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Spectrin Promotes the Association of F-Actin with the

Cytoplasmic Surface of the Human Erythrocyte Membrane

VELIA M. FOWLER, ELIZABETH J. LUNA, WILLIAM R. HARGREAVES, D. LANSING
TAYLOR, and DANIEL BRANTON

Cell and Developmental Biology, The Biological Laboratories, Harvard University, Cambridge,
Massachusetts 02138. Dr. Fowler’s present address is the Clinical Hematology Branch, National Institute
of Arthritis, Metabolism and Digestive Diseases, National Institutes of Health, Bethesda, Maryland
20205. Dr. Hargreaves’s present address is the Clinical Systems, Photoproducts Division, Wilmington,
Delaware 19898.

ABSTRACT We have studied the binding of actin to the erythrocyte membrane by a novel
application of falling ball viscometry. Our approach is based on the notion that if membranes
have multiple binding sites for F-actin they will be able to cross-link and increase the viscosity
of actin. Spectrin- and actin-depleted inside-out vesicles reconstituted with purified spectrin
dimer or tetramer induce large increases in the viscosity of actin. Comparable concentrations
of spectrin alone, inside-out vesicles alone, inside-out vesicles plus heat-denatured spectrin,
ghosts, or ghosts plus spectrin have no effect on the viscosity of actin. Centrifugation experi-
ments show that the amount of actin bound to the inside-out vesicles is enhanced in the
presence of spectrin. The interactions detected by low-shear viscometry reflect actin interaction
with membrane-bound spectrin because (a) prior removal of band 4.1 and ankyrin (band 2.1,
the high-affinity membrane attachment site for spectrin) reduces both spectrin binding to the
inside-out vesicles and their capacity to stimulate increases in viscosity of actin in the presence
of spectrin, and (b) the increases in viscosity observed with mixtures of inside-out vesicles +
spectrin + actin are inhibited by the addition of the water-soluble 72,000-dalton fragment of
ankyrin, which is known to inhibit spectrin reassociation to the membrane.

The increases in viscosity of actin induced by inside-out vesicles reconstituted with purified
spectrin dimer or tetramer are not observed when samples are incubated at 0°C. This temper-
ature dependence may be related to temperature-dependent associations we observe in
solution studies with purified proteins: addition of ankyrin inhibits actin cross-linking by
spectrin tetramer plus band 4.1 at 0°C, and enhances it at 32°C.

We conclude (a) that falling ball viscometry can be used to assay actin binding to membranes
and (b) that spectrin is involved in attaching actin filaments or oligomers to the cytoplasmic
surface of the erythrocyte membrane.

The shape and deformability of the human erythrocyte (27,
32), the distribution of membrane surface markers (14, 30), and
membrane protein mobility (17) are believed to be modulated
by a spectrin-actin network that underlies the membrane (6,
18, 19, 27, 32, 34, 36, 37, 41, 44, 48). Although the molecular
features of the interaction of spectrin with the cytoplasmic
surface of the membrane (in the absence of actin) have been
characterized in some detail (1-5, 25, 45, 46, 49), less is known
concerning the attachment of actin to the membrane.
Reassociation of monomeric (G) actin with spectrin-actin-
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depleted vesicles has been measured directly (10, 11). G-actin
does not reassociate with these vesicles unless the vesicles are
first reconstituted with a high molecular weight complex con-
taining spectrin, actin, band 4.1 and band 4.9." Actin reassocia-
tion appears to occur by polymerization of the actin from
nucleating sites associated with the reconstituted membranes

(11). Thus, the high molecular weight complex itself probably

! Nomenclature of erythrocyte membrane proteins is according to Steck
(39, 41).
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contains preexisting filamentous (F) actin seeds which serve as
nucleating sites for the exogenous actin (7, 16, 23, 33).

The ability of purified spectrin (6, 18, 19),” or a spectrin-
band 4.1 complex (18, 19, 48),7 to interact with and cross-link
actin in the absence of membranes has led to the idea that actin
is associated with the cytoplasmic surface of the membrane as
short oligomers cross-linked either directly by spectrin or,
alternatively, by a spectrin-band 4.1 complex (7, 18, 19, 28, 48).
However, it is also possible that F-actin interacts directly with
components on the cytoplasmic surface of the membrane,
independent of spectrin or band 4.1.

