Factors associated with hallux valgus in a population-based study of older women and men: the MOBILIZE Boston Study

U-S D. T. Nguyen
Institute for Aging Research

H. J. Hillstrom
Hospital for Special Surgery

Wenjun Li
University of Massachusetts Medical School, wenjun.li@umassmed.edu

See next page for additional authors
Factors associated with hallux valgus in a population-based study of older women and men: the MOBILIZE Boston Study

Authors

Keywords
Hallux valgus, Pes planus, Foot pain, BMI, High-heeled shoes, Population-based cohort study

Comments
Citation: Nguyen US, Hillstrom HJ, Li W, Dufour AB, Kiel DP, Procter-Gray E, Gagnon MM, Hannan MT. Factors associated with hallux valgus in a population-based study of older women and men: the MOBILIZE Boston Study. Osteoarthritis Cartilage. 2010 Jan;18(1):41-6. doi:0.1016/j.joca.2009.07.008. Link to article on publisher's site

Open Access funded by OsteoArthritis Society International. Under an Elsevier user license.

This article is available at eScholarship@UMMS: http://escholarship.umassmed.edu/prevbeh_pp/291
Factors associated with hallux valgus in a population-based study of older women and men: the MOBILIZE Boston Study

U.-S. D. T. Nguyent,*, H. J. Hillstroms, W. Lit, A. B. Dufourt,*, D. P. Kielt,*, E. Procter-Grayy,*, M. M. Gagnont,* and M. T. Hannanz,*

t Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
s Harvard Medical School, Boston, MA, USA
z Hospital for Special Surgery, New York, NY, USA
y University of Massachusetts Medical School, Worcester, MA, USA
t Boston University School of Public Health, Boston, MA, USA

Summary

Objective: To examine potential risk factors for hallux valgus in community-dwelling elders.

Method: Data from 600 MOBILIZE Boston Study participants (386 women and 214 men) were analyzed. Hallux valgus was defined as >15° angular deviation of the hallux with respect to the first metatarsal bone toward the lesser toes. Associations of hallux valgus with age, body mass index (BMI), race, education, pes planus, foot pain, and in women, history of high heel shoe use, were assessed using sex-specific Poisson regression with robust variance estimation for risk ratios (RR) and 95% confidence intervals (CI).

Results: Hallux valgus was present in 58% of women and 25% of men. Higher BMI was inversely associated with presence of hallux valgus in women (P trend = 0.001), with the strongest inverse association observed in those with BMI of 30.0 or more compared to those with normal BMI (RR = 0.7, 95% CI: 0.5, 0.9). Women, who usually wore high-heeled shoes during ages 20–64 years compared to those who did not, had increased likelihood of hallux valgus (RR = 1.2, 95% CI: 1.0, 1.5). Among men, those with BMI between 25.0 and 29.9 had increased likelihood of hallux valgus compared to those with normal BMI (RR = 1.9, 95% CI: 1.3, 3.3) compared to men without pes planus.

Conclusion: In women, hallux valgus was associated with lower BMI and high heel use during ages 20–64, while in men, associations were observed with higher BMI and pes planus. Our results suggest that the etiologic mechanisms for hallux valgus may differ between men and women.

Key words: Hallux valgus, Pes planus, Foot pain, BMI, High-heeled shoes, Population-based cohort study.

Introduction

Hallux valgus is a common structural foot deformity in which the angular deviation of the hallux is greater than 15° toward the lesser toes with respect to the first metatarsal bone, and appears as a bony prominence over the first metatarsal head. Several factors have been reported to be associated with hallux valgus including genetic predisposition, structural factors, sex, age, body mass index (BMI), foot pain, pes planus and footwear. Coughlin believes that genetic factors are very important, given the familial patterns of foot structure in general. Previous research also suggests structural factors such as metatarsal length, metatarsal head shape, first ray hypermobility, and hind-foot pronation may be major factors associated with hallux valgus. Clinically, hallux valgus occurs more frequently in women, is more prevalent in older ages, and is believed to be associated with increased BMI and foot pain, as well as with pes planus. In addition, research from over 40 years ago reported that the prevalence of hallux valgus was much higher in persons wearing shoes than those with unshod feet, and current research suggests the potential role of shoe types in the development of hallux valgus.

