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ABSTRACT

Mature af3and yb T cells arise from a common precursor population in the

thymus. Much debate has focused on the mechanism of T cell lineage choice made by

these multi-potential precursor cells. It is widely believed that the decision of these

precursor cells to commit to the yb or af3 T cell lineages is regulated primarily by a

specific instrctive signal relayed through the appropriate T cell receptor. Contrary to

this model, we present evidence for a TCR-independent lineage commitment process.

Comparison of global gene expression profiles from immature af3 and yb lineage

thymocytes identified Sox13 an HMG-box transcription factor, as a yb T cell-specific

gene. Unlike other HMG-box transcription factors such as TCFl , LEFI and SOX4, that

are critical for proper af3 T cell development Sox13 expression is restrcted to early

precursor subsets and yb lineage cells. Importantly, SOX13 appears to influence the

developmental fate of T cell precursors prior to T cell receptor expression on the cell

surface. Transgenic over-expression of Sox13 in early T cell precursors strongly inibits

af3 lineage development, in part, by inhibiting precursor cell proliferation and

concomitantly, leading to increased cell death among af3 lineage subsets. Steady-state yb

T cell numbers , however, appear unaffected. Strkingly, the DP af3 lineage cells that do

develop in Sox13 transgenic mice are imprinted with a yb- or precursor-like molecular

profie, suggesting that SOX13 plays an active role in the lineage fate decision process or

maintenance. Sox13-deficient mice, on the other hand, have selectively reduced numbers



of yb thymocytes, indicating that SOX13 is essential for proper development of yb T

cells. We present additional data demonstrating that SOX13 is a canonical WNT

signaling antagonist modulating TCFl activity, raising a strong possibility that WNT

signals, and their modulators , are at the nexus of yb versus af3 T cell lineage

commtment.
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CHATER I

INTRODUCTION

At some point in its lifetime, a stem cell is directed along a likely irreversible path

that ends with its differentiation into a matue, fuctionally-specific cell tye. As there

are over 200 different cell tyes in mice ( and humans), the mechanisms that regulate

lineage choice are of paramount importance. The immune system, itself, contains an

extraordinarily diverse repertoire of cell tyes that contrbute unque protective fuctions.

While the processes that account for lineage fate decisions in the lymphoid system

continue to be intensely studied, many aspects remain elusive. Therefore, identifying the

pertinent genes, how their inherent fuctions are responsible for differentiation 

lymphoid precursor cells, and how they participate in a cascade of signals that imprints

specific lineage fates upon daughter cells is central to our understanding of the immune

system. In addition, elucidating the determinants of lineage choice goes much farher

than revealing the fudamental natue of immune system formation, as these factors are

undoubtedly linked to regulation of cell proliferation, and aberrant expression of lineage

determinng genes has been lined to tumorigenesis (1).

Murne T cells arise from plurpotent hematopoietic stem cells (HSC) that reside

in the fetal liver and adult bone marrow (2). HSCs subsequently differentiate through

discrete intermediates that have increasingly restrcted lineage potentials. Along the

differentiation pathway, the precursor cells are directed through numerous lineage

choices via intrsic and extrinsic cues. Eventually, most precursor cells destined for the

T cell lineage migrate to the thymus where additional cell lineage choices are made. 



particular, this thesis addresses how bi-potent thymic T cell precursors choose between

two distinct cell fates to become af3 or yb lineage T cells. These two T cell subsets arise

at distinct stages of ontogeny, preferentially localize to distinct tissues, and perform

unique, as well as overlapping, immune fuctions (3 , 4).

T cell development

Lymphoid precursor cells that seed the thymus remain multi-potent, capable of

generating not only af3 and yb T cells, but also NK cells, NK T cells, some B cells, and a

subset of thymic dendrtic cells (5, 6). Cell surface expression of lineage markers is low

or absent on these precursor cells (Linl Routinely, these precursor cells are termed

trple negative (TN), since they lack high expression of CD4, CD8 , and CD3 on their cell

surface, markers that are indicative of more matue cells of the af3 and yb T cell lineages

, 8). To become matue af3 and yb T cells, the lymphoid precursor cells that have

immgrated to the thymus transit though several , partially overlapping, developmental

intermediates. These intermediates are identified by differential cell surface expression of

specific markers, most notably CD44, CD25 , and CD117 (c-kit) (9-11). Additional cell

surface antigens are being characterized to fuher differentiate even more specific

thymocyte precursor subsets with increasingly restrcted developmental potentials. 

addition, it should be noted that although the delineation of developmental intermediates

in the lymphoid, and specifically T cell, lineage is exquisite compared to that of other cell

tyes, the categorization of the progenitor populations is not absolute, and markers of the
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precursor subsets are constantly updated. Hence, a basic, but widely accepted model of T

cell development is described (Figue I- I).

It is generally accepted that the earliest T cell progenitor population in the thymus

is characterized by cell surface expression of CD44 and absence of CD25 on TN cells

(TN1). This population is regarded as the most multi-potent of the thymc precursors.

TN1 precursor cells expressing CDl17, however, are thought to be more restricted to the

T cell lineage, and are therefore called early T lineage progenitors (ETPs) (11 , 12).

Upregulation of CD25 expression on these cells indicates fuher, but not absolute

commtment to the T cell lineage (TN2). This TN2 precursor population can give rise to

both af3 and yb T cells. However, the exact stage at which T cells are diverted to either

the af3 or yb lineage remains unown. While it has been shown that the TN2 subset is

heterogeneous in lineage potential based on IL-7Ra expression (13), others contend that

lineage diversion of these cell tyes does not occur until the TN3 stage when both the af3

and putative yb selection processes occur. The TN3 stage is marked by the subsequent

loss of both CD44 and CD 117 expression and is also the point at which precursors are

fully committed to the T cell lineage. Rearangement and expression of the y, b, and f3 T

cell receptor (TCR) chains occurs as cells matue from the TN2 to the TN3 stage (14, 15).

