-1 staining is on the plasma membrane 

whereas the Cx40 transcripts are localized in the cytoplasm.  Scale bars in C=20 µm; in 

A=200 µm. 
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Figure 2.2.  Expression of constitutively active Notch1 (NIC) via a retroviral construct in 

embryonic chick heart.  (A) Retroviral constructs, RCAS-GFP and RCAS-NIC.  LTR: 

Long terminal repeat; gag: gene encoding the viral capsid proteins; env: gene encoding 

viral envelop protein; pol: gene encoding viral reverse transcriptase.  (B) RCAS-NIC 

injected chick hearts were harvested at E6, sectioned and immunostained with p27 (anti-

viral GAG protein, green) to identify infected cells, and an antibody against the myc tag, 

9E10 (red).  DAPI (blue) was used to stain for the nuclei.  Note that the myc-tag staining 

coincides with the nuclear stain.  Scale bar, 10 μm. 
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NIC protein was observed in the nuclei of the infected cardiac cells.  However, not all 

infected cells appeared positive for the anti-myc antibody staining, possibly due to low 

detection sensitivity with a single copy of myc-tag present on the NIC protein.  Because 

most of the embryos injected with RCAS-NIC died around E5, we analyzed some 

embryos at E4.5.  For later analyses at E6 or E10, we injected diluted viral stocks to 

improve survival. Because some molecular markers are more specific in the ventricles, 

we focused our analysis within the ventricles.   

 

To determine the effect of constitutively active Notch on cardiac muscle 

differentiation, we co-immunostained the samples with anti-viral GAG p27 antibody to 

visualize the infected areas, and an antibody that recognizes the sarcomeric myosin heavy 

chain band, MF20.  We did not use myc staining for quantitative analyses because it is 

difficult to ascertain whether the cell type markers are expressed in the same cells 

positive for myc in the nuclei, among the densely packed cells.  Control RCAS-GFP-

infected cells appeared to be mostly positive for MF20 staining, similar to wild type 

uninjected hearts (Fig. 2.3A upper panels, and B).  The majority of the RCAS-NIC-

infected cells, however, appeared to have much decreased MF20 staining (Fig. 2.3A, 

middle and bottom panels).  Loss of MF20 staining was more apparent in samples with 

wide spread infection, nearly 100% of the ventricular cells in some cases (Fig. 2.3A, 

bottom panels).  At higher magnification by using confocal microscopy, the control 

RCAS-GFP-infected cells showed a strong sarcomeric banding pattern with MF20 

staining, and exhibited typical rod-shaped cardiomyocyte morphology (Fig. 2.3C).  
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Figure 2.3.  Constitutively active Notch1 (NIC) inhibits cardiac muscle cell 

differentiation. RCAS-NIC or control RCAS-GFP injected hearts were harvested at E4.5 

(A) and E6 (C), sectioned and immunostained with p27 (green) and the anti-sarcomeric 

myosin heavy chain marker, MF20 (red).  Hoechst dye 34580 (blue) was used to stain for 

the nuclei.  (A) E4.5 stained heart sections were analyzed at low magnification on an 

epifluorescence microscope.  Note that, in the RCAS-GFP-infected sample (top panel), 

MF20 staining is widely distributed throughout the heart.  RCAS-NIC-infected patches, 

however, show a substantial decrease in MF20 staining (arrowheads).  In some heavily 

infected hearts, little MF-20 staining was seen in the ventricles (bottom panel).  (B) 

Staining pattern of MF20 on a wildtype E6 heart is shown.  (C) To quantify the results, 

E6 heart samples were analyzed on confocal microscopy.  Note that the control RCAS-

GFP infected cells are mostly positive for MF20, showing characteristic banding patterns, 

whereas many RCAS-NIC infected cells are negative for MF20 staining.  (D) 

Quantification of the results by scoring for the percent of infected cells stained with 

MF20 at E6 and E10, respectively.  Note that RCAS-NIC infected expressed significantly 

less MF20, p < 0.001, Student’s t-test.  Scale bar in A common to B=500 µm, C=10 µm. 
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However, RCAS-NIC-infected cells lacked this muscle cell morphology, appeared more 

rounded, and the majority of the cells lacked MF20 staining (Fig. 2.3C).  In the hearts 

with limited infection, only RCAS NIC-infected cells appeared negative for MF20 

staining, while neighboring uninfected cells were positive for MF20, suggesting that the 

effect of the NIC protein is likely cell-autonomous (Fig. 2.3C).  The results of partially 

infected E6 samples were quantified by scoring randomly chosen infected cells on the 

confocal microscope.  Heart sections infected with the RCAS-NIC virus showed a 

marked decrease in the percentage of MF20-positive cells, compared to the control 

RCAS-GFP-injected samples (mean ± std: 41.9 ± 4.0% and 89.4 ± 3.7%, respectively; p 

< 0.001, Student’s t-test) (Fig..3D).  To determine whether the decrease of MF20 staining 

is due to a delay in cardiomyocyte differentiation by constitutive Notch1 activity, we 

examined RCAS NIC- infected hearts at a later stage, E10.  We observed similar results 

at E10: RCAS-NIC infected hearts displayed a similar decrease in the number of MF20 

positive cells (38.6 ± 8.4 vs. 95.2 ± 1.5% in control cells, p < 0.001) (Fig.2.3D).  

Furthermore, we analyzed the expression of another muscle marker a-actin in the RCAS-

NIC infected cells and a similar inhibitory effect was observed (data not shown).  These 

results suggest that persistent Notch activity inhibits cardiomyocyte differentiation. 

 

We next examined the effects of constitutively active Notch1 on the 

differentiation of conduction cells.  In the control RCAS-GFP injected samples similar to 

uninjected wild type samples, conduction marker HNK-1 staining was observed in the 

areas of the trabeculae and interventricular septum (Fig. 2.4A and B).  At higher  
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Figure 2.4.  RCAS-NIC increases expression of the conduction system marker, HNK-1.  

RCAS-GFP or RCAS-NIC injected hearts were harvested at E4.5(A, C) or E6 (D), 

sectioned and immunostained with p27 (green), to identify infected cells, and the 

conduction lineage marker HNK-1 (red).  Hoechst dye 34580 or DAPI (blue) were used 

to stain for the nuclei.  (A) E4.5 stained heart sections were analyzed at low 

magnification on an epifluorescence microscope.  Note that the RCAS-NIC infected 

sample shows a significant increase in HNK-1 staining as compared to the RCAS-GFP 

infected heart.  (B) The staining patterns of HNK-1 in wild type E4.5 and E6 hearts are 

shown.  Note that HNK-1 staining is concentrated around the trabeculae.  (C) The areas 

of the hearts marked by arrows in (A) are shown in a higher magnification.  The RCAS-

NIC infected sample shows HNK-1 staining around almost every cell within the 

trabeculae, while HNK-1 staining mostly outlines the trabeculae in the RCAS-GFP 

infected heart.  (D) The overlay images of the infected hearts at E6 are shown (red, HNK-

1; green, P27; blue, Hoechst dye).  Note that the trabeculae partially infected with RCAS-

NIC has an increase in HNK-1 expression, especially within the trabeculae.  (E) 

Quantification of the percentage of the cells infected with RCAS-GFP or RCAS-NIC 

expressing HNK-1 at E6.  Note that significantly more RCAS-NIC infected cells express 

HNK-1, p < 0.001, Student’s t-test.  Scale bar in A common to B=500 μm; C=100 μm; 

D=100 μm. 

 

 

 



50 
 

magnification, HNK-1 staining appeared to line the trabeculae with limited staining 

inside the trabeculae (Fig. 2.4C).  However, in hearts heavily infected with RCAS-NIC, 

the expression of HNK-1 was found in nearly all of the ventricular myocardium (Fig. 

2.4A).  Instead of a normal pattern lining the trabeculae, HNK-1 staining appeared to 

surround every cell in the RCAS-NIC injected samples (Fig. 2.4C).  Similar increase in 

HNK-1 staining was observed in the E6 samples, despite the fact that these samples were 

not well-infected by injection with diluted viral stocks.  By scoring randomly chosen 

infected areas on the confocal microscope, a significant increase was observed in the 

proportion of RCAS-NIC-infected cells at E6 expressing HNK-1, compared to RCAS-

GFP-infected cells (53.8 ± 6.6 and 15.7 ± 4.0%, respectively; p < 0.001) (Fig. 2.4D and 

E).  These results support our notion that constitutively active Notch1 increases the 

expression of HNK-1. 

 

To determine the effect of Notch signaling on other known conduction cell 

lineage markers, we examined the expression of SNAP-25 and connexin 40 in the RCAS-

NIC injected hearts. SNAP-25 is a component of the SNARE complex that is involved in 

exocytosis on synaptic terminals.  The antibody of SNAP-25 has been shown to label 

components of the ventricular conduction system in the chick embryo [62].  At low 

magnification on an epifluorescence microscope, SNAP-25 expression in E6 wild type 

hearts was found to be concentrated in the trabeculae, in areas similar to HNK-1 staining.  

But unlike HNK-1 staining which lines the trabeculae, SNAP-25 staining was found 

inside the trabeculae (Fig. 2.5A and B).  At higher magnification, SNAP-25 staining was  
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Figure 2.5.  Increase in proportion of the RCAS-NIC infected cells expressing SNAP-25.  

RCAS-GFP or RCAS-NIC injected hearts were harvested at E6, sectioned and 

immunostained with anti-GAG antibody p27 (green), and the conduction marker SNAP-

25 (red).  Hoechst dye 34580 (blue) was used to stain for the nuclei. (A) At low 

magnification, RCAS-NIC-infected cells are found to be largely localized to the 

trabeculae region where SNAP-25 expression is enriched.  (B) The staining pattern of 

SNAP-25 antibody is shown on wild type E6 heart section.  Note that the SNAP-25 

antibody stains the tips of the trabeculae.  (C) Stained heart sections were analyzed at 

higher magnification by confocal microscopy.  Many RCAS-NIC-infected cells are 

SNAP-25 positive.  High levels of expression of SNAP-25 were observed on the 

membrane and the cytoplasm of the RCAS-NIC expressing cells with some punctate 

staining among the myocardial fibers (top panels).  (D) Quantification of the percentage 

of the cells infected with RCAS-GFP or RCAS-NIC expressing SNAP-25.  Note that 

significantly more RCAS-NIC infected cells express SNAP-25, p < 0.01, Student’s t-test.  

Scale bar in A common to B=500 µm, in C=10 µm. 
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visible in the cytoplasm and plasma membrane of the conduction cells, in addition to 

punctate staining amidst the muscle cell fibers (Fig. 2.5C).  Because SNAP-25 is not 

expressed in the ventricles until E6, we could not analyze the effect of NIC on SNAP-25 

in heavily infected E4.5 hearts.  When we scored randomly selected RCAS-NIC-infected 

cells at E6 on a confocal microscope, a significant increase in the percentage of SNAP-

25-positive cells was observed, compared to the control samples (35.8 ± 4.2 and 18.8 ± 

7.6% of the infected cells, respectively; p < 0.01) (Fig. 2.5D).  At lower magnification, 

these NIC-expressing cells were found to localize to the trabeculae region, which is 

normally enriched with SNAP-25 positive cells (Fig. 2.5A, bottom panels).  In contrast, 

the control RCAS-GFP-positive cells were largely distributed in the myocardium 

destined for the future compact zone (Fig. 2.5A, top panels). 

 

Another conduction system marker, connexin 40 (also called Cx42 in chick), 

encodes a gap junction protein [54, 57, 148].  By in situ hybridization, we found low 

levels of Cx40 expression in cardiomyocytes in addition to intense staining in conduction 

system cells, in uninjected samples or the control samples injected with RCAS-GFP (Fig. 