The association between race and hallux valgus, however, is not clear. A 2004 study by Dunn and colleagues, of urban community-dwelling adults 65 years of age and older, indicated that African Americans had a significantly higher prevalence of hallux valgus than Caucasians. A 1980 study, comparing different groups of South African women 50 years and older, reported that the foot disorder was more common in White than urban or rural Black South Africans, but the study did not control for shoe wearing even though the investigators had attributed the differences to footwear. It is important to understand risk factors for hallux valgus in order to prevent or minimize progression of the disorder since hallux valgus is thought to contribute to impaired balance and gait, and to increased risk of falls. Surgical interventions, however, are costly and involve medical risks that could lead to other complications in older adults, and clinicians noted that hallux valgus may also recur. Yet many of the previous studies of factors associated with hallux valgus have been limited to clinical populations or...
have been descriptive in nature. The largest study to date by Roddy et al., used questionnaires received from 4249 men and women from two general practices in the UK to examine factors associated with self-report hallux valgus. Despite the large sample size and the universal health care system in the UK, the response rate for this study was 32%. The purpose of this current study was to examine potential clinical risk factors for hallux valgus such as age, BMI, race, education, foot pain, and pes planus, as well as past use of high-heeled shoes in women, in a population-based cohort of community-dwelling older adults with clinically assessed foot exams.

Methods

STUDY PARTICIPANTS

Participants in the current study are members of the first wave of partici- pants from the MOBILIZE Boston Study (Cycle 1), an on-going longitudinal study to examine mechanisms and novel risk factors for falls in a popula- tion-based sample of older persons living in Boston, Massachusetts. USA. Details of the MOBILIZE Boston Study cohort have been previously re- ported. In brief, between 2005 and 2008, the study enrolled 765 partic- ipants 70 years or older, including 16 of their spouses 64–69 years of age. Inclusion criteria comprised: ability to communicate in English, living within the Boston area, planning to remain in the area over the next 2 years, and ability to walk 20 feet unassisted.

Enrollment involved a two-step process: first, a door-to-door recruitment, fol- lowed by a telephone screening. From 5655 sample households, 4303 people of age 70 years and older were identified. Of the 4303 people, 1581 were not eligible and 1973 either refused to participate or were unable to be contacted. As expected in a population-based study of older persons, the standard Council of American Research Organization (CASRO) response rate was 52% after screening for eligibility criteria. The CASRO response rate was 30% for the door-to-door phase. In comparison with US Census data for the population aged 65 and older in the Boston area, the study sample was representative of Boston area elders in terms of age, sex, race and ethnicity.

The participants were interviewed in their homes by trained staff and were examined within 4 weeks of the home visit by research nurses at the study clinic in the Hebrew Rehabilitation Center, a research and long-term care fa- cility in Boston. Institutional Review Boards at the Hebrew Rehabilitation Center and collaborating institutions approved the study and all participants provided informed consent. For the current analyses, we included the first wave of 600 participants whose baseline data have been entered and verified.

DATA COLLECTION OF HALLUX VALGUS AND POTENTIAL RISK FACTORS

During the in-home interview, information was collected via standardized questionnaire on several factors of interest including age (age at examination was recorded), sex, race, and educational attainment (the number of years of completed education), as well as information on types of shoes usually worn during specific ages. Race was self-defined by each participant using the categories of white, black, Asian or other. Use of high-heeled shoes (2 inch or higher) by women was identified by questionnaire if the women listed categories of white, black, Asian or other. Use of high-heeled shoes (2 inch or higher) by women was identified by questionnaire if the women listed categories of white, black, Asian or other. Use of high-heeled shoes (2 inch or higher) by women was identified by questionnaire if the women listed categories of white, black, Asian or other.

The distribution of the study characteristics for the 386 women and 214 men is presented in Table 1. Over half of the women had hallux valgus, and the prevalence was more than twice as high in women (58%) as in men (25%). The age distribution for women and men was similar. Slightly more women than men were obese. Also, women had slightly higher prevalence of foot pain and pes planus than men. Among women, the proportion of women who wore high-heeled shoes as their usual type of shoes during ages 20–64 years was slightly less than 25%.

The associations of hallux valgus with BMI, foot pain, and pes planus were significantly different between the women and men. Formal tests for interaction of these risk factors with sex revealed significant interactions with the overweight (25.0–29.9) and obese BMI groups (30.0–49.2), $P = 0.003$ and $P = 0.02$, respectively. In addition, interactions were found between sex and presence of foot pain ($P = 0.03$), as well as pes planus ($P = 0.04$). The associations between
hallux valgus and each risk factor under study are presented in Table II for men and women separately.