We decided to study the interaction of actin with the cyto-
plasmic surface of the erythrocyte membrane by measuring the
ability of membrane vesicles to cross-link’ actin. We reasoned
that if membranes have multiple F-actin-binding sites, they
should cross-link F-actin just as multivalent actin-binding pro-
teins isolated from a variety of nonmuscle cells (8, 9, 22, 42,
43), including erythrocytes (6, 18, 19, 48),” cross-link actin.
Because many of the protein associations in the erythrocyte
membrane have been studied extensively by other techniques,
we have used the erythrocyte to verify this reasoning. The
results presented here and in the accompanying paper (26)
demonstrate that the low-shear viscometric assay (20, 29),
previously used to monitor actin cross-linking (18, 19, 20, 29),
can provide useful information about membrane-associated
actin-binding sites. We find that reconstitution of spectrin-
actin-depleted inside-out membrane vesicles with purified spec-
trin confers on them the ability to cross-link F-actin. These
results show that spectrin promotes the attachment of actin
filaments or oligomers to the inner surface of the membrane.

MATERIALS AND METHODS
Preparations

MEMBRANES: Fresh whole human blood drawn into acid-citrate-dextrose
was obtained through the Northeastern Regional Red Cross, and was used within
1 wk of drawing. White erythrocyte ghost membranes (depleted of band 6),
spectrin-actin-depleted inside-out vesicles, and inside-out vesicles further depleted
of ankyrin and band 4.1 by high-salt extraction (ankyrin-band 4.1-depleted
inside-out vesicles) were prepared as described by Hargreaves et al. (21) (Fig. 1,
lanes a-c). Sodium hydroxide-stripped vesicles were prepared essentially as
described by Steck and Yu (40). All of the membrane preparations were given a
final wash in 20 mM KCl, 1.0 mM EDTA, 0.2 mM dithiothreitol (DTT), 3.0 mM
NaNj, 1.0 mM sodium phosphate, pH 7.6, and then resuspended in this buffer to
a volume equivalent to that of the ghost membranes from which they were
derived. Electrophoresis on 5% polyacrylamide gels was performed as described
by Fairbanks et al. (15).

SPECTRIN: Spectrin dimers or tetramers were extracted from ghosts into 1.0
mM N-tristhydroxymethyl)methyl-2-aminoethane sulfonic acid, pH 8.0 (mea-
sured at 0°C), 0.1 mM EDTA, 0.4 mM diisopropyl fluorophosphate, at 37° or
0°C, respectively, and purified by gel filtration over Sepharose 4B (35, 47), in 20
mM KCl, 1.0 mM EDTA, 3.0 mM NaNj, 1.0 mM sodium phosphate, pH 7.6 (18,
46). Peak fractions containing pure spectrin (Fig. 1, lane d) were pooled and
stored in this buffer at 0°C without further manipulation.

_ACTIN: G-actin was prepared from an acetone powder of rabbit skeletal
muscle with a single cycle of polymerization and sedimentation from 0.8 M KCl
(38). After subsequent depolymerization and clarification of the G-actin at
100,000 g for 3 h at 4°C, the G-actin either was used directly in the viscosity
measurements or was stored as a lyophilized powder at —20°C for later resus-
pension and preparation of G-actin (18). In either case, the G-actin was dialyzed
up to 10 d at 0°C against 2.0 mM Tris, pH 8.0, 0.2 mM CaCl,, 0.2 mM ATP, 0.5

2 Cohen, C. M., and C. Korsgren. Personal communication.

*In this paper, the term “cross-link” refers to interactions of filamen-
tous actin with polypeptides or membranes that contain a multiplicity
of actin-binding sites and are therefore multivalent for actin. These
interactions give rise to anastomosing networks or gel-like structures in
which actin filaments are bound to one another, or “cross-linked” (for
a more extended discussion see references 8, 9, 22, 42, and 43).
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FIGURE 1 SDS polyacrylamide gels of (a) human erythrocyte mem-
branes depleted of band 6 (white ghosts), (b) spectrin-actin-de-
pleted inside-out vesicles, (c) ankyrin(band 2.1)-band 4.1-depleted
inside-out vesicles, (d) purified spectrin dimer, and (e) purified
rabbit skeletal muscle actin. Gels a, b, and ¢ were loaded with equal
volumes of membrane samples, gel d with 10 ug of spectrin, and gel
e with 11 pg of actin. The spectrin and actin samples were over-
loaded to demonstrate the purity of the preparations, and the
membrane samples were overloaded to show minor bands.