A positive selection process for cells expressing the yb TCR has recently been suggested

(16, 17), but the timing and specifics of this process are stil unclear. It is known

however, that successful rearrangement and expression of the TCRf3 chain complexed

with a surogate a chain, termed the preTCR, is required for the surival, proliferation

and fuher differentiation of af3 lineage T cells (18, 19). In addition, this s lection
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Figue I-
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Figure 1-1. Schematic of thymocyte development. Thymocyte precursor cells that are

CD4-CD8-CD3- (TN) transit through several intermediares identified by differential

expression of cell surface antigens. TN1: CD44+CD25" (and c-kit, identifies ETPs),

TN2: CD44+CD25 + c-kit , TN3: CD44-CD25+ c-kif, and TN4: CD44-CD25"c-kif. TCR

selection processes occur at TN3. When yb T lineage cells diverge from this pathway is

not known. af3 lineage T cells continue through a CD4 CD8+ DP stage before down-

regulating expression of one co-receptor to become matue SP af3 lineage T cells.
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process, termed f3-selection, is required to initiate the rearrangement and expression of

the TCR a chain. af3 T cells quickly transit through the TN4 stage, characterized by the

loss ofCD25 expression, as well as an immatue CD8+ single positive (ISP) stage, and on

to become immature af3 lineage cells that express both TCR co-receptors, CD4 and CD8

and are thus called double positive (DP) cells. According to one report, cells categorized

withi the TN4 subset stil have a limited ability to stil divert toward the yb T cell

lineage (20). However, by the DP stage, this cell population is absolutely commtted to

generating af3 lineage T cells. After further TCR selection processes and cell fate

choices, DP cells down-regulate expression of one of the TCR co-receptors, either CD4

or CD8 , to become more matue single positive (SP) cells that exit the thymus to perform

helper (CD4l or cytotoxic (CD8l fuctions. In contrast to these known

developmental check-points and intermediates of the af3 lineage, additional yb T cell-

specific intermediates have yet to be identified, and the only known cell surface marker

for this lineage is the yb TCR itself.

Distinct properties of af3 and 

y(j 

T cells

Although af3 and yb T cells arise from a common progenitor population in the

thymus, one critical distinguishing propert of these two cell lineages is their rate of cell

division: intrathymc af3 T cell development is accompaned by extensive cell

expansion-up to 10 cell divisions post-f3-selection (21), whereas yb lineage cells

undergo only one to three cell divisions prior to exiting the thymus (22). Thus, the

proliferative burst that occurs after f3-selection, appears to be reserved for af3 lineage T
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cell precursors. This asymetrical cell expansion propert, at least in par, leads to the

predomiance of af3 T cells over yb T cells in the thymus and peripheral lymphoid

organs. However, yb T cells are abundant in mucosal epithelia, equaling or surassing

the size of the af3 T cell pool in these tissues in many vertebrates (4).

Another important difference in af3 and yb T cell generation is when the majority

of development occurs durng ontogeny. In general , yb T cells develop at earlier stages

than af3 T cells. It is estimated that ETPs migrate to the thymus between embryonic days

10 to 11 (ElO- 11) (23, 24), and initially develop exclusively into yb lineage T cells.

Significant af3 T cell development does not occur until several days later (25). This

skewing of the thymocyte repertoire suggests the environment in the fetal and adult

thymus may also be dramatically different, or that the precursors that seed the thymus

have signficantly different developmental potential durg the early waves of thymc

development to direct differentiation of subtyes of yb T cells. For example, in adult

mice, it has been shown that normal yb T cell development requires the presence of wild-

tye af3 lineage DP cells for proper development (26). This cross-talk between the two

lineages occurs via lymphotoxin mediated signals (27). However, in the early stages of

thymc yb development, DP cells are not yet detected, and yet these cells develop

normally. One explanation proposed for this observation suggests that as af3 lineage

cells eventually expand and dominate the thymus, yb interactions with stromal cells that

may also convey this essential lymphotoxin-mediated signal are overwhelmed and

disrupted, makg developing yb T cells reliant upon lymphotoxin-producing DP cells.

However, in TCRfJI. mice in which the yb/stromal cell ratio is increased relative to a



wild-tye adult thymus, yb development remains abnormal due to the lack of appropriate

lymphotoxin-mediated signals. Hence, yb T cell subsets that arise at different stages of

ontogeny may differ in their thymic requirements. Correspondingly, it has been shown

that distinct tyes of yb T cells develop in the fetal vs. adult thymus. For instance, early

fetal T cell development is domiated by the production of dendritic epidermal yb T cells

(DETCs) (28). DETC progenitors require unque properties within the fetal thymus as

the development ofthese cells canot be supported by an adult thymus (29).

Upon reaching matuty, af3 and yb T cells emigrate from the thymus to reside in

secondar locations. The majority of af3 lineage T cells home to secondar lymphoid

organs such as the lymph nodes and spleen, as well as circulate through the blood.

Although some yb T cells also inhabit these secondar lymphoid niches, they generally

make up only five to ten percent of the total T cells in these organs. Rather, many yb T

cells localize to mucosal epithelia and the ski to perform specialized fuctions (4). af3 T

cells participate in the adaptive immune response to pathogen by recognzing peptide

ligand in the context of major histocompatibility complex (MHC) 
presented by antigen

presenting cells. In contrast, yb T cells are early responders, and generally considered

part of inate immunty, and although few yb T cellligands have been identified, they are

thought to sense physiological distubances and respond to "stress-induced" self-ligands

in the context of non-classical MHC molecules (30-32). Thus, a role for yb T cells in

wound healing and tumor sureilance has been suggested, but yb T cells also appear to

playa role in protective immunty against certain infections (33-37).