Compared with women of normal BMI (16.7–24.9), overweight (adjusted RR = 0.8, 95% CI: 0.7, 1.0) and obese (adjusted RR = 0.7, 95% CI: 0.5, 0.9) women were significantly less likely to have hallux valgus, with the strongest inverse association observed in obese women (P trend = 0.001). Age, race, college education, presence of foot pain, and presence of pes planus had no statistical association with hallux valgus in women.

As shown in Table II, there was no statistically significant association between age and hallux valgus in men (P = 0.21). Also, the association of hallux valgus with BMI appeared to be non-linear in men. Compared with men of normal BMI, overweight (adjusted RR = 1.9, 95% CI: 1.0, 3.5) and obese men (adjusted RR = 1.4, 95% CI: 0.7, 3.1) were more likely to have hallux valgus. White men had a 40% reduced likelihood of having hallux valgus compared to non-white men, and college educated men were 50% times more likely to have hallux valgus than men who were not college educated, but the associations were not statistically significant.

Among the men in our study, a significant positive association was observed between pes planus and hallux valgus. Men with pes planus had two times the likelihood of having hallux valgus compared with men without pes planus (95% CI: 1.3, 3.3). Foot pain, however, was inversely associated with hallux valgus (P = 0.05). Men with foot pain had a 50% reduced likelihood of having hallux valgus compared to men without foot pain.

Figure 1 presents the association of hallux valgus across the three categories of past use of high-heeled shoes. Women who reported wearing high-heeled shoes as their usual type of shoe for the entire period between 20 and 64 years of age had a 20% increased likelihood of having hallux valgus compared with women who did not report wearing high heels as their usual shoe type between 20 and 64 years of age (95% CI: 1.0, 1.5). P = 0.04. There was a borderline significant linear trend for hallux valgus across the categories of duration of high-heeled use (P trend = 0.06).

Discussion

Despite previous reports that hallux valgus worsens with age, our population-based sample of community-dwelling older adults showed no significant association across the age groups that we examined. It is possible that associations of hallux valgus with age may be more apparent when younger persons are included in a study. We did observe, however, that the prevalence of hallux valgus was twice as high in women as in men. The patterns of results were notably different between the sexes, especially in the associations of hallux valgus with BMI and pes planus, and possibly with the presence of foot pain.

Increased BMI was associated with decreased prevalence of hallux valgus in women (P trend = 0.001), while BMI was positively associated with hallux valgus in men. Furthermore, pes planus showed no statistical association in women, but was strongly associated with a 2-fold increased likelihood of having hallux valgus in men. Similarly, we observed a borderline negative association of hallux valgus with foot pain but only among the men in our study. The different pattern of results between women and men imply potentially different pathways to the presence of hallux valgus in older women and men. To our knowledge, this has

Table I

Sample characteristics by sex: the MOBILIZE Boston Study

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Women n = 386</th>
<th>Men n = 214</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hallux valgus</td>
<td>223 (58%)</td>
<td>54 (25%)</td>
</tr>
<tr>
<td>Age in years, mean (SD)</td>
<td>77.8 (5.7)</td>
<td>78.1 (5.3)</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.7–24.9 (normal)</td>
<td>125 (33%)</td>
<td>67 (32%)</td>
</tr>
<tr>
<td>25.0–29.9 (overweight)</td>
<td>147 (39%)</td>
<td>98 (47%)</td>
</tr>
<tr>
<td>30.0–49.2 (obese)</td>
<td>105 (28%)</td>
<td>43 (21%)</td>
</tr>
<tr>
<td>Race-white</td>
<td>290 (76%)</td>
<td>176 (82%)</td>
</tr>
<tr>
<td>College education</td>
<td>232 (60%)</td>
<td>154 (72%)</td>
</tr>
<tr>
<td>Foot pain</td>
<td>100 (26%)</td>
<td>43 (20%)</td>
</tr>
<tr>
<td>Pes planus</td>
<td>76 (20%)</td>
<td>37 (17%)</td>
</tr>
<tr>
<td>High-heeled shoes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worn as usual shoe</td>
<td>89 (23%)</td>
<td>NA</td>
</tr>
<tr>
<td>type during ages 20–64 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worn at some but not all age groups during ages 20–64 years</td>
<td>144 (38%)</td>
<td>NA</td>
</tr>
<tr>
<td>Not worn as usual shoe type during ages 20–64 years</td>
<td>148 (39%)</td>
<td>NA</td>
</tr>
</tbody>
</table>

Table II

Associations of potential risk factors with hallux valgus by sex: the MOBILIZE Boston Study