.,

mM DTT, 3.0 mM NaN,. The low-shear viscosity of F-actin varied from batch
to batch (18) but remained constant with time within a batch. Protein concentra-
tions of actin and membrane preparations were determined by the method of
Lowry et al. (24).

Viscosity Measurements

Viscosity was measured using a low-shear falling ball viscometer (20, 29) as
modified by Fowler (19) and Fowler and Taylor (18), in an assay buffer
previously found to be optimal for gelation of actin by extracts from erythrocyte
membranes (18, 19). The assay buffer contained 50 mM KCl, 20 mM PIPES, pH
7.0, 0.5 mM DTT, 2.0 mM EGTA, 0.1 mM CaCl;, and 1.0 mM MgATP
([Ca* *Jtren, ~107® M). (Less than 1.0 mM each of sodium phosphate, EDTA, and
Tris was contributed by the addition of membranes, spectrin, and actin to the
assay mixture.)

Increasing the free calcium ion concentration from ~1 X 107° M (free calcium
ion concentrations calculated as in reference 18) to ~2 X 10~ M inhibited the
increases in viscosity of inside-out vesicle-spectrin-actin mixtures in some exper-
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iments but not in others, in contrast to the consistent inhibitory effect of calcium
on the interaction of actin with spectrin- and band 4.1-containing extracts from
erythrocyte membranes (18, 19). Interestingly, the inhibitory effect of ~2 X 107°
M free calcium on inside-out vesicle-spectrin-actin interactions was never ob-
served when preformed F-actin rather than G-actin was added to the assay
mixture and incubated with inside-out vesicles and spectrin (under polymerizing
conditions). Similarly, the inhibitory effect of micromolar free calcium on the
increases in viscosity of actin induced by purified spectrin plus band 4.1 (no
membranes) was observed only when G-actin and not preformed F-actin was
used. The difference in calcium sensitivity between G- and preformed F-actin
was not further investigated.

Unless otherwise indicated, rabbit skeletal muscle actin was added to the assay
mixture immediately after addition of the purified spectrin to the inside-out
vesicles at 0°C. After mixing of all components, samples were vortexed briefly,
drawn up into the 100-pl micropipettes, and incubated in a horizontal position
(so as to prevent destruction of the gel by rising bubbles) at 32°C for 1 h before
the viscosities were measured (18, 19). The viscosities presented are averages of
triplicate determinations for each sample; thus, a 0.3-ml sample volume was used
to fill three 100-ul micropipettes. Viscosities above ~500 cp (indicated by an
asterisk in the figures, where the sample begins to gel) were not measured because
our calibration curves do not extend beyond this point (18, 19).

RESULTS

Increases in Viscosity of Actin Induced by
Inside-Out Vesicles plus Spectrin

When erythrocyte membranes (ghosts) (Fig. 1, lane a) are
extracted at 37°C with 0.3 mM sodium phosphate, pH 7.6,
spectrin and actin are eluted from the membrane (Fig. 1, lane
b) and the membranes vesiculate into inside-out vesicles (1,
41). Low concentrations of these spectrin-actin-depleted inside-
out vesicles reconstituted with purified spectrin dimer induce
large increases in the viscosity of purified rabbit skeletal muscle
G-actin under ionic conditions that promote actin polymeri-
zation (50 mM KCl, 1 h, 32°C) (Fig. 2). In the absence of
membranes, these low concentrations of purified spectrin have
no detectable effect on the viscosity of actin (Fig. 2, and see
references 18 and 19). The viscosity of comparable concentra-
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FIGURE 2 Effect of purified spectrin dimer on increases in viscosity
of actin induced by spectrin-actin-depleted inside-out vesicles: ef-
fect of varying the inside-out vesicle concentration in the presence
of (O) 0 ug/ml spectrin, (A) 2 ug/ml spectrin, (M) 5 pg/ml spectrin,
(®) 30 ug/ml spectrin, or () 5 ug/ml heat-treated spectrin (5 min,
60°C). (A) White ghosts plus actin in the presence or absence of 30
ug/ml spectrin. Rabbit muscle G-actin (final concentration 0.8 mg/
ml) was incubated with the inside-out vesicles (in the presence or
absence of spectrin) under polymerizing conditions as described in
Materials and Methods. (Inset) Increases in viscosity of actin in-
duced by higher concentrations of inside-out vesicles.
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tions of inside-out vesicles plus actin in the absence of spectrin,
or of the inside-out vesicles plus heat-treated spectrin (5 min,
60°C) plus actin, is not appreciably different from that of actin
alone (Fig. 2). Neither leaky (Fig. 2) nor resealed (not shown)
ghosts cause increases in the viscosity of actin, in the presence
or absence of spectrin. (In the absence of actin, all samples
have viscosities equivalent to that of the buffer: 1-2 cp).