Regulators ofT cell lineage choice

Three major cell fate decisions are made before matue T cells exit the thymus:

the initial decision to become a T cell, whether or not to enter the yb or af3 lineage, and

once determinedly an af3 T cell , whether to adopt the T helper or cytotoxic T cell fate.

Within the T cell lineage, two "master regulators" of these cell fate processes have been

described. Notch1 , a transmembrane signaling receptor that plays important roles 

lineage specification in a plethora of invertebrate and vertebrate cell tyes, also plays a

decisive role in mouse B vs. T cell lineage commitment. Enforced expression of

constitutively active Notchl in early hematopoietic precursors leads to extra-thymc

development of immatue T cells, specifically in the bone marrow, at the expense of B

cell development (38). Furermore, in the absence of Notch1 signals, HSCs fail to

produce matue T cells, and immatue B cells inappropriately develop in the thymus (39).

These data persuasively imply that Notch1 signaling is both necessary and sufficient for

T cell specification from a precursor population capable of giving rise to both the T and B

cell lineages.

second transcription factor, Th-POK, has recently been described as the

ultimate regulator of CD4 vs. CD8 SP T cell specification within the af3 lineage.

Miroring the observations reported for Notchl signaling deficiency and over-expression

two separate groups nearly simultaneously identified Th-POK (also known as, cKrox) as

a master regulator of the CD4+ T helper cell lineage. Over-expression of this gene results

in the re-direction of MHCI restrcted cells to the CD4+ T cell lineage (40, 41).

Conversely, a spontaneous mouse mutant with a point mutation in Th-POK showed



aberrant conversion of MHCII restrcted af3 T cells to the CD8+ lineage (40, 42). The

factor(s) that influences Th-POK expression, however, is unown, although it has been

suggested that expression is not stochastic, but rather directed by TCR signals durng

positive selection.

Our knowledge of af3 vs. yb T cell lineage choice, however, is ambiguous at best.

No single gene has yet been identified that is capable of converting precursors

exclusively to the yb or af3 lineage. Thus, several hypotheses have been bandied about as

to how these two cell tyes diverge from a common precursor population even before

identification of the TCRb genes, and though these models have incrementally gathered

circumstantial support, definitive resolution of this phenomenon remains unsettled. From

the beginnng, two basic schools of thought on ths subject collided, one that favored

TCR-centric models and others whom put forth TCR-independent models of lineage

commtment. These two basic models of lineage commitment have evolved over time as

knowledge of about these two T cell subsets has increased. One early model suggested

that lineage determation occured prior to TCR gene rearangement and that lineage

determination would direct which TCR genes would be rearanged. However, early

studies identified some rearranged y transcripts that were found in fuctional af3 T cell

lines and T cell leukemias, though non-fuctional in their rearangements, arguing

against this early stochastic model of lineage commtment. Several years later, it was

noted that f3 and y TCR genes rearranged their loci signficantly earlier than the TCRa

chain. This and several other pieces of evidence led to the postulation of a step-wise

rearangement model. More specifically, since evidence suggested that yb T cells did not



usually express full-length a or f3 mRA (though this is not absolute), af3 T cells

invariably have rearranged y genes (including some in-frame rearrangments), and that 

and y chains rearrange simultaneously, Allson and Lanier suggested that the y TCR chain

would complete rearrangement before the f3 TCR chain as it required only V-

recombination in contrast to the V-DJ recombination necessary for full f3 chain

rearangment (43). At about the same time, evidence supporting an ordered gene

rearrangement model or stochastic model lineage choice (depending on one

interpretation) suraced. The identification of the TCRb chain was solidified and found

embedded within the TCRa locus (44). Excision products of Va-Ja recombination

therefore contained b genes. Although it was initially thought that these circular DNA

excision products contained only unearranged b genes (45), it was later shown that some

of these excision circles contained fuctionally rearanged b chains (46). Though this did

not confirm co-presence of fuctionally rearranged y in these cells, this data added fuel to

the on-going debate. Concurently, an additional instrctive or competitive model

suggested that positive selection through either the yb or af3-specific preTCR dictated

lineage choice (47). This model could explain why fuctional rearangements of TCR

genes of the opposite lineage are sometimes found within a T cells as this model requires

expression of the appropriate TCR on a pre-commtted cell, but does not rule out random

rearrangement of other TCR genes.

It was apparent that rearrangement and expression of TCR genes is required for

the development and survival of T cells, but the role of the TCR in lineage determation

was stil controversial. Though evidence suggested that rearangement and expression of
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af3 or yb TCR may inibit other lineage development, fuher analysis of TCR transgenic

and knock-out models suggested that, perhaps, TCR tye is not the ultimate regulator of

lineage fate. For example, transgenic expression of rearanged af3 or yb TCRs does not

appear to inhibit development of the opposite lineage (48). Further, additional data

suggested that a yb TCR transgene could actually support af3 T cell development in the

absence of fuctional TCRf3 (49, 50).

Though much of this data is contradictory or multiple interpretations are

plausible, relatively recent reports that have gained signficant attention propose a

variation on the instrctive mechanism suggesting that TCR isotye is not the ultimate

lineage director. Rather, the signal strength model suggests that it is the quantity of

signal rather than the TCR isotye that regulates cell specification (51 , 52). This model

was proposed based on observations from yb TCR transgenic mouse models in which the

TCR signal strength is manpulated by regulating the amount of cell surace yb TCR, the

availability of cognate ligand, or the signaling response (51 , 52). In this TCR-limited

model system, preferential development of af3 lineage cells at the expense of yb lineage T

cells was observed when yb TCR signal strength was lower, and vice versa. However

the qualitative or quantitative differences in TCR signaling that the instrctive and signal

strengt models predict would need to imprit the receiving cells with lineage-specific

molecular programs. While intriguing, supporting evidence that the TCR isotye or

strength of signal promotes expression of af3 or yb-specific genes is curently lacking.