2.6A).  This pattern has been reported previously [149, 150].  By in situ hybridization on 

heart sections infected with RCAS-GFP or RCAS-NIC virus using the chick Cx40 probe, 

followed by immunostaining with the anti-GAG antibody, we found that RCAS-NIC-

infected areas appeared to have decreased Cx40 in situ signals (Fig. 2.6C and D).  Few 

strongly stained cells were observed and the overall weak staining in the cardiomyocytes  
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Figure 2.6.  The expression of the conduction system marker connexin 40 (Cx 40) is 

decreased by constitutively active Notch.  RCAS-GFP (A, B) or RCAS-NIC (C, D) 

infected heart sections were analyzed by in situ hybridization with the Cx40 probe.  

Trabeculae areas were shown for both samples.  Note the dark subendocardial Cx40 

signals were not decreased by RCAS-GFP expression (arrows).  The entire area shown 

was infected by RCAS-GFP.  Because the dark precipitates of the in situ signals quench 

the fluorescence, small non-fluorescent areas overlapping exactly with the in situ signals 

are likely infected.  In contrast, the RCAS-NIC-infected areas correlated with decreased 

Cx 40 in situ signals, both in the subendocardial cells (arrowheads) and myocardial cells.  

Scale bar, 20 µm.   
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was further reduced. This result demonstrates that constitutively active Notch1 decreases 

the expression of Cx40.   

 

We next took a loss-of-function approach by expressing a dominant-negative 

form of the Suppressor-of-Hairless through retroviral infection, RCAS-Su(H)DN.  The 

dominant-negative form of Suppressor-of-Hairless has been shown to interfere with 

transcriptional activation of target genes by the Notch1 protein, thereby inhibiting Notch1 

function [83, 151].  The injected hearts were harvested at E4 and E6 and processed 

similarly as in our gain-of-function study.  In contrast to the control hearts which show 

high levels of Cx40 expression in the subendocardial cells in addition to low level 

expression in the myocardial cells (Fig. 2.6A and B), expression of Su(H)DN resulted in 

loss of cells expressing high levels of Cx40 (Fig. 2.7A).  However, low-level of Cx40 

expression in myocardial cells was unaltered.   

 

For MF20, HNK-1 and SNAP-25 markers, we found reversed phenotypes with 

the RCAS- Su(H)DN-expressing cells as compared to those expressing constitutively 

active Notch1 (RCAS-NIC).  At E4, we found a small but significant increase of RCAS-

Su(H)DN-infected cells showing MF20 staining, compared to RCAS-GFP-infected cells 

(98.4 ± 0.8 vs. 90.0 ± 1.2% in control, p < 0.001) (Fig. 2.7A and B).  Additionally, 

expression of Su(H)DN also appeared to significantly decrease the percentage of HNK-1 

expressing cells (4.7 ± 1.1 vs. 13.5 ± 1.9% in controls, p < 0.001) (Fig. 2.7A and B).  We 

found similar results at E6 as those at E4; a significant increase of  
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Figure 2.7. Expression of the dominant-negative form of Suppressor-of-Hairless alters the 

expression of cardiac cell type markers. Chick embryos were injected with the control 

virus, RCAS-GFP, or with the RCAS-Su(H)DN virus. (A) Hearts were harvested at E6 

and E4 (not shown), sectioned and immunostained with anti-viral GAG antibody, and 

various cell type specific markers. Note that most of the RCAS-Su(H)DN infected are 

positive for MF20, but negative for HNK-1. Expression of Cx40 was also analyzed by in 

situ hybridization on the infected heart sections, followed by staining with anti-GAG 

antibody. In the RCAS-Su(H)DN infected areas, the Cx40 expression appears to be at a 

low level uniformly, unlike the control hearts which show relatively high levels of Cx40 

in some subendocardial cells (Fig. 6A, B). Scale bars, 20 lm. (B) Quantification of the 

results by scoring the percentage of the RCAS-Su(H)DN infected cells that express 

various markers. Note that, compared to the GFP control (black bar), expression of 

Su(H)DN (gray bar) increased the percentage of cells positive for MF20, and decreased 

the percentage of cells positive for HNK-1 or SNAP-25, p < 0.001 for MF20, p < 0.001 

for HNK-1 and SNAP-25.  Asterisks indicate statistical significance. 
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RCAS-Su(H)DN-infected cells showing MF20 staining, compared to RCAS-GFP-

infected cells, and a significant decrease in the percentage of RCAS-Su(H)DN-infected 

cells positive for HNK-1 and SNAP-25 (Fig. 2.7B).   

 

To determine the effect of constitutive Notch signaling on the functional 

development of the ventricular conduction system, we utilized an optical mapping 

technique to visualize the propagation pathway of action potentials across the ventricular 

myocardium.  High-speed imaging was performed on uninjected control, RCAS-GFP 

injected and RCAS-NIC-injected hearts.  The hearts were dissected, stained with a 

voltage sensitive fluorescent dye, di-4-ANEPPS, and recorded for both the dorsal and 

ventral sides. After recording, hearts were fixed, sectioned, and the degree of infection 

was determined by anti-GAG staining.  As the fluorescent signal decreases with an 

increase in membrane voltage, the most rapid decrease in fluorescent signal corresponds 

to an action potential.  Custom software was developed to compute absolute values of 

rates of fluorescent change at each 5X5 pixel area of the entire ventricular surface and the 

maximum slope of the action potential was displayed as red in the color scale.  Five beat 

series were analyzed for each heart and the patterns appeared consistent from beat to 

beat.  Because a great majority of RCAS-NIC injected embryos died by E5 and hearts 

younger than E4.5 were difficult to handle because of their small size and fragility, we 

imaged live hearts at E4.5-5.  Seven out of 12 uninjected control hearts at this stage 

exhibited an immature, unidirectional propagation pattern (Fig. 2.8A, upper sequence). 

After activation of the atrium, the impulse travels along the myocardial wall in a  
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Figure 2.8.  Constitutively active Notch1 alters the conduction propagation pattern in 

embryonic chick hearts.  (A) Optical mapping was performed on uninjected control 

hearts at E4.5-5.  Images were collected at 2 milliseconds per frame, and processed using 

a custom software.  The first derivative was computed and the maximum upstroke 

velocity was defined as dF/dt max and depicted as red in the color scale.  Note, in the top 

panel, the impulse propagates along the myocardial wall from the atrium towards the 

outflow tract in the immature propagation pattern (red arrows) in about 8-10ms.  Also 

note, in the bottom panel, the impulse travels from the apex to the base (red arrows) 

within 8ms in the mature activation sequence.  (B) Optical mapping was similarly 

performed on RCAS-NIC-injected hearts at E4.5-5.  After imaging, the hearts were fixed, 

sectioned and stained with anti-P27 to visualize the extent of infection (shown in green 

fluorescence).  Note, the impulse fails to advance towards the base and dissipates within 

4ms in the top two panels, and a diffuse activation pattern in the bottom panel.  The heart 

in the bottom panel was more extensively infected with the RCAS-NIC virus.   

 

 

 

 

 

 

 



62 
 

unidirectional fashion towards the outflow tract.  The action potential travels across the 

heart within 8-10 ms.  The rest of the uninjected hearts (5 out of 12) displayed a mature, 

apex to base sequence of activation within a similar time frame (Fig. 2.8A, lower 

sequence), suggesting that the transition from an immature to a mature activation pattern 

occurs at around E4.5-5.  These results are consistent with previous optical mapping 

studies in chick showing similar mature and immature activation patterns [60, 70, 152].  

In 5 out of 24 hearts injected with RCAS-NIC, we observed an altered apex-to-base 

pattern in which the breakthrough impulse at the apex failed to advance towards the base.  

Instead of a normal 8-10 ms propagation time from apex to base, the activation sequence 

dissipated within 4 ms (Fig. 2.8B, upper and middle sequence).  Upon analysis of the 

samples after imaging, we found that these hearts expressed NIC in a relatively wide 

spread area (approx. 20-50%) (Fig. 2.8B, green fluorescence images in top and middle 

panels).  Another abnormal pattern found in the hearts injected with RCAS-NIC was a 

relatively diffuse activation pattern where the impulse at the apex of the heart traveled 

across the majority of the ventricular surface to the base (5 out of 24) (Fig. 2.8B, bottom 

sequence).  These hearts appeared to be infected most broadly in the myocardium but not 

in the epicardium (approx. 70-95%) (Fig. 2.8B, green fluorescence image in bottom 

panel).  The rest of the RCAS-NIC injected hearts had largely normal conduction patterns 

in the ventricle.  These hearts were not as well infected, with only small patches of 

infection (data not shown).  We also examined the activation patterns of RCAS-GFP-

injected hearts (n = 14).  These hearts displayed normal activation patterns within the 

same time frame as the control uninjected hearts (14 of 14), suggesting that viral 
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infection alone did not affect the conduction patterns.  Taken together, these data suggest 

that expression of a constitutively active Notch resulted in an abnormality in the 

functional development of the cardiac conduction system. 

 

Delta1 is a well-characterized ligand known to bind to the Notch receptor and 

activate the Notch signaling pathway.  We analyzed the expression of Delta1 by 

performing in situ hybridization on chick heart sections.  As shown in Fig. 2.9A, Delta1 

transcripts were detected widely in myocardial cells in the ventricles at E3 and E6, but 

the signal was reduced at E9.  It has been previously shown that Delta1 expression can be 

negatively regulated by Notch signaling through downstream basic helix-loop-helix 

(bHLH) transcription factors [86, 153, 154].  

 

To test whether a similar feedback loop is also at work in this system, expression 

of Delta1 transcripts was analyzed in control RCAS-GFP or RCAS-NIC-infected hearts. 

As shown in Fig. 2.9B, the expression of Delta1 was decreased in areas infected with 

RCAS-NIC, but not in areas infected with control RCAS-GFP.  These results suggest that 

Delta1 may act as a ligand for the Notch receptor and a negative feedback loop may also 

be present during cardiac differentiation. 
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Figure 2.9.  Expression of Delta1 is decreased in the cells infected with RCAS-NIC.  (A) 

Expression of chick Delta1 transcripts in the developing heart.  In situ hybridization was 

performed on cardiac sections of E3, E6, and E9 chick embryos.  Note that Delta1 is 

widely expressed in the myocardium.  (B) Expression of Delta1 is reduced in the areas 

infected with the RCAS-NIC virus.  Heart tubes were injected with control RCAS-GFP 

or RCAS-NIC virus at HH9-10 and the infected hearts were harvested at E6.  In situ 

hybridization was performed on the infected tissues with the Delta1 probe, and the 

infected areas were detected by anti-viral GAG staining.  Note that Delta1 transcript 

expression was inhibited by the expression of NIC (arrows), but not GFP.  Scale bars, 50 

μm. 
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2.3. Discussion 

 

In this paper, we show that Notch signaling plays an important role in cardiac cell 

differentiation. Notch1 transcripts are expressed in the early conduction lineage but not in 

cardiomyocytes in the ventricles.  Expression of constitutively active Notch inhibits the 

expression of cardiac muscle proteins including sarcomeric myosin heavy chain and a 

actin.  The effects of constitutively active Notch on the conduction cell markers are more 

complex: there was an increase in the expression of conduction lineage markers, HNK-1 

and SNAP-25, but a decrease in the expression of Cx40.  By using a Su(H)DN construct, 

we found that reducing Notch signaling resulted in an increase of MF20 expression and a 

decrease of conduction markers including HNK-1, SNAP-25, and a high level of Cx40 

expression.  These results suggest that Notch signaling plays a role, along with the 

inductive signals, in the genetic network regulating cardiac cell type specification and 

determination.   

 

Multiple functions have been reported for the Notch pathway in heart 

development, in specification of the cardiogenic field in Xenopus and mouse [123, 125]. 