The increases in viscosity of the inside-out vesicle-spectrin-
actin mixtures depend on both the vesicle concentration and
the spectrin concentration (Fig. 2). In the absence of added
spectrin, greater than 1 mg/ml of inside-out vesicles (which
contain some residual spectrin) is required to induce extensive
increases in the viscosity of actin (Fig. 2, inset).

Viscosity Increases are Mediated Only by
Specifically Bound Spectrin

Four lines of evidence demonstrate that the viscosity changes
we measure are caused by bound rather than unbound spectrin.
First, inside-out vesicles were preincubated with spectrin but
without actin, and then centrifuged to separate the vesicles with
bound spectrin from any free spectrin in the supernate. Most
of the spectrin binds to the inside-out vesicles (Fig. 3a) and
thus, as expected, these preincubated and washed vesicles
induce increases in the viscosity of actin comparable to an
equivalent volume of inside-out vesicles preincubated with
spectrin but not washed (Fig. 3b). (Washed vesicles are not
used routinely because the added steps are cumbersome.)

Second, we extracted the inside-out vesicles with salt or
sodium hydroxide to deplete them of the spectrin-binding
proteins, ankyrin and band 4.1, and thus reduce spectrin reas-
sociation with the cytoplasmic surface of the membrane (45).
The capacity of such ankyrin-band 4.1-depleted inside-out
vesicles (Fig. 1, lane c) to stimulate increases in the viscosity of
actin in the presence of spectrin is reduced in comparison to
untreated inside-out vesicles (Fig. 4). In the absence of spectrin,
the viscosity of the salt- or NaOH-treated inside-out vesicles
plus actin is not appreciably different from that of actin alone,
even at inside-out vesicle concentrations >1 mg/ml (not
shown).

Third, the increases in viscosity of actin induced by both
native and ankyrin-band 4.1-depleted inside-out vesicles ap-
pear to be saturable for spectrin (Fig. 4b), just as the binding
of spectrin to inside-out vesicles is saturable, both at 0°C (1,
45) and also under our assay conditions (50 mM KCl, pH 7.0,
32°C, 1 h; not shown). Although we have observed a significant
amount of nonsaturable binding of 'I-labeled spectrin to
sodium hydroxide-stripped inside-out vesicles (not shown), this
apparently nonspecific association of spectrin with the mem-
brane does not result in increases in viscosity of actin (Fig. 45).
Similarly, increased nonspecific binding of heat-denatured *°I-
labeled spectrin to inside-out vesicles observed at 32°C (not
shown) in comparison to 0°C (1, 45) does not confer actin
cross-linking activity on the inside-out vesicles (Fig. 2, open
squares).

Fourth, the increases in viscosity observed with mixtures of
inside-out vesicles, spectrin, and actin are inhibited by the
addition of the 72,000-dalton fragment of ankyrin which in-
hibits the reassociation of spectrin with spectrin-actin-depleted
inside-out vesicles (2) (Fig. 5). The inhibition cannot be the
result of proteolysis because SDS polyacrylamide gels of inside-
out vesicles plus spectrin appear identical by Coomassie Blue
staining in the presence or absence of the 72,000-dalton poly-
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FIGURE 3 (a) SDS polyacrylamide gels of (i} inside-out vesicles
without added spectrin, (ii) inside-out vesicles preincubated with
spectrin, (iii) inside-out vesicles preincubated with spectrin and
washed, (iv) supernate obtained after pelleting of inside-out vesicles
preincubated with spectrin. Equal volumes of ail samples were
electrophoresed. (b) Effect of removing unbound spectrin on the
ability of spectrin-actin-depleted inside-out vesicles reconstituted
with purified spectrin dimer to induce increases in the viscosity of
actin. (Blank bars) inside-out vesicles (IOVs) alone, spectrin alone,
or inside-out vesicles plus spectrin preincubated but not washed
before mixing with actin. (Dotted bar) inside-out vesicles preincu-
bated with spectrin, then washed before mixing with actin. Purified
spectrin dimer and inside-out vesicles (final concentrations 130 and
500 ug/ml, respectively), spectrin alone, or inside-out vesicles alone
were preincubated without actin under standard assay conditions
for 1 h at 32°C. Samples were then left on ice (blank bars), or
centrifuged to separate membrane-bound from free spectrin (1)
(dotted bar) before mixing with actin. The membrane pellet was
resuspended to the initial volume in the assay buffer and parallel
samples (30 ul) of the resuspended pellet and the preincubated but
not centrifuged samples were then mixed with G-actin and incu-
bated as specified in Materials and Methods.

peptide (except for a reduction in the amount of spectrin
pelleting with the membranes).