The experiments described above and additional observations suggesting that the

TCR is the central regulator of af3 and yb lineage choice do not preclude the possibility
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that precursor cells are pre-committed to a T cell lineage and that appropriate TCR

signals fuction as a necessary check-point for differentiation to a programmed lineage

fate. Thus, a contrar model, the stochastic model of lineage commtment, proposes that

T cell lineage fate is determned prior to, and independent of, TCR signaling (48, 53).

Although the importance of TCR signaling in determing lineage choice is de-

emphasized in this model, it is not ignored, as it is well known, at least for the af3 T cell

lineage, that TCR signaling is necessar for the surival, proliferation, and fuher

differentiation of precursor cells to matuty (18, 19). Rather, this model proposes that

the precursor population capable of giving rise to af3 and yb lineage T cells is

heterogeneous in its lineage potential, and that lineage decisions are made before TCR

signaling occurs.

The thee major predictions of the stochastic model of lineage commitment are

supported by several observations. First, this model predicts a heterogeneous precursor

population. It has previously been shown that the TN2 precursor subset, permssible to

both af3 and yb T cell lineage development, is heterogeneous in lineage potential based

on IL- 7Ra expression, such that the IL-7Rahi TN2 cells preferentially give rise to yb

lineage T cells, and IL- 7Raneg-lo cells are developmentally biased toward the af3 T cell

lineage (13). Second, the stochastic model predicts that lineage commtment occurs

independently of TCR isotye. While several pieces of evidence support this prediction

one of the most strikig examples is that af3 lineage DP cells develop in Tcrpl- mice and

are dependent upon yb TCR signals (22). In addition, af3 TCR transgenic mice are

known to develop af3 TCR expressing CD4-CD8- cells with some phenotyic and



fuctional characteristics ofyb T cells (54). Although this evidence is less concrete, only

because the only absolute identifier of the yb T cell lineage is the yb TCR itself

cumulatively, these data suggest that at least the tye of TCR does not restrct lineage

specification. Lastly, this TCR-independent model would necessitate lineage-restricted

gene expression patterns. Until recently, very little was known about the molecular

differences between these two T cell lineages. Recently, comparison of gene expression

profies from af3 and yb lineage T cells fulfilled this fmal prediction of the stochastic

model, a yb-lineage restrcted gene expression pattern (26). These data led to the

identification of several yb-biased genes and at least one new signaling pathway

necessar for normal yb T cell development in adult mice, but unfortately, it lent no

insight as to how yb T cell lineage choice occured, paricularly because no known

lineage-specific markers have been identified prior to cell surface TCR expression. One

of the yb-biased genes identified down-stream of lymphotoxin signaling, ICER, is a

transcription factor that is also expressed in early thymocyte precursor populations, but

not in af3-lineage T cells. Interestingly, ICER appears to be expressed in most progenitor

cells suggesting that it is not a marker of a subset of pre-commtted yb T cells (27).

Although these data support a stochastic model of af3 and yb T cell lineage specification

the evidence is circumstantial rather than absolute. Hence, identification and purfication

of a lineage-determined precursor subset is required to definitively settle this on-going

debate.



Morphogen and other signaling pathways in T cell development

In lower organisms, such as in the Drosophila model system, a number of unque

signaling proteins, dubbed morpho gens, relay concentration-dependent specific cellular

signals and regulate almost every aspect of cell fate specification from the head to the tip

of the wing. In addition to the morphogen concentration gradient itself, the effects on the

cell from these signaling proteins depends on the expression level of their receptor and on

additional endogenous proteins expressed by the cell that regulate the effect of incoming

signals. It is apparent that these signals are exquisitely interrelated and interdependent, as

well as enormously important for proper development (55). number of these

morpho gens have mammalian signaling protein counterpars, many of which are

expressed in the murine thymus and are implicated in lineage-specific developmental

regulation and perhaps lineage determnation. Following is a brief discussion about the

role of select morphogen pathways and other signaling proteins in thymocyte

development or lineage commtment.

One morphogen pathway implicated in maintainng appropriate af3 T cell

development is the Hedgehog signaling pathway. There are three mammalian secreted

Hedgehog (Hh) proteins that bind to a receptor composed of transmembrane proteins

Patched (Ptc) and Smoothened (Smo). In the absence of Hh proteins, Ptc inibits Smo

activity. In the presence of Hh signal, this inibition is relieved such that Smo may

activate members of the Gli famly of zinc finger transcription factors that subsequently

regulate, positively or negatively, the expression of target genes (56). In thymocyte

development, the three Hh proteins are expressed by different components within the
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human thymus (57), while only two have been identified in the mure fetal and adult

thymus (58). The receptor component Smo, is most highly expressed on TN2 cells and

then incrementally down-regulated durg fuer stages of differentiation (57-59).

Several different model systems have been employed to study Hh signaling in

thymocytes. At the surface, the results appeared incongrent in many aspects as one

model suggested that Hedgehog signaling inibited differentiation, whereas another

suggested that Hedgehog was necessar for af3 lineage development (58-60). These

disparate findings may be reconciled with the observation that the dose of Hh signaling is

of paramount importance at different stages of development. Strong Hh signaling may be

required in the precursor population, where, correlatively, the Hh transducer, Smo, is at

its highest expression, to maintain precursor cells in an undifferentiated state and promote

their proliferation, while lower doses of Hh signals appear to be necessar for the

differentiation of af3 lineage T cells (60). Unfortately, differential expression of Hh

signaling pathway proteins between af3 and yb T cells has not yet been studied, but it is

possible that Hh signals may differentially affect development of these two lineages.

