Cranberry Fruit and Leaf Polyphenols Inhibit Staphylococcus Bacterial Biofilms

Catherine C. Neto
University of Massachusetts - Dartmouth

Et al.

May 20th, 12:30 PM


Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Cranberry fruit and leaf polyphenols inhibit *Staphylococcus* bacterial biofilms

Catherine Neto¹, Jason MacLean¹, Biqin Song¹, Anthony Dovell¹, Steven Kwasny², Timothy Opperman²

¹UMass Cranberry Health Research Center and Department of Chemistry and Biochemistry, UMass-Dartmouth, North Dartmouth, MA

²Microbiotix, Inc., Worcester, MA 01605

Contact: Catherine Neto (cneto@umassd.edu)

Cranberry (*Vaccinium macrocarpon*) is known for urinary tract health benefits associated with reducing the adhesion of *E. coli* bacteria. This property has been linked to cranberry polyphenols known as proanthocyanidins. *Staphylococcus* bacteria are a growing public health concern due to development of resistant strains. Identification of agents that inhibit biofilm formation by these bacteria may provide a new route to reduce infection in clinical settings. Fruit and leaves of North American cranberry (*Vaccinium macrocarpon*) and cranberry juice were fractionated and screened for their ability to prevent biofilm formation by several strains of *S. aureus* and *S. epidermidis* bacteria. MALDI-TOF MS analysis of the most bioactive fractions identified the major constituents as proanthocyanidin oligomers (PACs) with A-type linkages, ranging in size from 2-12 degrees of polymerization. Further characterization by NMR is underway. The polyphenol-rich fractions from cranberry leaf, fruit and juice inhibited biofilm formation by strains of *S. aureus* and *S. epidermidis*, with MBIC as low as 3.1 μg/mL, and without significant bacteriocidal activity. Thus, compounds from cranberry fruit, plant material and juice may be useful in reducing *Staphylococcus* biofilms without promoting resistance.