Inside-Out Vesicles Reconstituted with Purified
Spectrin Cross-link Preformed F-Actin as well as
G-Actin under Polymerizing Conditions

Under the conditions used in the experiments presented in
Figs. 2-5, the G-actin added to the assay mixture would be
expected to polymerize. Inside-out vesicles plus spectrin can
also induce increases in the viscosity of preformed F-actin (Fig,
6). The different viscosities achieved in experiments that start
with preformed F-actin and those that start with G-actin may
reflect the fact that the viscous actin-containing solutions are
only partially thixotropic, that is, the final viscosity is not
completely recovered after the solution is subjected to mechan-
ical disruption and reincubated (Fig. 6, triangles). It should be
remembered that the assay requires us to vortex and pipette,
and thus disrupt (8)* the preformed F-actin to place it in the
micropipettes used t0 measure viscosity.

* Taylor, D. L., J. Reidler, J. A. Spudich, and L. Stryer. The detection
and measurement of actin assembly by fluorescence energy transfer.
Manuscript submitted for publication.
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FIGURE 4 (a) Comparison of the increases in viscosity of actin
induced by spectrin-actin-depleted inside-out vesicles ({OVs) in the
presence (@) or absence (O) of 5 ug/ml purified spectrin dimer with
the increases in viscosity of actin induced by ankyrin-band 4.1-
depleted inside-out vesicles in the presence (&) or absence (A) of
5 ug/ml purified spectrin dimer: effect of varying the inside-out
vesicle concentration. Increasing concentrations of sodium hydrox-
ide-stripped vesicles had very little effect on the viscosity of actin in
the presence or absence of spectrin (not shown). (b) Influence of
increasing concentrations of purified spectrin dimer on increases in
viscosity of actin induced by (@) spectrin-actin-depleted inside-out
vesicles, (&) ankyrin-band 4.1-depleted inside-out vesicles, (ll) so-
dium hydroxide-stripped inside-out vesicles, or (O) no membranes.
Rabbit muscle G-actin (final concentration 0.8 mg/ml) was incu-
bated under polymerizing conditions with equivalent volumes of
inside-out vesicles, ankyrin-band 4.1-depleted inside-out vesicles,
or sodium hydroxide-stripped inside-out vesicles (final concentra-
tions of 113, 102, and 33 ug/ml, respectively) in the presence of the
indicated concentrations of purified spectrin dimer.
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FIGURe 5 Effect of increasing concentrations of the 72,000-daiton
polypeptide on the increases in viscosity of actin induced by spec-
trin-actin-depleted inside-out vesicles in the presence of purified
spectrin dimer. (@) 72,000-dalton polypeptide, inside-out vesicles,
spectrin, and actin. (O) 72,000-dalton polypeptide, inside-out vesi-
cles, and actin. (0) 72,000-dalton polypeptide, spectrin and actin.
(A) 72,000-dalton polypeptide and actin. The 72,000-dalton poly-
peptide was prepared by chymotryptic digestion of spectrin-actin-
depleted inside-out vesicles and purified by ion-exchange chroma-
tography over DEAE cellulose (2). Components were added to the
assay mixture in the following order at the indicated final concen-
trations: inside-out vesicles (100 ug/mi), 72,000-dalton polypeptide
(see figure), spectrin (5 ug/ml), G-actin (0.8 mg/ml), and incubated
as specified in Materials and Methods.
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Effect of Spectrin on Actin Binding
to Membranes

The increases in viscosity of actin induced by inside-out
vesicles reconstituted with spectrin are paralleled by an increase
in the amount of actin bound to the inside-out vesicles in the
presence of spectrin (Fig. 7). Although some actin pellets with
the inside-out vesicles even in the absence of added spectrin
(compare to Fig. 1, lane b and to Fig. 34, lane a), the inside-
out vesicle concentration used here (200 pg/ml) does not induce
detectable increases in the viscosity of actin in the absence of
added spectrin (see Fig. 2). The presence of spectrin has no
effect on the amounts of actin pelleting with right-side-out
ghost membranes (Fig. 7). However, some of the exogenous G-
actin, but not preformed F-actin, which is incubated with the
ghosts under conditions that promote actin polymerization
appears to pellet with the ghosts (compare Fig. 7q and b, and
see reference 26). This is consistent with previous reports that
indicate that G-actin polymerizes from preexisting seeds within
ghosts (10, 11).

