May 20th, 12:30 PM

Evaluation of Antibiotic Properties of Diarylhydrazones, Diaryl Schiff-bases and Their Precursors

William Horton
University of Massachusetts Boston, william.horton001@umb.edu

Kristina D'Amico
University of Massachusetts Boston

Stephanie Davis
University of Massachusetts Boston

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat

Part of the Bacterial Infections and Mycoses Commons, Chemical and Pharmacologic Phenomena Commons, Organic Chemistry Commons, and the Translational Medical Research Commons

http://escholarship.umassmed.edu/cts_retreat/2014/posters/48

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
William Horton, Kristina D'Amico, Stephanie Davis, Christian Schafer, Gregory Beck, and Bela Torok

Comments
Abstract of poster presented at the 2014 UMass Center for Clinical and Translational Science Research Retreat, held on May 20, 2014 at the University of Massachusetts Medical School, Worcester, Mass.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This is available at eScholarship@UMMS: http://escholarship.umassmed.edu/cts_retreat/2014/posters/48
Evaluation of Antibiotic Properties of Diarylhydrazones, Diaryl Schiff-bases and Their Precursors

William Horton¹, Kristina D'Amico¹, Stephanie Davis¹, Christian Schäfer¹, Gregory Beck², Béla Török¹,³

¹Department of Chemistry and ²Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston MA 02125; ³University of Massachusetts Center for Clinical and Translational Science

e-mail: william.horton001@umb.edu

Parallel with the advancements in medical techniques and treatments, the microorganisms that we are constantly battling against are also evolving. Bacterial evolution is leading to an increasing number of antibiotic resistant strains of bacteria. As the bacteria evolve, the antibiotics that are currently in use to combat bacterial diseases are becoming ineffective. FDA approval of new antibacterial agents decreased drastically over the past decade. Thus the design and synthesis of new classes of antibacterial agents, possibly with structures unrelated to the current antibiotics, as the next generation antibacterial agents is highly desirable.

In the current work the antimicrobial effect of an extended library of about 80 diarylhydrazones, related diaryl Schiff-bases and their precursor compounds, aryl-carbonyl compounds and phenylhydrazines have been evaluated against Escherichia coli, Micrococcus luteus and Staphylococcus aureus strains of bacteria. All compounds have been properly purified by recrystallization or column chromatography. The products were characterized by mass spectrometry and ¹H, ¹³C and, when applicable, ¹⁹F NMR spectroscopy.

While the diarylhydrazones and diaryl Schiff-bases were chosen due to their general biological activity, the carbonyl compounds and phenylhydrazines, that are their precursor compounds, were screened as possible metabolic products. Independent hydrolysis and mass spectrometric studies were also carried out under the generic assay conditions in order to determine the stability of the screened diarylhydrazones and Schiff-bases.

The compounds have been tested in standard cytotoxicity assays using Escherichia coli, Micrococcus luteus and Staphylococcus aureus strains. It was observed that the diarylhydrazones showed considerable activity against all three bacterial strains, while the diaryl Schiff-bases exhibited moderate to weak activity. The precursor compounds appeared to be inactive against the bacteria. The stability studies also indicated that the hydrazones as well as the Schiff-bases remained stable under the assay conditions.