Mutations in the genes in the Notch signaling pathway result in various cardiac defects 

including pericardial edema, defects in formation of valves, atrial and ventricular septa, 

and in endocardial cushions [115, 117-121, 138-140].  We injected retroviruses after the 

completion of early cardiogenesis.  Thus, initial cardiogenic processes in the RCAS-NIC 

injected samples were unaffected and the hearts retained largely normal morphology.  
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Our study thus provides evidence for an additional, later role of Notch1 in heart 

development, in the differentiation of ventricular cell types.  The following evidence 

supports the notion that inhibition of cardiac muscle marker expression by RCAS-NIC is 

due to specific effects of Notch signaling, and not nonspecific effects of the virus.  First, 

samples infected with a control virus expressing GFP displayed normal expression of 

myocardial and conduction cell markers, and have a normal conduction pathway, 

suggesting that the virus itself does not cause non-specific effects on cardiac 

differentiation.  This type of virus has been widely used to study the development of 

many organ systems, and no significant adverse effects have been reported.  Second, a 

significantly higher proportion of the RCAS-NIC-infected cells expressed the conduction 

cell markers, HNK-1 and SNAP-25.  Third, the retrovirally expressed dominant negative 

Su(H) gave rise to the opposite effects of those with RCAS-NIC, suggesting that these 

effects on marker expression are likely due to specific effects of the transgenes, not 

nonspecific effects of viral infection.  Fourth, the effects of constitutively activated 

Notch1 on cell differentiation are also consistent with its endogenous expression pattern; 

Notch1 is expressed in the conduction cell lineage at early stages, but not in myocardial 

cells. 

 

Notch activity has been shown to influence various cell differentiation processes, 

by selecting a subset of cells from an initially homogenous precursor population [137]. 

This is mainly achieved through a process termed “lateral inhibition”, in which a small 
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difference in signaling among the cells is amplified through a feedback mechanism.  A 

key element of this mechanism is that the expression of Delta is repressed by Notch 

signaling through downstream basic helix-loop-helix (bHLH) transcription factors [153, 

154].  We have shown that Delta1 is similarly downregulated by constitutively activated 

Notch, suggesting that a feedback loop is possibly at work in cardiac differentiation. 

 

Because our cell type markers are on the plasma membrane (HNK-1) or 

sarcomeric (MF-20), and the cells are large and densely packed, we used cytoplasmic 

staining of GAG rather than the nuclear myc staining for scoring.  Although not all GAG-

positive cells are positive for myc due to low sensitivity of a single copy myc, we think 

NIC is expressed by most of the GAG-positive cells.  This is evident in the well-infected 

samples such as those shown in Figs. 2.4A and 2.3A, that nearly all the ventricular cells 

are positive for HNK-1 and negative for MF-20, respectively.  Our results of 

constitutively active Notch on the expression of myocardial markers, MF20 and a-actin, 

and conduction markers, HNK-1 and SNAP-25, support that Notch1 is involved in 

cardiac differentiation by inhibiting cardiomyocyte but promoting early conduction cell 

differentiation.  This is reminiscent of the role of Notch1 in the nervous and immune 

systems, where Notch inhibits neural and B cell fates, and promotes glial and T cell 

differentiation, respectively.  However, the effect of Notch signaling on another 

conduction marker, Cx40, is more complex.  Decreasing Notch signaling by using a 

dominant negative Su(H) construct shows that the high level of Cx40 expression is 

diminished but the low level of Cx40 expression in the myocardium remains unchanged. 
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Because conduction cells express high levels of Cx40 whereas the myocardial cells 

express low levels of Cx40, this result is consistent with our model that reduction of 

Notch signaling increases myocardial but decreases conduction cell differentiation.  

However, because Cx40 is a relatively later marker, Notch signaling may need to be 

turned down before high levels of Cx40 can be expressed in the conduction cells. 

Prolonged expression of constitutive active Notch may inhibit the expression of Cx40 in 

both the myocardial and conduction cells.  This is consistent with our observation that 

Notch1 is only transiently expressed in the conduction cells (Fig. 2.1 and data not 

shown).  Additional signals may also be required with the Notch signaling to turn on the 

maturation program of the conduction cells including high levels of Cx40 expression. 

Previous works have shown that paracrine factors released by the endocardium and 

endothelial cells of the coronary arteries, endothelin in chick and Neuregulin-1 in mouse, 

can increase the expression of conduction markers and cause a change in conduction 

pathway that is consistent with excess recruitment of functional Purkinje cells [69-71, 

133].  Therefore, our current model is that transient Notch activity may be required for 

the initial separation of myocardial and conduction lineages by inhibiting cardiomyocyte 

differentiation and promoting early conduction cell differentiation, possibly through 

regulating the responsiveness of the cells 

to paracrine factors. 

 

Although HNK-1 has been shown as a conduction cell marker in chick and other 

species, it has also been used as a neural crest marker.  However, we believe that the 
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HNK-1 expression induced by NIC indicates an increase in the conduction lineage cells 

rather than the neural crest cells for the following reasons.  First, NIC increases the 

expression of another conduction marker SNAP-25 in addition to HNK-1. SNAP-25 has 

not been shown as a neural crest cell maker, which argues against an increase in neural 

crest cells.  Second, expression of NIC through a non-viral vector by electroporation 

resulted in a similar increase of HNK-1 expression (data not shown).  Because this vector 

cannot replicate, cells entering the heart after the initial electroporation, such as neural 

crest cells, will not be infected.  Third, in some heavily infected hearts, nearly 100% of 

the ventricular cells are positive for HNK-1, but negative for MF-20.  This is unlikely to 

be an exclusive effect on neural crest cells. 

 

Our optical mapping studies show that approximately 41% of the RCAS-NIC 

injected mutants had obvious abnormality in the conduction pathway.  Because optical 

mapping analyzes the pattern of action potential in epicardial cells, it is less likely to be 

affected by factors which may affect heart rate or contractility.  For each heart, we 

analyzed at least five beat series to confirm that the abnormality is present consistently in 

each beat.  In addition, the degree of abnormality correlated well with the degree of 

infection by the RCAS-NIC virus.  The altered conduction system function revealed by 

optical mapping is consistent with our model that cells expressing constitutively active 

Notch are not fully differentiated functional conduction cells.  These results are different 

from the phenotype observed in chick hearts with excess production of endothelin or 

mouse hearts treated with neuregulin-1, which induced alterations in activation patterns 



71 
 

consistent with additional recruitment of Purkinje cells [70, 71].  Optical mapping studies 

of the (Cx40) knockout mice indicated some delay or block in conduction velocities in 

the right bundle branch, and more diffuse breakthrough sites in the left ventricle [155, 

156].  Chimeric mice generated from stem cells deficient for connexin 43, a gap junction 

predominantly expressed in the ventricular myocardium, displayed conduction delay 

[157].  Thus, reduced expression of gap junction proteins can lead to conduction 

abnormalities.  Because constitutively active Notch down-regulates the expression of 

Cx40, we speculate that the conduction abnormalities of the RCAS-NIC-injected hearts 

may be in part due to decreased expression of Cx40.  In the hearts moderately infected 

with RCAS-NIC, a general correlation of blocked pathway with the area of infection was 

observed, suggesting a block in the infected areas.  In the hearts highly infected by 

RCASNIC, Cx40 expression may be downregulated throughout the myocardium, causing 

the electrical impulse to disperse across the epicardial surface.  Because our optical 

mapping protocol detects electrical propagation across the epicardial surface, we 

therefore observed a diffuse activation pattern. 

 

Retroviral lineage analyses have shown that the central and peripheral conduction 

systems may arise separately although they both share lineages with cardiomyocytes [66, 

67].  In chick, two different conduction cell localizations have been described: 

subendocardial and periarterial [127].  Because most of the well-infected RCAS-NIC 

embryos died around E5, prior to the formation of periarterial conduction cells, our 

current study has been focused on subendocardial conduction cells in the ventricles. 
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However, at early stages such as E3 and E4.5, cells expressing Notch1 and HNK-1 

appear not always associated closely with the endocardium.  This possibly represents an 

early pattern prior to the establishment of more defined subendocardial localization, as 

we have observed this pattern in multiple samples in multiple experiments. It is also 

interesting to note, that Notch1 appears to be expressed in vascular endothelial cells in 

the coronary vessels after E9. 

 

While our results support a role for Notch1 in cardiac cell differentiation in the 

ventricles, we currently do not have evidence whether it is involved in atrial cell 

differentiation.  We focused our study on ventricles because some of the cell type 

markers we used are not as specific in the atria as they are in the ventricles.  Although 

Notch1 expression was reported in the outflow tract, the atrioventricular canal, the 

trabeculae of the ventricles, the epicardium, the aorta [108], and the endocardium [115, 

158, 159], the expression of Notch1 has yet to be reported in myocardium in mouse.  The 

differences in expression patterns of Notch1 reported in the heart likely reflect dynamic 

and transient nature of the expression patterns of Notch1.  Mutant mice with a targeted 

deletion of the Notch1 gene die before E11.  Although severe pericardial edema was 

reported for these mutant mice, these mice have a beating heart at E10.5 [111].  It is 

likely, therefore, that the central conduction system is differentiated to a certain extent by 

this stage.  It is possible that Notch1 function is not required for the differentiation of the 

central conduction system, or other Notch receptors expressed in the heart may 

compensate for the loss of the Notch1 receptor.  It has been reported that the Notch2 and 
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Notch3 genes are also expressed in the developing heart [112, 160].  With the 

characterization of Notch function in chick conduction system development, further study 

on the role of Notch in the murine conduction system development is warranted. 

 

2.5. Experimental procedures 

 

Whole-mount and section in situ hybridization 

Standard specific pathogen-free white Leghorn chick embryos from closed flocks 

were provided fertilized by Charles River Laboratories (North Franklin, Connecticut). 

Eggs were incubated inside a moisturized 38°C incubator. The embryos were staged 

according to Hamburger and Hamilton [161].  Because our analyses were focused on 

embryos at relatively late stages, we chose to describe the ages of embryos by embryonic 

days rather than Hamburger-Hamilton stages.  E3, E4.5, E6, E9 are equivalent to 

Hamburger and Hamilton stages 20, 25, 29, and 35, respectively.  The hearts were 

dissected and fixed in 4% paraformaldehyde at 4°C for 12-24 h.  Cryosections of 20 μm 

thickness were prepared from tissue OCT blocks on a cryostat (Leica, Deerfield, IL) and 

collected on Superfrost Plus slides (Fisher Scientific, Pittsburgh, PA).  Whole-mount and 

section in situ hybridization were performed as previously described in [38, 162] and 

[159]. cDNA plasmids used for generating the Digoxigenin-labeled Notch1 and Delta1 

probes were provided by Dr. D. Henrique.  Full length chicken connexin 42 cDNA was 

obtained from the chicken EST database (MRC Geneservice). 
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Immunofluorescence staining and data analysis 

Immunofluorescence staining was carried out on cryosections of the heart.  Sections were 

fixed in 4% paraformaldehyde, and blocked in 10% calf serum DME with 0.2% Triton X-

100. Primary and secondary antibodies were diluted in block, and incubated for 1h at 

room temperature or overnight at 4°C.  Viral infection was confirmed by using the mouse 

polyclonal anti-gag antibody, p27 (SPAFAS, Norwich, CT).  The mouse monoclonal 

antibody of the muscle marker, MF20, was obtained from the Developmental Studies 

Hybridoma Bank (University of Iowa, Iowa City, IA).  HNK-1 was obtained from ATCC 

(Manassas, VA), a-actin antibody was obtained from Dako Cytomation (Carpinteria, 

CA), and SNAP-25 was obtained from Sternberger Monoclonals, Inc. (Lutherville, MD). 

The nuclear stain, DAPI and Hoechst Dye 34580 were obtained from Roche 

(Indianapolis, IN), and Molecular Probes (Eugene, OR), respectively.  Stained sections 

were analyzed and scored using the Leica TBS SP2 confocal microscope and software.  

A total of 500 randomly selected cells were scored from each heart, and a total of four 

different hearts were examined for each marker.  The percentage of infected cells 

expressing the observed marker was used for statistical analysis by unpaired Student’s t 

test. 

 

Viral constructs 

The mouse Notch intracellular domain (NIC) construct was obtained from Dr. Jeffrey 

Nye.  NIC insert was released from the plasmid and cloned into the avian replication-

competent retrovirus, RCAS. G-coat viruses were prepared by transient transfection as 
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previously described in [39].  Early heart tubes of HH stage 9 embryos were injected with 

the viral stocks.  Because the embryos injected with the undiluted viral stock had high 

rate of mortality, we diluted the viral stocks 1:2 to increase the chances of survival.  The 

dominant-negative form of Suppressor-of-Hairless was a gift from Dr. Nathan Lawson 

(UMass Medical School,Worcester, MA).  The 2.5 kb fragment was cloned into the ClaI 

site of RCAS. RCAS virus was similarly prepared and used for injection into the heart 

tubes of HH 9 embryos. 