Effect of Temperature on the Increases in
Viscosity of Inside-Out Vesicles +
Spectrin + Actin

The increases in viscosity of actin induced by inside-out
vesicles reconstituted with purified spectrin dimer are not

observed if samples are incubated at 0°C (Fig. 8a and b). This
result may explain why Cohen and Branton (11) did not
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FIGURE 6 Increases in viscosity of actin with time induced by
spectrin-actin-depleted inside-out vesicles reconstituted with puri-
fied spectrin dimer. (@) Actin, inside-out vesicles, and spectrin. (O)
“Actin alone. (A) Actin, inside-out vesicles, and spectrin preincu-
bated for 90 min, 32°C in a test tube, vortexed, and then incubated
for 90 min in the micropipettes before measuring the viscosity. (A)
Actin alone treated similarly. Rabbit muscle (a) G-actin or (b) F-
actin (polymerized in 0.1 M KCl, 2.0 mM MgCl,, 30 min, 32°C) was
mixed with inside-out vesicles and spectrin and incubated under
polymerizing conditions as described in Materials and Methods.
Additional MgCl; was added to the samples containing G-actin so
that the final [MgClz] would be equivalent to those containing F-
actin (~0.2 mM). Final concentrations of the actin, inside-out vesi-
cles, and spectrin were 0.8 mg/ml, 54 ug/ml, and 5 pg/ml, respec-
tively. Samples were incubated in the micropipettes at 32°C for the
indicated times before the viscosities were measured.
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FIGURE 7 Effect of purified spectrin dimer on actin pelleting with
erythrocyte membranes (ghosts) or spectrin-actin depleted inside-
outvesicles (/{OVs). Rabbit muscle (a) G-actinor (b) F-actin (polym-
erized as described in Fig. 4) was mixed with equivalent volumes of
ghosts or inside-out vesicles in the presence (+S5) or absence (—S)
of spectrin, under polymerizing conditions as described in Materials
and Methods. Final concentrations of actin, ghosts, inside-out ves-
icles, and spectrin were 200 ug/ml, 230 pg/ml, 200 pg/ml, and 30
ug/ml, respectively. Immediately after mixing, samples were incu-
bated and centrifuged as described in the accompanying paper (26).
The supernates were discarded and equivalent volumes of the
resuspended pellets were electrophoresed on 5% SDS polyacryl-
amide tube gels (15).

initially observe significant spectrin-enhanced reassociation of
G-actin with inside-out vesicles at 0°C. The lack of inside-out
vesicle-spectrin-actin cross-linking at 0°C is not caused by the
inability of the spectrin dimers to associate to form tetramers
at 0°C (35, 47) because similar results are obtained for inside-
out vesicles reconstituted with purified spectrin tetramer in-
stead of spectrin dimer (Fig. 8 c and ). Because 0°C incubation
does not inhibit actin cross-linking by spectrin tetramer plus
band 4.1 in the absence of membranes (18, 19, 48)> ° we
considered the possibility that a temperature-sensitive interac-
tion of spectrin with its high-affinity membrane attachment
site, ankyrin, might influence the interaction of spectrin with
actin. We tested this idea in a preliminary fashion by looking
at the effect of purified ankyrin on interactions between spec-
trin and actin in the absence of membranes. Indeed, at 0°C,
purified ankyrin inhibits the increases in viscosity induced by