In addition, another evolutionarly conserved signaling pathway through Notch

has been implicated in a number of lineage fate choices within the lymphoid system

including T/B specification, af3 vs. yb T cell determation, and CD4+ or CD8+ af3-

lineage fate choice (61 , 62). The influence of Notch signaling, or lack thereof, on

directing thymocyte precursors to the af3 or yb lineages is a veritable conundr. In par

some of the confusion in the literatue can be attbuted to partial redundancy in the

pathway due to the multiplicity of Notch ligands coupled with the fact that several Notch



receptors are expressed in the thymus (63). Therefore, examples presented herein wil

focus on experimental mouse model systems that limit potential redundancy issues.

Activation of the Notch signaling pathway upon ligand binding leads to cleavage

of the intracellular fragment of Notch (icNotch) and its translocation into the nucleus

where it binds to RBP-J to mediate transcription. RBP-J can interact with all four known

mammalian Notch proteins and can activate transcription of target genes. In theory,

conditional inactivation of RBP-J should inhibit signaling through each of the different

Notch receptors (64). However, a RBP-J independent signaling pathway has been

described (65). Neverteless, directed deletion of floxed Rbp- by Lck promoter drven

CRE recombinase in early thymocyte precursor development leads to early

developmental arest of the af3 T cell lineage with a signficant block at the TN3 stage of

development (66). In contrast, in the absence of Notch signals through RBP- , an

increase ' in the absolute numbers of yb T cells was observed, suggesting that Notch

signals are required early in af3 T cell development but not in yb T cell commitment or

development (66). Complementary studies using a mouse model with enforced

expression of a constitutively active form of Notch 1 support this finding. In one study,

constitutively active Notch signaling appears to promote abnormal development of yb T

cells expressing the CD8af3 heterodimer which is generally associated only with af3

lineage T cells (67). These data suggest a clear influence of differential Notch signals on

af3 and yb lineage development. However, these experiments are not without caveats, as

dissenting data has been presented. As mentioned briefly, different Notch signaling

family members may impart specific signals to recipient cells. For example, the Notch
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ligand Delta, but not Jagged, can regulate T/B differentiation (19). However Jagged

deficiency results in a reduction of fetal yb T cells while af3 lineage development appears

unaffected (68). This observation suggests more complexity in the signaling pathway,

but may reflect specific differences among Notch signaling family members to influence

af3 and yb T cell development and/or differences in fetal and adult thymic development.

Another signaling pathway, via IL- 7 /I- 7R interactions, has been implicated, not

necessarily in lineage choice, but in lineage-specific processes. IL- 7 is secreted by the

thymic stroma, and the IL-7R is dynamically expressed during T cell development (69).

This receptor is composed of two chains, the unque IL- 7Ra chain and a common y chain

(yc) that is promiscuously shared among other cytokie receptors including those ofIL-

IL- , IL- , IL- , and IL-21 (70, 7l). In the thymus though, IL-7/IL-7R interactions are

non-redundant with other signaling pathways that share yc, as it is indispensable for

normal T cell development. Correlating with the highest levels of IL- 7Ra expression

(69), loss of the IL-7/IL-7R signal primarly impacts early thymocyte precursors and yb T

cell development. In IL- 7Ra-deficient mice, the absence of signaling leads to a

significant decrease in thymic cellularity due, in part, to increased cell death among

precursor cells. This, in tu, leads to an overall decrease in the af3 T cell comparment

(72-75). yb T cells, however, are nearly, if not completely absent without IL-7/IL-

signaling (76, 77). It is proposed that this signaling pathway is absolutely required for

the expression of the TCR y locus, a prototyical marker of the yb lineage (78 , 79). Of

note, it has been implied that the effects of this signaling may be dose-dependent: low

doses of IL- 7 may benefit af3 T cell development, whereas high doses that impede the af3
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lineage may actually enhance yb T cell differentiation (80). This effect may be regulated

by the amount of cell surface expression of the IL- 7R, as different levels of receptor

expression correlate with lineage potential (13).

WNT, a mammalian homologue of the Drosophila morphogen, Wingless, also

impacts T cell development. The canonical WNT signaling pathway acts through 13-

catenin. In the absence of WNT signaling, f3-catenin is sequestered in the cytoplasm by

an inibitory complex that includes GSK3f3. This complex directs the ubiquitination and

subsequent proteolytic degradation of f3-cateni. In the presence of WNT signals, 13-

catenin is released from this inibitory complex and translocates to the nucleus where it

can bind to transcriptional co-activators of the TCF/LEF family that are otherwise bound

to the transcriptional repressor, Groucho (Figue I-2) (56).

Suggestions that WNT signaling may be involved in thymocyte development

came from the identification of T cell factor 1 (TCF 1) as a necessary factor in af3 T cell

development. In Tcfr mice, there is a signficant, but incomplete block at the ISP stage

as TCF 1 plays an important role in the differentiation, proliferation, and surival of af3

lineage cells (81 , 82). TCF1 , and fellow HMG-box transcription factor family member

Lymphoid enhancer-binding factor 1 (LEF1), play partially redundant roles in af3 T cell

development. In mice doubly deficient for these two transcription factors, af3 lineage T

cell development is blocked prior to the DP stage (83). There are as many as eight TCF1

isoforms in the thymus (84). One of the dominant isoforms, however, contains a 13-

catenin interaction domain (82). Over-expression of this isoform is capable of rescuing,

for the most par, the af3 T cell deficiency in Tcfr mice, suggesting that TCF1 is indeed
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Figure 1-2. Over-view of canonical WNT signaling pathway via p-catenin. In the

absence ofWNT, f3-catenin is sequestered in the cytoplasm by an inibitory complex that

contains, among others, GSK3f3 and Axin. This complex directs the phosphorylation

ubiquitination, and subsequent proteolytic degradation of f3-catenin. In the absence of

nuclear f3-cateni, TCF, and other transactivators, are bound to a repressor, Groucho, and

target gene expression is inibited. In the presence of a WNT glycoprotein binding to its

receptor, frzzled, Disheveled (Dsh) mediates the release of f3-cateni from the inhibitory

complex and translocation into the nucleus. Binding of f3-cateni to transcription factors

such as TCF, activates target gene transcription. Reproduced from Varas, et aI. Trends