 

Optical mapping 

Optical mapping technique was modified from previously published procedures [152]. 

Hearts were dissected from uninjected control, RCAS-GFP injected, and RCAS-NIC-

injected E4.5 embryos, and stained by submerging in a 0.002% solution of voltage 

sensitive fluorescent dye, di-4-ANEPPS (Molecular Probes), in Tyrodes-HEPES buffer, 

pH 7.4, for 4 min at room temperature.  The hearts were then transferred to oxygenated 

37ºC Tyrode’s solution imaged on a custom-built upright wide-field epifluorescence 

microscope equipped with a 128 X 128 pixel, high-speed, 100% imaging duty cycle 

electron multiplying CCD camera (Cascade 128+, Photometrics, Tucson, AZ).  The laser 

shutter, camera control and image storage were managed by Metaview software 

(Universal Imaging, Philadelphia, PA).  Hearts were imaged using an Olympus 2X 

objective lens, with an overall magnification of 10 l/pixel.  As the contraction of the heart 

at this stage did not appear to interfere with the imaging, no motion inhibitors were used. 

The dye was excited with the 514 nm line of an argon laser, and the emitted fluorescence 
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was imaged onto the camera through a 580 nm long pass emission filter.  A simple image 

streaming protocol was set up in Metaview and used for all image acquisitions.  For each 

sequence, the laser shutter was opened and 4000 images were streamed directly to system 

memory at 500 frames/sec (2 ms exposure per image frame).  The data were processed 

using a custom software program as follows.  Images were first smoothed using a 5 X 5 

box filter, and the first time derivative was computed by subtracting successive images 

(dFi\dt ≈ | Fi-Fi-1|\2 ms, where F is the average fluorescence measured in each smoothed 

picture element).  The maximum upstroke velocity was defined as dF/dt max and 

depicted as red in the color scale accompanying the sequence of difference images.  For 

most of the hearts, the difference images were analyzed for five beat sequences to 

confirm the results.  In all cases, we found that the activation patterns are consistent from 

beat to beat, despite some minor differences. 
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Chapter III: Notch activation increases cardiac cell migration by 

regulation of cell-cell adhesion and motility 
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3.1 Abstract 

 

Cell migration is of paramount importance for animal development, essential for 

morphogenesis and cell differentiation.  Many cells initiate migration with a process of 

delamination, or detachment from their neighboring cells, and become motile.  However, 

the molecular and cellular mechanisms underlying migration processes during embryonic 

development remain poorly understood.  To address the role of Notch signaling in cell 

migration, we expressed a constitutively active Notch construct and a dominant negative 

Suppressor-of-Hairless [Su(H)] construct to decrease Notch signaling, in a limited 

number of cardiac cells in a largely wild type environment in vivo.   We found that Notch 

activation is both necessary and sufficient to promote cardiac cell migration.  By 

developing a 3D gel culture assay combined with marker analysis and time-lapse 

microscopy, we found Notch activity affects cardiac cell migration by increasing 

delamination/emigration as well as increasing cell motility.  Furthermore, we show that 

the increase of cell migration by activated Notch is independent of its effects on cell 

differentiation.  We provide evidence that Notch activity decreases the expression of N-

cadherin, a predominant adhesion molecule in cardiomyocytes, which may underlie its 

effect on delamination. 
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3.2 Introduction 

 

Cell migration is one of the most important processes in animal development, 

integral to morphogenesis and cell differentiation [96, 97].  Selected cells are signaled to 

convert from a static to motile state and leave their place of birth in a highly controlled 

manner.  Cells loosen their attachment to the surrounding tissues, and start to migrate 

with specific direction, velocity, and towards specific destinations.  Despite the 

importance of cell migration in development and tumorigenesis, the mechanisms 

underlying the control of cell migration remain poorly understood. 

 

The Notch signaling pathway is an evolutionarily conserved mechanism best 

characterized in controlling cell fate decisions through local cell interactions [78-80].  

The Notch gene encodes a 300 kDa single-pass type I transmembrane receptor that 

consists of a large extracellular domain and an intracellular domain (NIC).  Two families 

of membrane bound proteins, Delta and Serrate/Jagged, have been identified as ligands 

for the Notch receptors.  Upon interaction with its ligands at the extracellular region, the 

Notch receptor undergoes a series of proteolytic cleavages to release the intracellular 

domain.  Nuclear translocation of NIC allows heterodimerization with the Suppressor-of-

Hairless [Su(H)] protein (also called RBPJk/CBF1), which activates downstream target 

genes.   In the nervous system, Notch signaling has been shown to play a key role in the 

differentiation between neurons and glial cells [82, 83, 85, 86, 163].  During lymphocyte 
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development, constitutive activation of Notch1 promotes T cell development at the 

expense of B cells [90].  

 

In addition to its roles in cell fate determination, Notch signaling has been 

implicated in cell migration during organogenesis.  Conditional ablation of Jagged1 in 

mice leads to granule cell migration defects during embryonic cerebellar development 

[106].  Similarly, Delta-1 null mice exhibit abnormal migration of neural crest cells due 

to disruption in the normal distribution of ephrin molecules [105].  In zebrafish, embryos 

injected with morpholino oligonucleotides against Suppressor of Hairless [Su(H)] to 

decrease Notch signaling exhibit increased migration and proliferation of endothelial 

cells during blood vessel sprouting [107].  However, as Notch activation usually causes 

multiple effects including cell proliferation, differentiation, apoptosis, along with cell 

migration, the underlying mechanisms by which Notch influences cell migration remains 

to be characterized.   

 

Highly regulated patterns of cell migration, proliferation and differentiation are 

fundamental processes of heart development.  During development, myocardial cells in 

the ventricular segments proliferate and migrate inwardly toward the ventricular lumen to 

form trabeculae, characteristic finger-like protrusions (Fig. 3.1A) [7, 42, 43].  Subsequent 

fusion of the trabeculae contributes to the formation of the thickened myocardium, 

interventricular septum, and future sites of the conduction system [45].  Conduction cells 

are specialized cells responsible for setting and coordinating rhythmic heart beating, and 
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are known to be derived from common progenitor cells with cardiac muscle cells [66, 

67]. Mouse mutants lacking BMP10, neuregulin-1 or neureulin-1 receptors ErbB2, 4 

exhibit defective trabeculation and hypoplastic ventricular growth [52, 53].  Injection of 

neuregulin-1 into mouse embryos promoted trabeculation without increasing cell 

proliferation [51].   

 

We have previously found that Notch signaling plays a key role in the cell fate 

decision between cardiac myocytes, and conduction cells, two predominant cell types 

derived from common progenitor cells [164].  Constitutively active Notch signaling 

promotes the expression of conduction cell markers and inhibits the differentiation of 

cardiac muscle cells.  In this study, we demonstrate that Notch signaling increases cardiac 

cell migration both by in vitro and in vivo approaches.  Our results indicate that the 

effects of Notch on cell migration are two-fold:  increasing cell delamination/emigration 

by decreasing the expression of N-cadherin and additionally increasing the motility of 

cardiac cells.  We provide further evidence that its effects on cell migration are 

independent of its effects on cell differentiation.   

 
3.3 Results 

 

We have previously shown that notch1 gene is expressed in a dynamic pattern in 

the developing ventricles, in undifferentiated precursor cells and newly differentiated 

conduction cells [164].  To characterize the role of Notch1 signaling in developing 

cardiac cells, we injected HH9 (~E1.5) chick heart tubes with a replication competent 
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retrovirus, encoding the intracellular domain of Notch1 (RCAS-NIC) (Fig. 3.1B).  The 

intracellular domain of Notch1 has been previously shown to elicit a constitutively active 

phenotype [147].  A retrovirus RCAS-GFP encoding the green fluorescent protein was 

similarly injected as a control (Fig. 3.1B).  After injection, the embryos were allowed to 

develop in ovo until embryonic day 4.5 (E4.5).  Heart sections were stained with an anti-

viral gag antibody (green), to identify infected cells.  As most of the embryos infected 

heavily with RCAS-NIC died around E4.5, embryos survived to that stage tended to have 

limited infection rate.   

 

Trabeculae are known to arise from proliferation and centripetal migration of 

myocardial cells from the compact layer (Fig. 3.1A).  To assess the role of Notch in 

cardiac cell migration, we analyzed the distribution patterns of cells infected by RCAS-

NIC or RCAS-GFP in partially infected hearts.  Heart sections were double-stained by 

anti-viral GAG to visualize infected cells, and the antibody HNK-1, to label the 

conduction cells normally localized beneath the endocardium.  Cells expressing control 

GFP are distributed through the entire thickness of the heart including the future compact 

zone and trabeculae, similar as reported in lineage tracing studies (Fig. 3.1C) [43, 44].  

However, cells infected with RCAS-NIC appeared to distribute more centrally within the 

heart in the trabeculae area away from the compact zone (Fig. 3.1D).  As we previously 

reported that cells expressing NIC are promoted toward conduction cell differentiation 

[164], RCAS-NIC-infected cells but not the control RCAS-GFP-infected cells are largely 

positive for HNK-1  (Fig. 3.1C and D).  To quantify the results, we analyzed cell  
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Figure 3.1. Constitutively active Notch (NIC) causes disproportionate localization of the 

infected cells in the center region of the heart.  A.  Diagram of a cross section of the 

heart.  Proliferation and centripetal migration (blue arrow) of the cardiac cells from the 

outerlayer (future compact zone, grey shaded area) of the heart resulted in formation of 

trabeculae.  Fusion of trabeculae contributes to the formation of interventricular septum 

(IVS) and the peripheral conduction system (red) is closely associated with the 

trabeculae.  B.  Viral constructs encoding for control GFP, constitutively active Notch 

(NIC), and dominant negative Su(H) [DN-Su(H)].  C, D.  RCAS-NIC or control RCAS-

GFP-injected hearts were harvested at E4.5, sectioned, immunostained with anti-GAG 

(green) to show the infected cells and the conduction marker HNK-1 (red).  Merged 

images and binary images (black and white image) are also shown.  White dashed lines 

mark the outer edge of the heart.  Note that the RCAS-GFP-infected cells are distributed 

throughout the entire thickness of the heart, whereas the RCAS-NIC-infected cells 

localize more centrally within the heart.  Additionally, RCAS-NIC-infected areas also 

largely co-localize with HNK-1 staining (arrow).  Scale bar in B and C = 500 μm. 
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localization by using NIH Image J software which allowed us to convert the fluorescent 

images to binary images (black and white images in Fig. 3.1C, D, and Fig. 3.2A, B) and 

calculate the average distance of the infected cells from the edge of the heart (see 

Method).  A total of 4 hearts and 2 sections per heart were analyzed and calculated for 

each experimental condition.  We found that the RCAS-NIC-infected cells were a 

significantly greater distance away from the edge of the heart as compared to control 

RCAS-GFP-infected cells, with an average of 523 ± 243 μm vs. 150 ± 54 μm, 

respectively (Fig. 3.2C).  These results suggest that expression of constitutively active 

Notch in the ventricles causes disproportionate localization of cells in the trabeculae. 

 

To determine whether Notch signaling is required for the proper localization of 

cardiac cells, we injected HH9 (~E1.5) heart tubes with a retroviral construct encoding 

the dominant-negative form of Suppressor-of-Hairless [RCAS-DN-Su(H)] (Fig. 3.1B).  