® Under approximately physiological conditions (50 mM KCl, pH 7.0,
[Ca**]free = 107% M), low concentrations (<0.2 mg/ml) of purified
human spectrin tetramer are not active in cross-linking actin unless
band 4.1 is also present (18, 19). However, at pH 8.0 in the presence of
0.2 mM CaCl; and 2 mM MgCl,, purified sheep spectrin tetramer has
been reported to be active in cross-linking actin in the absence of band
4.1 (6).
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FIGURE 8 Inhibition at 0°C of increases in viscosity of actin induced
by spectrin-actin-depleted inside-out vesicles (/{OVs) reconstituted
with a and b) purified spectrin dimer or (¢ and d) purified spectrin
tetramer. Rabbit muscle {(a and c) G-actin or (b and d) F-actin
(polymerized as in Fig. 4) was mixed with inside-out vesicles in the
presence of spectrin dimer or tetramer as described in Materials and
Methods, at final concentrations of 0.8 mg/ml actin, 75 ug/ml inside-
out vesicles, and 30 pg/ml spectrin dimer or tetramer. Samples were
incubated under ionic conditions favoring polymerization (blank
bars) for 4 h at 0°C or (dotted bars) for 4 h at 32°C before the
viscosities were measured.

spectrin tetramer plus band 4.1 (Fig. 9a). In contrast, at 32°C,
ankyrin markedly enhances the increases in viscosity induced
by spectrin tetramer plus band 4.1 (Fig. 95).

DISCUSSION

Our results show that the ability of inside-out vesicles to cross-
link and increase the viscosity of actin preparations is depend-
ent on the specific reassociation of spectrin with the membrane.
We conclude that F-actin can attach to the erythrocyte mem-
brane via an interaction with spectrin. This conclusion extends
previous observations of spectrin-actin interactions in solution
(6, 18, 19, 48)” and agrees with recent direct measurements of
actin binding to membranes using radiolabeled F-actin (12).

Actin Associates with Membrane-
bound Spectrin

In all of our experiments the increases in viscosity of actin-
containing solutions are attributable to spectrin (either spectrin
heterodimers or tetramers) bound to the inside-out vesicles.
Conditions known to reduce spectrin reassociation with the
membrane inhibit the increases in viscosity; conditions that
maximize specific spectrin binding maximize the increases in
viscosity. Although it is known that, in the absence of mem-
branes, spectrin alone or in the presence of band 4.1 can cross-
link actin, such cross-linking requires spectrin tetramer and
requires spectrin concentrations higher than those used in our

assays.” It is unlikely that in our experiments membranes
simply provide a source of soluble band 4.1. Band 4.1 does not
elute from the membrane under our conditions of ionic strength
and pH (40, 41, 45). Furthermore, the maximal amount of
band 4.1 that could conceivably be eluted from the concentra-
tions of inside-out vesicles used in our assays is <5 pg/ml. This
amount of band 4.1 has no effect on the actin cross-linking
activity of low concentrations of spectrin in the absence of
membranes (Fig. 9 and see references 18 and 19).

Further evidence that the role of the inside-out vesicles is
not simply to furnish band 4.1 for spectrin-band 4.1-actin cross-
linking in solution is the fact that the 72,000-dalton polypeptide
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FIGURE 9 Effect of purified ankyrin (2.1) on the increases in viscos-
ity of actin at (a) 0°C or (b) 32°C induced by purified spectrin
tetramer plus purified band 4.1. Ankyrin and band 4.1 were purified
as previously described (21, 45). Rabbit muscie G-actin was used at
a final concentration of 0.8 mg/ml, spectrin tetramer at (a} 30 ug/ml
or (b) 50 ug/ml, band 4.1 at 8 ug/ml, and ankyrin at 20 pg/ml.
Components were added to the assay mixture in the following
order: spectrin, band 4.1, ankyrin, actin. Samples were drawn up
into the micropipettes immediately after all components were
added to the assay mixture, and incubated under ionic conditions
favoring polymerization at (a) 0°C or (b) 32°C for 4 h before the
viscosities were measured. Ankyrin also enhances actin cross-linking
by spectrin dimer plus band 4.1 at 32°C (not shown), a temperature
which favors dimer to tetramer conversion (47).
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does not inhibit the increases in viscosity observed at 32°C
when spectrin, band 4.1, and actin are mixed in appropriate
concentrations in the absence of membranes (not shown).
However, it is possible that interactions of spectrin with band
4.1 in situ on the membrane may enhance the spectrin-mediated
interaction of actin with the cytoplasmic surface of the mem-
brane. Our data do not directly address this question because
we were not able to selectively extract all of the band 4.1 from
the membrane without also removing some of the ankyrin (see
Fig. 1, lane c).

Does Actin Interact with Components Other
Than Spectrin on the Cytoplasmic Surface of
the Membrane?