Immunol., 2003 (56).
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acting down-stream of f3-catenin in aspects of T cell development (82). Correspondingly,

mice deficient is some of the predominant WNT glycoproteins expressed in the thymus

WNT1 and WNT4 for example, also exhibit reduced thymic cellularty, though other

WNT family members may parially compensate for a necessar role in af3 T cell

development (85). Interestingly, although TCF1 is also expressed in yb lineage T cells

there appears to be no affect on thymc y T cell development in the absence of TCF 

(86). Expression of a constitutively active form of f3-cateni appears to promote af3 T

cell differentiation even in the absence of preTCR signals (87). This differentiation

however, is not accompanied by the extensive proliferation associated with preTCR

signaling, and the DP af3 lineage T cells that do develop are more susceptible to

apoptosis (87). This suggests that the WNT and preTCR signaling pathways play distinct

roles in af3 T cell development. In addition, two similar, but independent, f3-catenin

conditional knock-out mouse models have been described. Deletion in early thymocyte

precursors under the direction of Lck promoter drven CRE resulted in reduced af3

lineage thymocytes, and normal number of yb T cells as predicted by earlier observations

(88). It should be noted, however, that in a more recent study in which f3-cateni was

conditionally deleted in bone marow stem cells, no distubance in hematopoiesis or T

cell development was observed (89). Based on a signficant amount of data, the

importnce of f3-catenin in T cell development is generally accepted. At present, the

range of signficant to absent phenotyes in these mouse models is not definitively

explicable, but may reflect the timing of the f3-catenn deficiency.



Many of the WNT molecules, of which there are almost twenty identified in mice

are differentially expressed in the fetal and adult thymus, mainly by the thymic

epithelium (85, 90). In addition, thymocytes (and the thymic epithelium) appear to

express different frizzled receptors in a developmentally regulated pattern (90). Furher

three f3-catenin-independent WN signaling pathways have been described (91).

Together, these observations imply that WNT signaling may play very specific roles at

discrete points in the development of thymocytes and that expression and usage of

different ligands and receptors may impart subtly different signals to the receiving cells.

Determing the specific roles played by each of these WNT signaling components at

particular times in T cell development is an importt task at hand.

In lower organsms, as well as in mice, many of these pathways are have been

shown to interact to impar specific cell fates upon differentiating cells. Specifically,

durng hematopoiesis, both WNT and Notch act to maintain the self-renewal capabilities

of the stem cell population. As in other cell types, it has recently been observed that

these two pathways intersect to maintain a population of undifferentiated stem cells in the

bone marow. The study found thatWN activation led to the modulation of Notch

target gene expression but that additional WNT -independent Notch pathways were

necessar to maintain the self-renewal capacity of HSCs and inibit differentiation (92).

It is possible that some overlap between these two signaling pathways involves the 
13-

cateni destabilizer protein, GSK3f3, as it has previously been presented that GSK3f3 may

also initiate the degradation of icNotch (93). Hence, in the presence of WNT signaling,

both f3-catenin and icNotch may be stabilized to promote transcriptional activation of



target genes. As both WNT and Notch are invaluable for proper thymocyte development

J -
it is likely that this or a similar interaction wil be identified during thymocyte

development. Further, down-modulation of TCFl and LEF1 expression, transcriptional

transactivators down-stream of WNT /f3-cateni activation, by IL-7/IL-7R signals has

been suggested (94). TheIL-7/I-7R signaling pathway is essential for early precursor

maintenance and yb cell development. However, f3-catenin dependent, TCF1

transcriptional promotion is not necessar for normal yb lineage differentiation. Furher

Sonic Hedgehog (Shh), at least in human thymocytes, may regulate the levels of IL-7R in

precursor populations (95). Effects on the amount ofIL-7/I-7R signaling may, in turn

differentially promote yb and af3 lineage development. Determning when and how these

signals precisely interact may iluminate the mechansm of lineage specification in

thymocyte precursor cells. These signaling pathways are impressively regulated in their

own right, but in context with additional "morphogen" signals, including those of the

fibroblast growth factors (FGF), bone morphogenetic proteins (BMP), and others that

also appear to play key roles in the thymus, an exquisite balance must be maintained to

defme T cell development. Furher studies to clarify the interactions between these

pathways during thymocyte development, and perhaps identification of lineage-restrcted

factors that may influence the outcome of "morphogen" signals may be complicated, but

are of the utmost importance.

It is, indeed, of great importce to delineate how these crucial signaling

pathways interact, but these pathways rely on cell-intrinsic genes to orchestrate the

transcriptional outcome from a plethora of extrinsic signals. Hence, the transcription
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factor pool within a cell wil dictate how specific signals are interpreted. Therefore, by

identifying lineage-specific genes that regulate signaling cascades known to influence T

cell development and lineage choice, we may be able to clarify how af3 and yb T cell

specification occurs. This thesis identifies and describes the function of a yb T cell-

specific gene that acts, in part, by modulating morphogen signaling, to influence T cell

development.
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CHATER II

IDENTIFICATION AND EXPRESSION OF SOX13

Introduction

Although a number of transcription factors have been identified as important for

the development of af3 T cells (96, 97), a comparable set of genes paramount for the

differentiation and maintenance of the yb T cell lieage is virally nonexistent. In fact

apar from the different tyes of antigen-specific TCRs expressed on the cell surface

little is known regarding the molecular distinction between these two cell tyes. One of

the central questions in understanding how these two T cell lineages arse is whether the

lineage choice is directed by distinct instrctional signals from the yb TCR or the af3

lineage-specific preTCR complex, or if the lineage fate process occurs independently of

and prior to, TCR expression and signaling. While the question of lineage choice has

raged for well over a decade, it has been difficult to unequivocally resolve this issue or to

provide irefutable evidence for the existence of yb or af3 T cell precursors before TCR

expression, as there are no definitive markers that can distinguish these lineages prior to

cell surface TCR expression and no known markers that can impose a lineage-specific

fate.