Dominant negative Su(H) interferes with activation of target gene expression in response 

to Notch signaling, thus inhibiting Notch signaling [83, 151].  As we previously reported 

[164], the RCAS-DN-Su(H)-infected cells were largely negative for conduction marker 

HNK-1 expression (Fig. 3.2B).  Embryos with heavy infection rate died early before 

E4.5.  In hearts with more limited infection, DN-Su(H)-infected cells tended to localize at 

the outer edge of the compact layer and less in the trabeculae than the control GFP-

infected cells (Fig. 3.2A, B).  Quantification shows that the cells expressing dominant 

negative Su(H) traveled shorter distances as compared to those expressing GFP control, 

83 ± 11 μm vs. 150 ± 54 μm, respectively (Fig. 3.2C).  These results suggest that Notch1  
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Figure 3.2. Dominant-negative Suppressor of Hairless [DN-Su(H)] causes cells to 

localize preferentially at the periphery of the heart.  RCAS-DN-Su(H) or control RCAS-

GFP-injected hearts were harvested at E4.5, sectioned, immunostained with anti-GAG 

(green) and the conduction marker HNK-1 (red), and analyzed at low magnification on an 

epiflourescence microscope.  A. RCAS-GFP-infected cells are found throughout the 

thickness of the heart as seen in the green immunofluorescent image, and the binary 

image (black and white image).  B. In contrast to RCAS-GFP-infected cells, RCAS-DN-

Su(H)-infected cells localize at the periphery of the heart, at the base of the prospective 

compact layer.  Additionally, RCAS-DN-Su(H)-infected cells lack HNK-1 staining.  

Merged images and binary images (black and white image) were shown.  White dashed 

lines mark the outer edge of the heart.   C. Quantification of the migration distance 

traveled by infected cells within infected patches from the edge of the heart to the center 

of the patch, p < 0.01, Student’s t-test.  Scale bar = 500 μm. 
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signaling is also required for proper localization and migration of cardiac cells in the 

ventricles.  Generation of trabeculae requires the coordination of cellular proliferation 

and migration.  To determine if constitutive activation of Notch1 can increase 

proliferation, we injected RCAS-GFP, and RCAS-NIC viruses at E1.5, and labeled the 

embryos in ovo at E4.5 with BrdU.  As shown in Fig. 3.3A and B, no significant 

difference was observed in the number and distribution of BrdU+ cells in the control 

GFP- versus NIC-expressing cells.  This result suggests that, under this experimental 

condition, constitutively active Notch1 does not significantly increase myocardial cell 

proliferation. 

 

To further characterize the effects of Notch signaling on cardiac cell migration, 

we developed an explant culture system designed to assay cell migration in a collagen 

gel.  E4.5 ventricles were dissected, cut into small pieces, and embedded in a collagen 

gel.  Care was taken not to include the atrioventricular junction, because the 

atrioventricular junction is known to undergo epithelial-mesenchymal transformation.  

The explants appeared viable and contracting and a subset of myocardial cells migrated 

out of the uninfected control, and control RCAS-GFP-infected explants (Fig. 3.4A, B).  

Cell migration appeared to continue for 48 hours in the gel culture.  However, a 

substantially higher number of cells migrated out from ventricular explants infected with 

RCAS-NIC (Fig. 3.4C).  The numbers of cells migrated were scored in three independent 

experiments, each experiment including 20 explants from 4 hearts, and the data were 

normalized to control.  RCAS-GFP-infected explants displayed a similar number of cells  
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Figure 3.3. Constitutively active Notch does not increase myocardial proliferation.  E4.5 

RCAS-NIC or control RCAS-GFP-injected hearts were labeled with BrdU for 3 hours, 

harvested, sectioned, and immunostained with anti-GAG (green) and anti-BrdU (red).  A.  

Distribution of proliferating cells in RCAS-GFP and RCAS-NIC-infected hearts.  Note 

that RCAS-NIC-infected hearts do not appear to have an increased number of BrdU+ 

cells.  B.  Quantification of the percentage of RCAS-GFP or RCAS-NIC-infected cells 

that are BrdU+.  Scale bar, 20 μm 
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Figure 3.4. Notch signaling regulates cell migration in explant culture.  E4.5 chick 

ventricular explants were prepared from control uninjected (A), RCAS-GFP- (B), RCAS-

NIC- (C), or RCAS-DN-Su(H)- (D) injected hearts, and cultured in collagen gel for 48 

hours.  E. Quantification of the number of cells migrating from the cardiac explants.  F. 

Quantification of the migration distance traveled by cells from the edge of the explant to 

the rim of the ring formed by most of the migrated cells, p < 0.01.  Scale bar in A 

common to B, C and D= 50 μm 
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that migrated from the explants as compared to control, suggesting that retroviral 

infection has no effect on migration in vitro.  The number of cells migrated from the 

RCAS-NIC-infected explants was increased to 5.0 ± 1.6 fold compared to that of the 

uninfected control (Fig. 3.4E).  Additionally, as the cells migrated out and formed a ring 

around the explant, we measured the distance from the rim of the rings to the edge of the 

explants: 147 ± 5.6 μm in RCAS-NIC-injected samples, versus 88.9 ± 6.0 μm in the 

uninfected controls, and 92.2 ± 3.0 μm in the GFP-infected controls (Fig. 3.4F).  These 

results suggest that persistent Notch signaling increases the number of cells that migrated 

out and the migration distance of the cardiac cells in the explant gel culture assay.  

Similar collagen gel assays were performed on hearts infected with RCAS-DN-Su(H).  

An increase in the mean number of cells migrated away from RCAS-DN-Su(H)-infected 

explants was observed (Fig. 3.4E) compared to control uninfected explants (Fig. 3.4D).  

However, cells in the RCAS-DN-Su(H)-infected explants traveled a similar distance 

away from the explants as compared to control (Fig. 3.4F).   

 

To identify the infected cells within the explants, we stained the collagen gel 

explants with an anti-viral GAG antibody.  The majority (~ 80%) of cells that migrated 

away from RCAS-NIC-infected explants was positive for anti-GAG staining, indicating 

that these cells were expressing constitutively active Notch1 (Fig. 3.5G).  Strikingly, 

none of the cells migrated away from RCAS-DN-Su(H)-infected explants were positive 

for GAG, suggesting that these cells were not infected with the RCAS-DN-Su(H) 

retrovirus (Fig. 3.5J).  After analyzing 15 explants from three independent experiments, 
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we found that the RCAS-DN-Su(H)-infected cells only remained within the explants and 

did not migrate out (Fig. 3.5J).  Fewer cells migrated away from the explants infected 

heavily with RCAS-DN-Su(H) compared to control samples.  However, higher number 

of cell migrated away from those less heavily infected explants.  These results confirmed 

the observations from in vivo experiments that Notch1 signaling is important for 

migration of cardiac cells.  

 

Previously, we found that Notch1 signaling plays a role in the cell fate decision 

between cardiac muscle and conduction cell lineages.  Constitutively active Notch 

signaling increases certain conduction marker expression, including HNK-1 and SNAP-

25 [164].  To determine whether the role of Notch1 in cellular migration results from 

increased conduction marker expression, we stained collagen gel explants with the 

antibody, HNK-1.  Interestingly, all of the cells that migrated away from the explants 

lacked HNK-1 staining, while some cells within the explants exhibited HNK-1 staining 

(Fig. 3.5B).  Absence of HNK-1 staining in migrated cells was observed in cultures 

derived from all samples, including uninfected, and RCAS-GFP-, RCAS-NIC-, and 

RCAS-DN-Su(H)-infected explants (Fig. 3.5B, E, H, K).  Factor(s) present within the 

explant but not in the collagen gel, may be required to maintain the expression of HNK-1.   

 

We also analyzed another conduction cell marker, SNAP-25, which we have 

previously shown to be upregulated by Notch signaling [164].  Similar gel culture 

experiments followed by immunofluorescent staining showed that SNAP-25 expression  
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Figure 3.5. The effects of Notch signaling on cell migration do not require expression of 

the conduction marker HNK-1.  E4.5 cardiac explant gel cultures were immunostained 

with anti-GAG (green), conduction marker HNK-1 (red), and the nuclear dye, DAPI 

(blue).  Explant cultures were prepared from control uninjected (A-C), RCAS-GFP- (D-

F), RCAS-NIC- (G-I) or RCAS-DN-Su(H)- (J-L) injected ventricles.  Note that HNK-1 

staining was confined inside the explants but not on any of the migrated cells regardless 

of the samples (B, E, H, K).  The majority (~80%) of cells migrated from RCAS-NIC-

infected explants are positive for anti-GAG staining (G).  However, none of the cells 

infected by RCAS-DN-Su(H) migrated out of the explants (J).  Scale bar in A common to 

all panels = 50 μm. 
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was absent in the control explant cultures (Fig. 3.6), likely due to the fact that SNAP-25 

expression is late and does not turn on until E6 in vivo (Fig. 3.6B).  In RCAS-NIC-

infected explants, most cells did not express SNAP-25, with the exception of a few cells 

located in the migrated cell population and within the explants (Fig. 3.6E, H).  These 

results indicate that cell migration in gel culture does not require the expression of 

conduction cell markers, including HNK-1 and SNAP-25, and the effect of Notch on cell 

migration is not secondary to increased conduction cell marker expression.   

 

 To further characterize the effect of Notch signaling on cell migration, we 

performed time-lapse microscopy on cardiac cell explants in the gel culture.  Cardiac 

explants from control and RCAS-NIC-infected hearts were embedded in collagen gels 

and cultured for 20-24 hours before filming.  Explants were filmed for 1-12 hours in a 

temperature, and CO2-controlled setting.  Because the migration patterns of the cell did 

not appear to change substantially over time, we analyzed only the first 30 minutes of the 

movies for simplicity.  The first frames taken at the beginning of filming were aligned 

with the frames corresponding to the 30 minute time-point to determine the extent of cell 

migration.  Only cells that had migrated from the explants and were not in contact with 

more than one other cell were analyzed for motility, speed and directionality (Fig. 3.7A).  

49.1% of cells that had migrated from wildtype explants were motile during the first 30 

minute time frame of the movies.  However, a significant increase in the percentage of 

motile cells (70.5%) was observed in RCAS-NIC-infected explants (Fig. 3.7B).  The 

velocity of the motile cells in the RCAS-NIC-infected explants, however, did not  
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Fig.3.6. Migration of cells in constitutively active Notch infected explants does not 

require expression of the conduction marker SNAP-25.  E4.5 cardiac explant gel cultures 

were immunostained with anti-GAG (green), conduction marker SNAP-25 (red), and the 

nuclear dye, DAPI (blue).  (A-C) Expression of SNAP-25 does not usually turn on until 

E6, and is absent from control uninjected explants.  (D-I) In RCAS-NIC-infected 

explants, a few cells within the explant or migrated cells are positive for SNAP-25 

expression.  Note that the majority of the migrated cells lack SNAP-25 expression.  Scale 

bar, 50 μm. 
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significantly differ from the motile cells in the wild type explants (7.12 ± 0.49 μm/h vs. 

7.91 ± 0.65, respectively) (Fig. 3.7C).  Additionally, the direction of movement of the 

motile cells was analyzed.  In both wild type and RCAS-NIC-infected explants, the 

majority of the cells moved forward, away from the explants (55 ± 4.7% vs. 62.7 ± 4.0%, 

respectively) (Fig. 3.7D).  The remainder of the cells migrated either back towards the 

explants, or laterally.  A similar percentage of cells were found to move back towards the 

explants or laterally in the RCAS-NIC-infected explants, compared with the control (Fig. 

3.7D).  These results suggest that Notch activity increases the percentage of cardiac cells 

that are motile but did not affect the velocity or the direction of migration.   

 

 Because constitutively active Notch can increase the number of cells migrated out 

from the explants, we analyzed the expression of N-cadherin, the predominant cell-cell 

adhesion molecule among cardiomyocyte cell junctions [165].  Co-immunofluorescent 

staining with anti-N-cadherin and anti-GAG antibodies was carried out on tissue sections 

derived from the injected hearts and results were analyzed by confocal microscopy.  