In contrast to the increases in viscosity of actin induced by
low concentrations of inside-out vesicles reconstituted with
purified spectrin, comparable concentrations of inside-out ves-
icles alone have relatively little effect on the viscosity of actin.
The increases in viscosity of actin observed at very high con-
centrations of inside-out vesicles in the absence of added
spectrin (Fig. 2, inset) may reflect incomplete extraction of the
endogenous spectrin from the membrane (see Fig. 1, lane b),
or perhaps a lower affinity interaction of actin with a nonspec-
trin component (e.g., band 4.1) (12). Under conditions where
inside-out vesicles alone have no effect on the viscosity of the
actin, some actin does pellet with the spectrin-actin-depleted
inside-out vesicles, even in the absence of added spectrin (Fig.
7, and reference 12). However, it is difficult to evaluate F-actin
binding in the absence of independent measures of polymeri-
zation and filament length. For example, the number of actin
filaments associated with the membrane could change (as
reflected in differences in viscosity), with no corresponding
change in the absolute amount of actin pelleting with the
vesicles.

Mode of Attachment of Actin to the Inside-Out
Vesicles: Lateral vs. End-on Association

An actin oligomer or filament could form either end-on or
lateral attachments to components on the surface of an inside-
out vesicle. Assuming that spectrin does not bind equally to
both the sides and ends of actin filaments, the following
considerations lead us to favor lateral attachments for actin-
spectrin-inside-out vesicle interactions. First, because the two
ends of a single actin filament are not identical (31), both ends
cannot bind with the same specificity. On the other hand, actin
filaments could associate laterally with identical components
on two or more vesicles, thus linking them to one another.
Second, if end-on attachment of actin to the inside-out vesicles
occurred, then as the number of sites available for end-on
attachment increased with increasing inside-out vesicle and
spectrin concentration, the length of the actin filaments at-
tached to the inside-out vesicles would become shorter and
shorter. Shortening of filaments would probably tend to de-
crease, not increase, the viscosity of actin as the inside-out
vesicle concentration was increased. Third, electron microscope
images of actin-spectrin-band 4.1 interactions show that spec-
trin associates laterally rather than at the ends of actin filaments
(13, 48): actin filaments are bridged by spectrin to neighboring
filaments along the entire length of the actin filaments.

A combination of end-on attachment of actin filaments to a
component on one inside-out vesicle and lateral associations
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with a different component on another inside-out vesicle could
also lead to the increases in viscosity and gelation observed.
This may account for actin binding to low concentrations of
inside-out vesicles in the absence of spectrin as well as spectrin-
stimulated increases in actin binding (this paper and see ref-
erence 12).

Interaction of Actin with the Cytoplasmic
Surface of the Erythrocyte Membrane In Vivo

It is important to note that we have no independent criteria
for assessing whether the actin-spectrin-membrane associations
we observe reconstitute the native cytoskeletal spectrin-actin
network. Some indication of the complex interrelations that
may exist among cytoskeletal components in the erythrocyte is
provided by our observations of temperature effects on actin-
membrane interactions. Inside-out vesicles reconstituted with
purified spectrin do not cross-link actin at 0°C and, in the
absence of membranes, purified ankyrin inhibits spectrin tet-
ramer-band 4.1-actin cross-linking at 0°C and enhances it at
32°C (Figs. 8 and 9). This may be because of an ankyrin-
induced temperature-dependent conformational change in the
spectrin (or in a spectrin-band 4.1 complex) or, alternatively,
it may be because of a temperature-dependent formation of
additional cross-links between ankyrin, actin, spectrin, and/or
band 4.1.

Application of Falling Ball Viscometry to the
Study of Cytoskeleton-Membrane Interactions

The excellent agreement between our results using visco-
metric assays and a recent study using direct binding measure-
ments (12) is evidence that the falling ball viscometer can
provide a valid indication of how membranes and actin may
interact. But, while actin cross-linking by membranes requires
actin to be bound to the membrane, actin binding to the
membrane may not necessarily result in cross-linking of actin
by membranes. The technique of low-shear viscometry may be
particularly sensitive to associations of actin with membranes
which lead to extensive cross-linking and gelation of actin
filaments but may be insensitive to other modes of association.

Because low-shear viscometry is rapidly and easily per-
formed, this assay in combination with selective stripping
techniques could be useful in the preliminary identification of
actin-binding components of intracellular organelles such as
endocytic vesicles and secretory vesicles, as well as inverted
vesicles from the plasma membrane itself. We have recently
applied this technique to study actin-binding components in
membranes from the ameboid stage of Dictyostelium discoideum
(26).
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