<table>
<thead>
<tr>
<th>Proportion with hallux valgus</th>
<th>Unadjusted RR (95% CI)</th>
<th>Adjusted† RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women (n = 386)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, each 10-year increase</td>
<td>NA</td>
<td>1.1 (1.0, 1.3)</td>
</tr>
<tr>
<td>Unadjusted</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Adjusted</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.7–24.9 (normal)</td>
<td>67%</td>
<td>1.0</td>
</tr>
<tr>
<td>25.0–29.9 (overweight)</td>
<td>56%</td>
<td>0.8 (0.7, 1.0)</td>
</tr>
<tr>
<td>30.0–49.2 (obese)</td>
<td>49%</td>
<td>0.7 (0.6, 0.9)</td>
</tr>
<tr>
<td>White race-no</td>
<td>54%</td>
<td>1.0</td>
</tr>
<tr>
<td>White race-yes</td>
<td>59%</td>
<td>1.1 (0.9, 1.3)</td>
</tr>
<tr>
<td>College education-no</td>
<td>56%</td>
<td>1.0</td>
</tr>
<tr>
<td>College education-yes</td>
<td>59%</td>
<td>1.1 (0.9, 1.3)</td>
</tr>
<tr>
<td>Foot pain-no</td>
<td>58%</td>
<td>1.0</td>
</tr>
<tr>
<td>Foot pain-yes</td>
<td>59%</td>
<td>1.0 (0.8, 1.2)</td>
</tr>
<tr>
<td>Pes planus-no</td>
<td>57%</td>
<td>1.0</td>
</tr>
<tr>
<td>Pes planus-yes</td>
<td>61%</td>
<td>1.1 (0.9, 1.3)</td>
</tr>
</tbody>
</table>

Men (n = 214)		
Unadjusted		1.1 (0.7, 1.7)
Adjusted		1.3 (0.8, 2.1)

*0.01 < P < 0.05; **0.001 < P < 0.01; ***0.05 < P < 0.1.
†Each risk factor adjusted for the other risk factors (and for past use of high-heeled shoes in women).
were no sex-specific data. Moreover, Frey and Zamora11 found that those with hallux valgus had significantly more

\textit{and men, work by Cho et al.}1 found that individuals of normal weight in an orthopaedic

Prospective relation between BMI and hallux valgus and likelihood of hallux valgus compared to overweight or obese in-

...and total area relative to their foot size. Unfortunately, there were no data on the association between shoe wear and hal-

...and different quality. Most of the original anthropometric foot data from which ‘shoe lasts’ (the positive molds from which shoes are made) were designed were based upon military studies and hence predominantly men30,31. More recent military studies have included women in their anthropometric assessments32. Parham et al.32 found differences in several of the pedal anthropometric variables (e.g., heel width and forefoot breadth) whereby women were substantially smaller than men. The differences could not be explained only by foot length, suggesting that women needed their own shoe lasts from which to base their shoe designs. Furthermore, many believe, and it is well appreciated in the shoe wear industry, that most women’s shoes (especially in the past) were constructed in an inferior manner compared to that of men. Men’s shoes were marketed to be sturdy while women’s shoes were marketed to be replaced more frequently in order to be consistent with current fashions. Women’s ‘fashionable dress shoes’ were more likely to have pointed toe boxes than that of men. This is especially true for the age groups of older adults included in our study. Unfortunately, we do not have measures of shoe width, shoe length, or shoe quality available to further explore these sex-differences in the associations of BMI with hallux valgus.

We also found, even after adjusting for BMI and other potential risk factors of hallux valgus, that women who wore high-heeled shoes as their major shoe type between 20 and 64 years of age had an increased prevalence of hallux valgus compared with women who did not wear high-heeled shoes as their major shoe type during ages 20 and 64 years. It is possible that wearing high-heeled shoes as one’s usual shoe type between ages 20 and 64 years may create heightened forefoot pressure over a prolonged period that put these women at increased risk for hallux valgus. Interestingly, Menz and Morris17 found a significant association between heel height >25 mm with hallux valgus but no significant association between foot problems and past history of wearing high heels. It is possible our definition of high heels (2 inches or above) or assessment of past use of high heels over a longer period of a woman’s life that may explain the difference between our results and those of Menz and Morris.

Additionally, we found that pes planus was highly associated with hallux valgus in men but not in women. Among persons without pes planus, however, hallux valgus was much more common among women than among men in our study. Thus, the magnitude of the relative measure of association of hallux valgus and pes planus was much higher in men than in women. Another possible explanation for the differences in the association seen with pes planus and hallux valgus may be that men and women have different foot structures or different weight-bearing foot pressure that could modify the effect of pes planus on hallux valgus15,33. Ferrari et al.33 found that male foot bones were larger than those of females which may affect weight bearing differently, and that female bones had the potential for more movement. In addition, James34 suggested that footwear and physical ill-treatment of the feet may explain the flat-foot condition since natives from Solomon Island who did not wear shoes were free of flat-feet. Taken together, it is possible that structural differences or constricted shoe wear may explain differences in association between pes planus and hallux valgus in men and women.