Control RCAS-GFP-infected cells did not have visible effect on the intensity or 

distribution of N-cadherin staining (Fig. 3.8A-C), with normal levels of N-cadherin 

localized on the plasma membrane of cardiomyocytes compared to the uninjected 

samples (Fig. 3.8A-C).  In contrast, N-cadherin expression was greatly diminished in 

cells expressing RCAS-NIC (Fig. 3.8D-F).  While 81.5 ± 6.29 % of GFP-infected cells 

exhibited N-cadherin staining, only 22.5 ± 9.17 % of NIC-infected cells expressed 

normal levels of N-cadherin compared to the uninfected neighboring cells (Fig. 3.8J).  On  
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Fig.3.7. Constitutively active Notch increases the motility of myocardial cells.  Gel 

culture explants were filmed for 1-12 hours.  (A) Time-lapse images of control uninjected 

and RCAS-NIC-infected explants at the start of filming (0:00) and at the 30 inute time-

point (0:30) were analyzed for motility, speed and directionality.  Note that more cells 

were motile (arrowheads) in RCAS-NIC-infected explants, while many cells remained 

stationary (arrows) in control uninjected explants.  (B) Quantification of the number of 

motile cells, p < 0.01.  (C)  Quantification of the speed.  (D)  Distribution of the 

directionality of motile cells in control uninjected and RCAS-NIC-infected explants.  

Note that NIC expression increased the motility of the cardiac cells, but did not affect the 

speed or directionality of motile cells.  Scale bar, 20 μm 
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the other hand, RCAS-DN-Su(H)-infected cells appeared to have an increased level of N-

cadherin expression when compared to the neighboring uninfected cells (Fig. 3.8G-I).  

We found that 77.8 ± 2.15 % of RCAS-DN-Su(H)-infected cells exhibited visibly higher 

N-cadherin staining compared to neighboring uninfected cells (Fig. 3.8K).  This result 

supports that Notch signaling may influence cell migration, by regulating the expression 

of N-cadherin.   

 

3.4 Discussion 

 

 In this paper, we characterized the effect of Notch signaling in the regulation of 

myocardial cell migration.  By in vivo mosaic expression using incomplete retroviral 

infection, we demonstrate that cells expressing constitutively active Notch localized more 

centrally within the heart, whereas interference of Notch signaling resulted in more 

peripheral localization.  By using 3D gel culture assay, we show that the effects of Notch 

on cardiac cell migration are two-fold: by increasing the ability of cells to 

delaminate/emigrate from the explant and by increasing the motility of the cell.  

Furthermore, we show that the effects of Notch on cardiac cell migration are independent 

of its effects on cell differentiation.   

 

Incomplete retroviral infection created mosaic patches of cells expressing either 

the constitutively active Notch (NIC), or dominant-negative Su(H) construct to disrupt 

Notch function.  This allowed us to examine both the gain-of-function and loss-of- 
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Figure 3.8. Notch signaling regulates the expression of N-cadherin.  RCAS-NIC-, RCAS-

DN-Su(H)- or control RCAS-GFP-injected hearts were harvested at E4.5, sectioned, 

immunostained with anti-GAG (green), anti-N-cadherin (red), and the nuclear dye DAPI 

(blue), and analyzed on a confocal microscope.  (A-C) N-cadherin localizes on the 

plasma membrane of cardiomyocytes in control RCAS-GFP-infected hearts.  (D-F) 

RCAS-NIC-infected cardiomyocytes show decreased staining of N-cadherin (asterisks).  

(G-I) In contrast, N-cadherin staining appears to be increased in RCAS-DN-Su(H)-

infected cells, as compared to neighboring uninfected cells (asterisks).  (J) Quantification 

of the percentage of RCAS-GFP- or RCAS-NIC-infected cells that express N-cadherin, p 

< 0.01.  Scale bar in A common to all panels = 10 μm 
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function phenotypes of Notch in a largely normal environment.  We injected virus inside 

the linear heart tube prior to the formation of trabeculae.  Most of the clones in control 

GFP-injected samples appeared cone-shaped and extended through the entire thickness of 

the ventricular myocardium, similarly as reported earlier using a retrovirus expressing β-

galactosidase [43, 44].  However, in samples injected with RCAS-NIC, the infected 

clones were largely distributed at the tips of the trabeculae without contacting the outer 

surface of the heart.  On the contrary, the infected clones by RCAS-DN-Su(H) were 

preferentially distributed at the base of the myocardium.  Centripetal migration of 

cardiomyocytes has been demonstrated by earlier studies using retroviral injection [42, 

43].  The disproportionate distribution of the clones thus suggests that Notch may play a 

role in cardiac cell migration during heart development. 

 

We have previously shown that Notch signaling regulates the cell fate decision 

between cardiac muscle and conduction cells.  Expression of constitutively active Notch 

increased the expression of conduction cell type markers, including HNK-1 and SNAP-

25 [164].  Because HNK-1 antibody recognizes a complex sulfate-3-glucuronyl 

carbohydrate moiety, which is present on a series of molecules involved in cell adhesion 

and extracellular matrix interactions [166-169], it is possible that the effect of cell 

migration is secondary to the upregulation of conduction cell markers including HNK-1.  

By developing a 3D collagen gel culture, we observed that cells migrated from the 

explants were completely negative for the expression of HNK-1.  It is not clear why the 

cells that migrated away from the explants are negative for HNK-1.  One possibility is 
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that HNK-1 is present on proteins of the extracellular matrix which dissipates from the 

dissociated cells in the culture media.  The other possibility is that HNK-1 expression 

requires certain signals that are not present in enough amounts in the emigrated cells but 

remain inside the explants.  Nevertheless, the effect of Notch on cell migration in the gel 

culture is clearly independent of HNK-1 expression.  Further examination of SNAP-25 

expression, another conduction cell marker, supports the notion that the effect of cell 

migration by Notch is independent of conduction cell marker expression.  The expression 

of SNAP-25 usually does not come up until E6 in control samples.  With the exception of 

a limited number of cells, most of the NIC-expressing cells were negative for SNAP-25, 

suggesting that the migration effects by Notch also do not require the expression of the 

conduction cell marker SNAP-25. 

  

Several lines of evidence suggest that the effect of Notch on cardiomyocyte 

migration under our experimental conditions is also independent of altered cell 

proliferation.  First, the clone size of RCAS-NIC-infected patches appeared similar to that 

of the control RCAS-GFP patches (data not shown).  Second, we show that the 

expression of constitutively active Notch did not increase the percentage of cells labeled 

by BrdU, suggesting that Notch activation did not increase myocardial proliferation.  This 

appears in conflict with a recent paper indicating that mouse null mutants of Notch1 or 

RBPJk show impaired trabeculation and decreased myocardial proliferation due to 

attenuated expression of EphrinB2, NRG1, and BMP10 [122].  However, the effect of 

Notch activation on cell proliferation appears variable in different studies, ranging from 
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decrease of proliferation, no effect, or increase of proliferation [170-172].  In addition, 

expression of constitutively active Notch under different experimental conditions may 

yield different results on cell proliferation, possibly due to the timing of transgene 

expression.  For example, constitutive activation of Notch in the embryonic chicken 

pancreas increased proliferation of pancreatic epithelial cells [173].  However, transgenic 

mice with knock-in of constitutively active Notch in pancreatic progenitor cells did not 

display increased proliferation [174].  In our case, we injected retrovirus relatively late at 

the linear heart tube stage, and therefore may have missed the time window during which 

Notch signaling may regulate proliferation.  Earlier expression of NIC could possibly 

increase the proliferation of cardiomyocytes.   

  

Additionally, our study demonstrates that the effects of Notch signaling on the 

migration of cardiac cells are two-fold, increasing delamination and cell motility.  In the 

gel culture assay, constitutively active Notch expression significantly increased the 

number of cells that emigrated from the explants.  Strikingly, the dominant negative 

Su(H)-expressing cells completely failed to migrate out.  It has been shown that N-

cadherin is the predominant cadherin expressed in cardiomyocytes [165].  Cadherins are 

a family of adhesion molecules involved in homophilic cell-cell interaction [175].  Our 

results indicate that Notch signaling plays an important role in regulation of N-cadherin 

expression in cardiac cells.  Activation of Notch signaling decreased, while interfering 

with Notch signaling by expressing DN-Su(H) increased, expression of N-cadherin.  

Regulation of N-cadherin expression may underlie the effect of Notch in cell 
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delamination/emigration from the outer layer of the heart.  We found that cells that 

migrated away from the explants tended to have low N-cadherin expression on plasma 

membrane compared to those inside the explant (data not shown).  This is analogous to 

epithelial to mesenchymal transition (EMT), as loss of E-cadherin has been shown to be 

essential prior to cell delamination.  Notch signaling has also been shown to be required 

for downregulation of E-cadherin in EMT in the process of cardiac valve primordia 

formation [115, 116].   

 

Inhibition of Notch activity via injection of a dominant negative form of 

Suppressor of Hairless resulted in an increase in the mean number of migrating cells 

compared with the control samples (Fig. 3.4E).  Although explants with a heavy infection 

rate exhibited decreased numbers of cells migrating into the gel relative to control, less 

well infected samples appeared to have an increased number of cells migrating into the 

gel.   It is possible that a feedback mechanism similar to “lateral inhibition” is at work 

between the RCAS-DN-Su(H)-infected and neighboring uninfected cells, resulting in 

activation of Notch signaling in the uninfected cell.  These cells with activated Notch 

signaling then migrated into the collagen matrix gel.  However, none of the cells 

expressing the DN-Su(H) were observed to migrate out themselves. 

 

The effects of Notch in cell migration has been observed mainly by analyzing 

phenotypes with Notch loss-of-function mutants [101-103, 105-107].  However, the 

mechanism by which Notch affects cell migration in these studies is less clear.  The 
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interpretation may be further complicated by the fact that Notch is also involved in cell 

proliferation, differentiation and apoptosis.  In Drosophila, Notch signaling has been 

found to affect the detachment of border cells from the epithelium [104].  Additionally, 

Notch has been shown to regulate the movement of boundary cells via regulation of the 

cytoskeletal linker protein, Shot [102].  In our study, by time-lapse microscopy, we show 

that Notch activity increased motility, but did not alter the velocity or directionality of 

migration.  It is not clear why only about half of the wild type cells are motile within 30 

minute time period.  Nor is it known of the mechanism by which Notch increases cell 

motility.  The actin cytoskeleton is the major driving force required for cell migration.  

Actin dynamics provide a protrusive force at the leading edge, while movement of the 

cell body is driven by actin and myosin II filament contractility.  At the trailing edge, 

microtubule-dependent targeting of dynamin and endocytosis of adhesion molecules 

promotes adhesion disassembly [98-100].  Further studies will be necessary to determine 

the downstream mechanisms by which Notch regulates cell migration.. 

 

3.5 Experimental Procedures 

 

Chick embryos and Viral constructs 

Standard specific pathogen-free white Leghorn chick embryos from closed flocks 

were provided fertilized by Charles River Laboratories (North Franklin, Connecticut).  

Eggs were incubated inside a moisturized 38°C incubator.  The embryos were staged 

according to Hamburger and Hamilton [161].  The hearts were dissected and fixed in 4% 
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paraformaldehyde at 4°C for 12–24 h.  Cryosections of 20 μm thickness were prepared 

from tissue OCT blocks on a cryostat (Leica, Deerfield, IL) and collected on Superfrost 

Plus slides (Fisher Scientific, Pittsburgh, PA).   

 

The mouse Notch1 intracellular domain (RCAS-NIC), and dominant negative 

Suppressor of Hairless [RCAS-DN-Su(H)] constructs were previously described [164].  

G-coat viruses were prepared by transient transfection [38] and early heart tubes of HH 

stage 9 embryos were injected with the viral stocks as previously described in [164].   

 

Immunofluorescence staining and data analysis 

Immunofluorescence staining was carried out on cryosections of the heart.  