To identify potential markers of the yb T cell lineage or genes involved in the

development of this T cell subset, thorough gene expression profiing was performed to

compare immatue DP af3 lineage T cells with thymc yb T cells using Affymetrx

Microarray gene chip technology. While these two populations may not be at the same
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level of matuity, due to the lack of knowledge of yb developmental intermediates, these

are the earliest identifiable subsets unquestionably commtted to the af3 and yb T cell

fates and were so chosen. Of multiple genes that were differentially expressed between

these two populations, this thesis wil focus on the identified yb T cell-specific

transcription factor Sox13.

ry-related HMG box 13 (SOX13) is a member of the High Mobility Group

(HMG) box family of transcription factors (98). HMG transcription factors fuction by

their unque ability to bind to the minor groove of DNA, with or without DNA sequence

specificity, and induce a signficant strctual bend (99). Altered DNA architectue may

facilitate access to the DNA by diverse groups of transcription regulators and DNA

repair/recombination machinery. The HMG-box transcription factors are broadly

classified into two subfamilies UBF/HG and TCF/SOX, which have been

evolutionarly conserved through yeast, plants, insects, and vertebrates (100). The HMG-

box transcription factor superfamily contains a number of members that are thought to

play indispensable roles in the development and differentiation of numerous cell tyes

and tissues (101). Specifically, in T cell development, several TCF/SOX family

members have been shown to play important roles in the development and differentiation

of af3 lineage T cells. TCF1 , LEF1 , and SOX4 are essential for proper proliferation

surival, and differentiation of af3 T cells (81- , 102). More recently, TOX has also

been implicated in the positive selection of more matue af3 lineage thymocytes (103).

Very little is known about the fuction of SOX13 , but due to the importance of several



family members in T cell development, SOX13 was identified as a candidate

transcription factor that may be important for yb T cell development.

Results and Discussion

Sox13 is a yt5 T cell-specifc gene.

Comparison of the global gene expression profies of immatue af3 and yb lineage

thymocytes using Affyetrx DNA microarays identified Sox13 as a yb T cell-specific

gene. To confirm the gene chip results Sox13 expression was determined in sorted DP

af3 lineage and yb TCR+ thymocytes by RT-PCR (Figue II-1A). Interestingly, while

Sox13 expression is restrcted to the yb T cell lineage, other HMG-box transcription

factors that are necessary for normal development of af3 lineage T cells, are expressed in

both af3 and yb lineage thymocytes (Figue II-1A.) In addition, the HMG-box

transcription factor expression profiles in the thymus hold tre in peripheral af3 and yb T

cells (J. Kang, unpublished.) Furher Sox13 expression was determined, by RT-PCR, in

a human yb T cell clone, Vy2Vb2+ Isoamyl5.C7 cells (104), as well as in human PBMCs.

Importantly, we could detect Sox13 in these samples containng human yb T cells (Figue

II- I B). Previous characterization of Sox13 expression had suggested a restrcted pattern

of expression in mice, with detection of Sox13 in embryonic arterial walls, the inner ear

hair follicles, and the thymus (98). In adults Sox13 transcripts were reported in the

kidney, pancreas, and ovar, but not the thymus (105). The previous failure to detect

Sox13 expression in the adult thymus in earlier studies may be attibuted to the fact that
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Figure II- I. Sox13 is a yb T cellUneage HMG-box transcription factor. (A) The

relative expression levels of Sox13, Tefl , Lefl and Sox4 in sorted af3 lineage DP cells

(pooled thymocytes from:; 2 mice) and yb lineage (pooled thymocytes from:; 15 mice

wild-tye (WT) C57BL/6 thymocytes was determined by semi-quantitative RT-PCR.

cDNA was serially diluted four-fold (n=2). (B) RT -PCR assay to determne Sox13

expression in human PBMC sample and a human yb T cell clone, Isoamyl5C.7 (n=l).
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more than 95% of adult thymocytes belong to the af3 T cell lineage and do not express

Sox13.

Sox13 is expressed in thymocyte precursor cells.

Analysis of T cell developmental intermediates by RT -PCR determined that, in

addition to being expressed in yb TCR+ thymocytes Sox13 is also expressed in the TN

progenitor population from which both af3 and yb lineage T cells develop (Figue II-2A).

When the TN precursor subsets were analyzed for Sox13 expression, it was found that

expression was highest in TN1 (CD44+CD25) cells (Figue II-2B). The TN1 subset is a

multi-potential population, capable of giving rise to T, NK, and dendrtic cells. In

addition, the TN1 subset also contains the earliest T cell precursors in the thymus. Sox13

expression is sustained as cells transit to the TN2 stage of development (Figue II-2B).

Here, it is generally agreed that the majority of cells in this subset are bi-potent cells

restricted to the T cell lineage and are capable of giving rise to both af3 and yb lineage T

cells. Expression of Sox13 at these early time points in T cell development correlates

with a potential role in early yb T cell development or perhaps maintenance of an

undifferentiated cell state. It is important to note that TN1 and TN2 cells do not express

significant levels of rearanged af3 or yb TCR genes, suggesting that yb TCR signaling is

not required to promote transcription of Sox13. 13, y, and b TCR gene rearangement

occurs as cells transit from the TN2 to the TN3. Intrguingly, the expression of Sox13

although not absent, is signficantly decreased in cells at the TN3 stage of development

(Figue II-2B), coincident with af3-specific f3-selection. By the DP stage Sox13
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Figure 11-2. Sox13 is differentially expressed in thymocyte precursor populations.