It merits noting that foot pain was inversely associated with hallux valgus in men. It is possible that men with hallux valgus had already modified their foot support or shoe wear; thus, affecting the occurrence of foot pain in the presence of hallux valgus.

It is interesting to note that race and education were not associated with hallux valgus in women, but may be associated with hallux valgus in men. It is possible that racial and educational differences in men may greatly affect choices of occupations requiring prolonged periods of performing weight-bearing activities on their feet or jobs requiring the use of specific shoe type that may affect

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{hallux_valgus.png}
\caption{Risk of hallux valgus according to past duration of high-heeled shoe wearing.}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Duration of Past High Heel Use & Hallux Valgus RR (95\% CI) & \\
\hline
High-heeled shoes not worn as usual & 1.2* & \\
Ages 20-64 & & \\
High-heeled shoes worn at some but not all age groups, usual shoe type during & & \\
Ages 20-64 & & \\
High-heeled shoes worn as usual shoe type & & \\
Ages 20-64 & & \\
\hline
\end{tabular}
\caption{Factors associated with hallux valgus}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Figure 1. Risk of hallux valgus according to past duration of high-heeled shoe wearing. & \\
\hline
\end{tabular}
\caption{Adjusted for age, BMI, race, college education, presence of foot pain, and pes planus}
\end{table}

*p=0.04
their risk for hallux valgus differently. We do not have sufficient data on these factors, however, to examine these possibilities.

There were several limitations to our study. First, we lacked data on genetics and structural factors such as metatarsal length, metatarsal head shape, first ray hypermobility, and hind-foot pronation so our study was not able to examine these factors. Furthermore, our analyses were cross-sectional; thus, causal inference was limited, especially for determining whether BMI differences lead to hallux valgus or whether hallux valgus contributes to changes in BMI over time. In addition, information on past use of high-heeled shoes relied on self-report and may have been subject to recall bias even though the participants were not aware of the current research questions at the time they responded to the queries on past high-heeled shoes. Another difficulty was that we could not determine whether differences observed in magnitude and/or direction of association for some of these factors under study with hallux valgus were due to structural foot differences or behavioral differences between men and women, including choice of shoe wear. Also, hallux valgus was determined during a foot exam by a trained clinician for the presence or absence of the foot disorder and not from a tool such as the Manchester scale. However, any possible misclassification of hallux valgus would have been non-differential with regard to the potential risk factors examined; thus, had we used a more stringent instrument to classify hallux valgus free of measurement error, our estimates of effect would have been even stronger in magnitude.

Despite the limitations, our study has several strengths. A major strength of the study is that information on foot disorders was based on foot examinations conducted by trained clinical nurses using a validated foot evaluation, which may reduce measurement errors associated with self-report of foot problems. Also, our study population was a sample of community-dwelling elderly men and women, and may be more representative of elders than clinic-based samples.

Our results indicate intriguing sex-differences in the association of certain study factors in relation to hallux valgus. Further investigations are needed, particularly to look at shoe width, toe box, or other factors in addition to heel height in relation to hallux valgus. Should future research confirm that use of high-heeled shoes or narrow toe-boxed shoes that put wearers at increased risk for hallux valgus were due to structural foot differences or behavioral differences between men and women, including choice of shoe wear. Also, hallux valgus was determined during a foot exam by a trained clinician for the presence or absence of the foot disorder and not from a tool such as the Manchester scale. However, any possible misclassification of hallux valgus would have been non-differential with regard to the potential risk factors examined; thus, had we used a more stringent instrument to classify hallux valgus free of measurement error, our estimates of effect would have been even stronger in magnitude.

Conflict of interest

The authors have no financial or personal relationships with other people or organizations that could bias our research.

Acknowledgements

The authors acknowledge the MOBILIZE Boston research team and study participants for the contribution of their time, effort, and dedication. We sincerely thank Dr Jennifer Kelsey for her critical review of the manuscript drafts. This research was supported in part by the following grants from the NIA: AG 026316, 3R01AG026316-03S1, AG028738, and AG 004390. The study sponsors, however, have no involvement in the study design, collection, analysis, or interpretation of the data; or in the writing and submission of this manuscript for publication.

References