Sections were fixed in 4% paraformaldehyde, and incubated in block solution containing 

10% calf serum in 1X PBS with 0.2% Triton X-100.  Primary and secondary antibodies 

were diluted in block solution, and incubated for 1 h at room temperature or overnight at 

4°C.  To stain the gel cultures, the gel was scraped off the culture dish, and holes were 

poked throughout the gel to increase the access of antibodies to the tissues.  The cultures 

were then fixed in 4% paraformaldehyde for 1 hour, and incubated in block solution for 1 

day at room temperature.  Primary and secondary antibodies were diluted in block, and 

incubated for 2 days at room temperature.  Viral infection was confirmed by using the 

mouse polyclonal anti-GAG antibody, p27 (SPAFAS, Norwich, CT).  The mouse 

monoclonal conduction cell antibody HNK-1 was obtained from ATCC (Manassas, VA), 

and SNAP-25 was obtained from Sternberger Monoclonals, Inc (Lutherville, MD).  The 
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nuclear stain, DAPI, was obtained from Roche (Indianapolis, IN).  The mouse 

monoclonal antibody against N-cadherin was obtained from Sigma (Clone CH-19, 

St.Louis, MO). 

 

To analyze the in vivo distribution of infected cells, we utilized the NIH Image J 

software to generate binary images (black and white images) of the fluorescent signals.  

The software allowed us to determine the center of mass for each infected patch, as the 

average position for the patch.  We then calculated the average distance of each patch to 

the periphery of the ventricles by using the equation D= √(X1-X2)2+(Y1-Y2)2, (X1, Y1), 

(X2, Y2) being the coordinates for the center of mass and the point at the heart periphery 

which gives the shortest distance from the center of mass, respectively.  The average 

distance of cell migration in each heart is calculated by the equation: d=(A1×D1+A2×D2+ 

··· +An×Dn)/(A1+A2+ ··· +An); A is the area for each patch; n is the total number of 

patches in the section.  We analyzed a total of four hearts, two sections per heart, for each 

of the constructs.  Statistical analysis was performed by using Student’s t-test. 

 

BrdU labeling and detection  

BrdU labeling and detection protocols were modified from [176, 177].  BrdU 

dissolved in water (3mg/ml) was applied directly onto the amniotic membranes of 

embryos in ovo.  50 mg was used for one E4 embryo, increasing by 25 mg each 

embryonic day.  Embryos were incubated for 3 hours before being sacrificed, and 

processed for cryostat sectioning.  Sections were fixed with 4% paraformaldehyde, 
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incubated with 0.05% trypsin in 0.1% CaCl2 pH 7.8 for 1 hour, 2N HCl for 30 minutes, 

followed by 1% H2O2 for 30 minutes.  Sections were blocked with 10% calf serum DME 

with 0.2% Triton X-100.  Primary and secondary antibodies were diluted in block.  Anti-

BrdU antibody (diluted 1:250) was purchased from Dako (Carpinteria, CA). 

 

Collagen gel explant culture 

E4.5 chick ventricles were dissected and cut into small pieces.  Care was taken 

not to include the atrioventricular junction areas.  Ventricular pieces were transferred 

onto a 35mm cell culture dish.  Bovine type I collagen (BD Biosciences,San Diego, CA) 

neutralized with 1 M NaHCO3 and 10X DMEM was added to the explants and allowed to 

gel for 30–40 min at 37°C.  Culture media (DMEM supplemented with 10% FBS and 

penicillin/streptomycin) was added, and the explants were incubated at 37°C, 5% CO2.  

After 48 h, the cultures were fixed with 4% paraformaldehyde, and stained.  Gel culture 

explants were performed in three independent experiments with 4 different hearts each 

time, and 5 explants for each heart.  The number of cells that emigrated from the explants 

was scored, and the data were normalized against control.  Cells migrated into the matrix 

gel, and formed a ring around the explants.  The migration distance was obtained by 

measuring the distance from the edge of the explants to the rim of the rings, and 

averaged.   
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Time-lapse microscopy

20–24-hour of explant cultures were filmed by using a Zeiss Axiovert microscope with 

temperature and CO2 control, coupled to an Axiocam MRM CCD camera. Time-lapse 

microscopy was carried out for 1-12 hours at 5 min intervals.  Movie files were generated 

using the Axiovision software.  To analyze the motility of the cells, the first frame was 

overlaid with the frame from 30 minutes into filming using Adobe Photoshop.  The files 

were then exported to Axiovision to determine the distance and directionality.  Only cells 

that had migrated from the explants and were not in contact with more than one other cell 

were analyzed.  Using Axiovision, the distance moved by the cells was measured by 

comparing the center of the cell at the beginning with the center of the cell 30 minutes 

later.  Data was obtained from 4 different hearts, 2 explants per heart, for each condition. 
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Discussion and perspectives for Chapter II 

 

Retroviral lineage studies have demonstrated that the two major cardiac cell types, 

cardiac muscle cells, and conduction cells, arise from a common progenitor.  Our results 

show that Notch signaling plays a key role in the binary cell fate decision between these 

two cell types.  Notch transcripts are expressed in cardiac progenitor cells, and in the 

early conduction cell lineage.  Constitutive activation of Notch1 in cardiac progenitor 

cells, prior to the onset of differentiation, promotes the expression of some conduction 

cell markers, including HNK-1 and SNAP-25, while inhibiting expression of muscle 

proteins.  Inhibition of Notch activity in progenitor cells produced a reciprocal 

phenotype; loss of Notch function increases the expression of muscle cell markers, while 

conduction cell marker expression is decreased.  These results suggest a role for Notch 

signaling in promoting conduction cell differentiation at the expense of cardiac muscle 

cell specification.  Optical mapping studies show that constitutive activation of Notch 

induces abnormal electrical conduction propagation patterns consistent with defective 

conduction cell differentiation.   

 

Our results demonstrate that Notch1 is involved in cardiac differentiation by 

inhibiting cardiomyocyte specification and promoting early conduction cell 

differentiation.  Constitutive activation of Notch increases the expression of some 

conduction markers, including HNK-1 and SNAP-25, while inhibiting muscle marker 

expression.  However, the effect of Notch signaling on another conduction marker, Cx40, 
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is more complex.  Cardiac conduction cells express high levels of Cx40 whereas 

myocardial cells express low levels of Cx40.  Loss of function studies using a dominant 

negative Su(H) construct shows that the high level of Cx40 expression is diminished but 

the low level of Cx40 expression in the myocardium remains unchanged.  This result is 

consistent with our model that reduction of Notch signaling increases myocardial but 

decreases conduction cell differentiation.  However, because Cx40 is a relatively late 

marker, Notch signaling may be involved in the initial separation of conduction and 

muscle cell lineages.   

 

Optical mapping studies show that RCAS-NIC-infected mutants had obvious 

abnormalities in the conduction pathway.   The altered conduction system function 

revealed by optical mapping provides additional evidence that cells expressing 

constitutively active Notch are not fully differentiated functional conduction cells.  These 

results are different from the phenotype observed in chick hearts with excess production 

of endothelin-1 or mouse hearts treated with neuregulin-1, which induced alterations in 

activation patterns consistent with additional recruitment of Purkinje cells [70, 71].  

Optical mapping studies of the (Cx40) knockout mice indicated some delay or block in 

conduction velocities in the right bundle branch, and more diffuse breakthrough sites in 

the left ventricle [155, 156].  Chimeric mice generated from stem cells deficient for 

connexin 43, a gap junction predominantly expressed in the ventricular myocardium, 

displayed conduction delay [157].  Thus, reduced expression of gap junction proteins can 

lead to conduction abnormalities.  Because constitutively active Notch down-regulates 
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the expression of Cx40, we speculate that the conduction abnormalities of the RCAS-NIC 

injected hearts may be in part due to decreased expression of Cx40.  In the hearts 

moderately infected with RCAS-NIC, a general correlation of blocked pathway with the 

area of infection was observed, suggesting a block in the infected areas.  In highly 

infected hearts, Cx40 expression may be downregulated throughout the myocardium, 

causing the electrical impulse to disperse across the epicardial surface. Because our 

optical mapping protocol detects electrical propagation across the epicardial surface, we 

therefore observed a diffuse activation pattern.  Therefore, our model is that transient 

Notch activity may be required for the initial separation of myocardial and conduction 

lineages by inhibiting cardiomyocyte differentiation and promoting early conduction cell 

differentiation, possibly through regulating the responsiveness of the cells to other 

inductive factors.   

 

Additional signals may also be required to cooperate with Notch signaling to 

induce maturation of the conduction cells.  Previous works have shown that paracrine 

factors released by the endocardium and endothelial cells of the coronary arteries, such as 

endothelin-1 and neuregulin-1, can increase the expression of conduction markers and 

cause a change in conduction pathway that is consistent with excess recruitment of 

functional Purkinje cells [69-71, 133].  It would be important to determine whether Notch 

regulates the responsiveness of cardiac progenitor cells to inductive factors, and if it 

works upstream of genes, such as neuregulin-1 and endothelin-1.  This can be done by 

the addition of inductive factors to cardiac progenitor cells lacking Notch signaling.   
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Additionally, analysis of neuregulin-1 or endothelin-1 expression upon constitutive Notch 

activation will allow us to determine if Notch acts in a similar pathway, upstream of 

neuregulin-1 and/or endothelin-1.   

 

Mice deficient for HF-1b, a SP1-related transcription factor, exhibit sudden 

cardiac death and conduction defects, including ventricular tachycardia and AV block 

[72, 73].  The phenotypes of HF-1b-deficient mice are restricted to features associated 

with dysregulation of the electrophysiological properties of ventricular muscle and 

conduction cells, suggesting that HF-1b may orchestrate the electrophysiological 

properties of conduction cells.  HF-1b acts as a positive regulator for the activation of ion 

channels and connexins necessary for functional conduction and muscle cells.  It is 

possible that Notch may act upstream of HF-1b to promote differentiation of “immature” 

conduction cells that can respond to HF-1b activation of gene expression associated with 

functional conduction cells.   

 

Recently, it has been demonstrated that Nkx2.5, Tbx5, and Id2 cooperate in a 

molecular pathway that coordinates the specification of conduction cells [77].    

Specification of the ventricular conduction system failed in mice with compound 

haploinsufficiency of Tbx5 and Nkx2.5 or Tbx5 and Id2.  Tbx5 and Nkx2.5 cooperatively 

activate transcription of Id2, a member of a gene family encoding basic helix-loop-helix-

containing transcriptional repressors, in the developing ventricular conduction system.  

Id2 has been shown to block the myogenic activity of MyoD and other myogenic bHLH 
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proteins, and may distinguish conduction cells from working cardiomyocytes by 

inhibiting cardiomyocyte specification.  The high level expression of Tbx5 and Nkx2.5 in 

cardiac conduction cells may establish a regionally restricted program of conduction 

system gene expression, by activating promoters, such as Id2, to suppress cardiomyocyte 

differentiation.  Notch may act cooperatively with Id2 to inhibit cardiomyocyte 

specification, while promoting the differentiation of conduction cell types.  It would be of 

interest to determine if Notch cooperates with Tbx5, Nkx2.5 and Id2 in a similar 

molecular pathway.  Further studies will be necessary to determine the downstream 

targets of Notch in regulating the lineage decision between cardiac muscle and 

conduction cells.  Microarray studies utilizing cardiac progenitor cells and “immature” 

conduction cells with activated Notch signaling will allow the delineation of downstream 

gene targets.  Candidate genes can be further characterized by mutation studies, and co-IP 

to determine if they interact with Notch. 

 

Our results demonstrate a role for Notch signaling in the development of the avian 

ventricular conduction system.  It is unclear whether conversion of murine embryonic 

cardiomyocytes into conduction cells occurs through a similar mechanism as in the avian 

model.  Notch transcripts are expressed in the avian ventricular myocardium, in addition 

to weak signals in endocardial cells.  In the mouse, Notch1 expression was reported in the 

outflow tract, the atrioventricular canal, the trabeculae of the ventricles, the epicardium, 

the aorta [108], and the endocardium [115, 158, 159].  However, the expression of 

Notch1 has yet to be reported in the myocardium of murine ventricles. The differences in 
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expression patterns of Notch1 reported in the heart likely reflect the dynamic and 

transient nature of the expression patterns of Notch1. Mutant mice with a targeted 

deletion of the Notch1 gene die before E11.  Although severe pericardial edema was 

reported for these mutant mice, these mice have a beating heart at E10.5 [111].  It is 

possible that Notch1 may play a similar role in the binary lineage decision between 

cardiac muscle and conduction cells in the murine cardiac conduction system.  

Generation of murine models with conditional inactivation or constitutive expression of 

Notch1 in cardiac progenitor cells will address this question, and allow the elucidation of 

whether specification of conduction cells in mice occur through a similar mechanism 

found in avian models.   

 

  The best studied function of Notch is in cell fate specification.  Notch signaling 

not only acts in the cell fate specification of many organs, but also reiteratively during the 

maturation of a single organ.  Notch signaling has been previously found to play key 

roles in heart development, in specification of the cardiogenic field in Xenopus and 

mouse [123, 125]. Mutations in genes of the Notch signaling pathway result in various 

cardiac defects including pericardial edema, defects in formation of valves, atrial and 

ventricular septa, and in endocardial cushions [115, 117-121, 138-140].  Our work 

provides evidence for an additional role of Notch signaling in later stages of heart 

development in differentiation of ventricular cell types.  This is reminiscent of its roles 

during neurogenesis, hematopoiesis, and pancreatic development, where it acts during 

multiple stages of organ development in cell fate specification.   
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The effects of Notch signaling on cell fate specification are often mediated by a 

mechanism known as lateral inhibition.  In an initially homogenous cell population, 

initial small differences in ligand and receptor expression on adjacent cells become 

amplified via a feedback mechanism between Notch and Delta.  A key element of this 

mechanism is that the expression of Delta is repressed by Notch signaling through 

downstream basic helix-loop-helix (bHLH) transcription factors [153, 154]. We have 

shown that Delta1 is similarly downregulated by constitutively activated Notch, 

suggesting that a feedback loop is possibly at work in cardiac differentiation.  However, it 

remains unclear whether Delta1 is the ligand for Notch in regulating differentiation of 

conduction cells.  This can be determined by over-expression of Delta1 in vivo.   

 

However, despite the numerous roles of Notch signaling in regulating 

differentiation, the mechanisms by which Notch influences differentiation are not clearly 

understood.  Notch signaling may regulate differentiation via a generalized mechanism 

that is present in all cell types.  Perhaps Notch signaling may affect differentiation by 

stimulating cells to move away from or towards areas containing inductive factors.   

 

Discussion and perspectives for Chapter III  

  

Cell migration plays key roles during organogenesis.  During ventricular chamber 

formation, characteristic finger-like projections, known as trabeculae, are formed when 

myocardial cells in the ventricular segment proliferate and migrate into the ventricular 
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lumen.  Our work shows that Notch signaling regulates the migration of cardiac cells.  

Constitutive activation of Notch, in vivo, causes cells to localize more centrally within 

the heart.  Conversely, cells with loss of Notch function remain within the periphery of 

the heart, and accumulate in the compact myocardium.  These results suggest that Notch 

signaling regulates the distribution of cardiac cells in vivo, and may play a role in 

migration.  To determine if Notch regulates migration, we developed a 3D gel culture 

migration assay, and found that Notch signaling regulates cell migration by down-

regulating expression of N-cadherin, and increasing cell motility.  Additionally, we show 

that the effects of Notch signaling on cell migration are independent of its effects on 

differentiation.   

 

We have demonstrated that a feedback mechanism exists between Notch and 

Delta, and may be at work during cardiac differentiation.  Furthermore, Delta1 transcripts 

are expressed in the ventricular myocardium during trabeculae formation.  The ligand 

that interacts with Notch1 in regulating cardiac cell migration is unknown.  It is possible 

that Delta1 may the ligand that interacts with Notch1 due to the presence of Delta1 

transcripts during trabeculae formation.  Studies involving the addition of soluble Delta1 

protein to cardiac explants in gel culture will allow the determination of the interacting 

ligand.  Additionally, over-expression of Delta1 in vivo will address this issue.   

 

Our study demonstrates that the effects of Notch signaling on the migration of 

cardiac cells are two-fold, increasing delamination and cell motility.  Constitutively 
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active Notch expression significantly increased the number of cells emigrating from 

cardiac explants in the gel culture assay.  Strikingly, dominant negative Su(H)-expressing 

cells completely failed to migrate out.  It has been shown that N-cadherin is the 

predominant cadherin expressed in cardiomyocytes [165].  Cadherins are a family of 

adhesion molecules involved in homophilic cell-cell interaction [175].  Downregulation 

of N-cadherin is necessary prior to migration.  Our results indicate that Notch signaling 

plays an important role in the regulation of N-cadherin expression in cardiac cells.  

Activation of Notch signaling decreased expression of N-cadherin.  Inhibition of Notch 

signaling produced a reciprocal effect; dominant-negative Su(H)-expressing cells show 

increased N-cadherin expression.  Regulation of N-cadherin expression may underlie the 

effect of Notch in cell delamination/emigration from the outer layer of the heart.  This is 

analogous to epithelial to mesenchymal transition (EMT), as loss of E-cadherin has been 

shown to be essential prior to cell delamination.  Notch signaling has also been shown to 

be required for downregulation of E-cadherin in EMT during cardiac valve primordia 

formation [115, 116].  In this context, Notch signaling regulates expression of Snail, a 

member of the zinc-finger-containing family of transcriptional repressors that target E-

cadherin expression.  RBP-Jκ null mutants exhibit impaired EMT due to attenuated 

expression of Snail.  It is unclear how Notch regulates the expression of N-cadherin in 

cardiomyocytes.  The snail homologue slug is expressed in AV canal endothelial cells, 

and mesenchymal cells within the endocardial cushions within the chick heart [178].  

Although slug is not expressed in the ventricular myocardium, it is possible that Notch 

signaling may act via slug to regulate N-cadherin expression during cardiac cell 
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migration.  To determine if Notch signaling regulates N-cadherin expression via slug, the 

expression of slug can be analyzed in cardiac cells expressing constitutively active 

Notch1 or dominant-negative Su(H).  It is also possible that Notch signaling affects N-

cadherin expression via a different mechanism as seen in EMT.  Analysis of the effects of 

Notch signaling on known regulators of N-cadherin will allow the determination of 

mechanisms by which Notch regulates N-cadherin.  Additionally, it is unclear whether 

downregulation of N-cadherin is necessary and sufficient for the migration of cardiac 

cells.   Studies in which N-cadherin expression is altered can address this issue. 

 

The effects of Notch in cell migration have been observed mainly by analyzing 

phenotypes with Notch loss-of-function mutants [101-103, 105-107].  However, the 

mechanism by which Notch affects cell migration in these studies is unclear.  Analysis of 

the aberrant migration phenotypes may be further complicated by the fact that Notch is 

also involved in cell proliferation, differentiation and apoptosis.  In Drosophila, Notch 

signaling has been found to affect the detachment of border cells from the epithelium 

[104].  Additionally, Notch has been shown to regulate the movement of boundary cells 

via regulation of the cytoskeletal linker protein, Shot [102].  In our study, by time-lapse 

microscopy, Notch activity increased cell motility, but had no effect on the speed or 

directionality of migration.  The mechanism by which Notch increases cell motility is not 

known.  Further studies will be necessary to determine the mechanism and downstream 

target genes through which Notch increases cell motility.  Microarray studies comparing 

the gene expression profiles of stationary and motile cells will allow the elucidation of 
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mechanisms involved in Notch-mediated cell migration.  Additionally, co-IP studies 

using Notch antibodies and motile cell lysates will allow identification of interacting 

genes.   

 

Actin dynamics provide the key driving force at the leading edge of migrating 

cells.  During formation of the foregut-associated proventriculus organ in the Drosophila 

embryo, Notch activity regulates the movement of a population of foregut epithelial cells 

that invaginate into the endodermal midgut layer.  The short stop (Shot) gene encodes a 

member of the spectraplakin family of cytoskeletal linker proteins, which is required for 

the movement of the proventricular cells.  Furthermore, transcription of Shot is activated 

in response to Notch signaling in posterior boundary cells; shot protein, in turn, regulates 

the localization and stability of the Notch receptor, suggesting the presence of a feedback 

loop between shot and Notch.  These results suggest that Notch signaling controls actin 

cytoskeletal organization via the cytoskeletal linker, Shot, during proventricular cell 

movement.  Therefore, it is possible that Notch may regulate the migration of cardiac 

cells by controlling actin dynamics via a similar mechanism.  Analysis of the actin 

organization within cardiomyocytes upon over-expression of Notch will provide insight 

into this question.   

 

Precise coordination of cell migration is required for proper formation of organs.  

Not all cells are allowed to leave their place of birth.  Cells that are selected to move must 

convert from a static to a motile state, loosen their contacts to the surrounding tissue, and 
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respond to environmental cues that ensure the proper onset, directionality, and speed of 

their movement [96, 97].  The factors and environmental cues that select for and guide 

the migration of cardiac cells are unknown.  Our study shows that Notch regulates 

delamination and cell motility during cardiac cell migration.  It does not appear to affect 

the speed or directionality of migrating cells.  Studies screening factors that regulate the 

speed and directionality of migrating cardiac cells are warranted, and will allow the 

elucidation of the precise mechanisms regulating cardiac cell migration.   

 

The gel culture assay demonstrates that the effects of Notch on cell migration are 

independent of its effects on differentiation.  Staining of cardiac explants with conduction 

cell markers indicate that expression of conduction markers is not required for cell 

migration.  However, it is unclear whether migration and differentiation are linked.  We 

speculate that Notch signaling may influence differentiation by inducing the migration of 

progenitor cells away from or towards inductive factors (See Figure 4.1).  In order to 

address this issue, it is first necessary to determine the mechanisms by which Notch 

regulates cell migration.  Inhibition of migration in vivo followed by assessment of 

differentiation markers will address this issue.   

 

The precise coordination of cardiac cell differentiation, proliferation and 

migration is required for proper formation of the heart.  Our studies show that the Notch 

signaling pathway plays key roles in regulating cardiac differentiation and migration 

during cardiogenesis, and underscore the importance of this signaling pathway during  
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Figure 4.1 Summary model of Notch activity in cardiac differentiation.  Stochastic or 

environmental factors cause differential expression of Notch receptor and ligands in an 

initially equivalent pool of cardiac progenitor cells.  A feedback mechanism between 

adjacent cells leads to amplification of the initial differences in receptor and ligand levels.  

Thus, in cells expressing high levels of the Notch receptor, interaction with its ligand, 

leads to activation of high Notch signaling activity.  Because cardiac muscle and 

conduction cells arise from a common progenitor, Notch signaling acts in the initial 

separation of cardiac muscle and conduction cells in this binary cell fate decision.  High 

Notch activity inhibits the differentiation of cardiac muscle cells.  Id2, a transcriptional 

repressor, has been shown to inhibit muscle specification [77].  Thus, Notch may 

cooperate with Id2, or activate Id2, to inhibit cardiac muscle differentiation.  Because 

Notch activity does not seem to increase expression of late conduction cell markers, 

Notch activity acts in the initial separation of conduction and muscle cell lineages.  

Paracrine factors, such as neuregulin-1, and endothelin-1, have been demonstrated to 

promote the differentiation of conduction cells [70, 71].  These factors may act 

downstream of Notch to regulate the maturation of conduction cells.  Additionally, the 

transcription factors, HF-1b, Tbx5, and Nkx2.5, have also been demonstrated to play 

important roles in the specification and maturation of conduction cells [72, 77].  It is 

possible that these factors become activated after the initial separation of cardiac muscle 

and conduction cells by Notch.  Additionally, it has been demonstrated that conduction 

cells are recruited to arterial beds by the paracrine factors, neuregulin-1 and endothelin-1 

[70, 71].  It is therefore possible that Notch activity may promote the migration of cardiac 
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progenitor cells to areas containing factors that induce differentiation and maturation of 

cardiac conduction cells. 
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embryogenesis.  Further studies to elucidate the precise mechanisms by which Notch 

regulate these key processes will allow understanding of cardiogenesis, and the 

development of potential therapies for cardiac diseases.  Knowledge of these mechanisms 

in cardiac development may extend to understanding of the many roles played by the 

Notch pathway in other organ systems.   
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