(A) RT-PCR assay to determine Sox13 expression in sorted TN (CD4-CD8-CD3-), DP

(CD4+CD8l, and yb (CD4-CD8"ybTCR ) thymocytes from WT mice (thymocytes pooled

from? 10 , or 10 mice respectively. ) (n=2) (B) Semi-quantitative RT-PCR assay (four-

fold serial dilutions) to deterne relative amounts of Sox13 mRA in TN precursor

populations from WT mice. TN1: CD44 CD25-TN; TN2: CD44 CD25 TN; TN3: CD44-

CD25 TN (thymocytes pooled from? 20 mice) (n=2).



transcripts are no longer detected (Figue II- I and Figue II-2A.) The restrcted patter 

Sox13 expression has also been identified in other tissues. For example, SOX13 was

identified in a subset of neural progenitors that correlated with the end of mitosis and the

commencement of differentiation (106). Also, the expression pattern of Sox13 in the

pancreas suggests a role in quiescence or differentiation, as it appears to be limited, in

humans and adult mice, to the islet progenitor population (107, 108).

Heterogeneous expression of Sox13 in thymocyte precursor cells.

It has previously been shown that TN2 precursor cells are heterogeneous in T cell

lineage potential: when intrathymcally injected into Ragr recipients, it was

demonstrated that IL- 7Ra + TN2 cells are developmentally biased toward the yb T cell

lineage at the expense of af3 lineage T cells. Conversely, IL-7Ra Io TN2 cells are

developmentally skewed toward the af3 lineage (13). Hence, we sought to determe if

Sox13 expression correlated with the yb-biased lineage potential of TN2 cells as

determined by IL-7Ra expression. Real-time quatitative PCR (qPCR) was performed

on several sets of sorted TN2 IL-7Raneg-Iow and IL-7Ra + cells to determine if Sox13 was

differentially expressed between these two populations. Indeed Sox13 expression is, on

average

, -

fold higher in the yb-biased IL-7Ra+ TN2 cells (Figue II-3A), suggesting

that Sox13 is heterogeneously expressed in T cell precursors. In contrast Tefl expression

is not signficantly different in these two subsets (Figure II-3B). It is important to point

out, however, that IL-7Ra cell surface expression is not an absolute marker of yb T cell

lineage commtment, as some af3-lineage DP cells do develop when IL-7Ra+ TN2 cells
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Figure 11-3. Sox13 is preferentially expressed in yb lieage-biased precursor cells.

Quantitative real-time RT-PCR assay for (A) Sox13 or (B) Tefl expression (presented as

Sox13/f3-actin or Tcfl/f3actin ratio, ratios are presented as arbitrary unts) based on seven

and nie independently sorted sample sets (ru in duplicate or triplicate) of IL- lo-neg

and IL-7R + TN2 cells, respectively, from WT mice. Error bars represent standard error of

the mean. (for Sox13 expression, p.c0.05 based on one-tailed student' test unequal

variance. )
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are intrathymcally transferred into Ragr mice (13). Therefore, the difference in Sox13

expression between these two "lineage-biased" subsets may be an underestimate of the

tre difference between bona fide lineage-restrcted" precursor cells, though it remains

possible that Sox13 expression is not "lineage-biased" within the precursor subset.

Ultimate interpretation of these data requires purification of Sox13 expressing precursor

cells and subsequent analysis of their developmental potential. In addition, qPCR does

not allow the natue of the difference in Sox13 expression to be identified. For example

it canot be distinguished whether the differential expression of Sox13 between these

subsets is due to different levels of transcript on a per cell basis or if Sox13 is being

expressed in twice as many cells.

To discriminate between these two possibilities, and determine if Sox13

expression marks a distinct population of T cell precursors, single cell RT-PCR was

performed. Precursor cells from the TN2 subset were sorted as single cells into

individual wells of 96-well plates and a reverse transcription reaction was performed.

F or each well, two PCRs were performed, the first to detect expression of a f3actin

control, and a second PCR to determe the relative frequency of Tefl and Sox13

expressing precursor cells. Among the individual wells in which 
f3actin was detected

lOO% expressed Tefl (Figue II-4). In contrast Sox13 expression was found in only 46%

of cells with suffcient amounts of RNA for testing (Figure II-4). These results suggest

that Sox13 expression is restricted to a specific population of TN2 precursor cells.

Collectively, these data indicate that TCRneg TN2 precursor cells are molecularly and

developmentally heterogeneous. Furermore Sox13 expression segregates, more often
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Figure 11-4. Sox13 expression marks a distinct population of T cell precursors. 

representative RT-PCR assay for (A) Sox13 and (B) Tefl expression in sorted single

CD4-CD8-CD3' kitCD44+CD25+ TN2 thymocytes from WT mice (n=3). Numbers

above indicate individual clones. Of 13 single cells that were positive for 

f3-actin all 13

also gave signals for Tefl (frequency of positive cells in the parentheses) while only 13

out of 28 
f3-actin positive cells expressed Sox13. In a separate control experiment, using

the yb T cell line, DN2.3 Sox13 mRNA was detected in every single cell tested.
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with yb lineage-biased IL-7Ra + TN2 cells, thereby potentially marking cells more likely

to become yb T cells.

Regulation of Sox13 expression.

Due to the lineage-biased expression of Sox13 it was important to determine if

Sox13 expression was regulated or inuenced by TCR signals. Sox13 expression in TN1

and TN2 precursor subsets in which expression of rearanged yb and af3 TCRs has not yet

occured (Figue II-2B), suggested at least, that yb TCR signals were not required to

induce expression of Sox13 in yb T cells. To confirm this observation, RT-PCR analysis

of Sox13 expression in Ragr TN cells was undertaken. In the absence of Ragl

expression, T (and B) cells cannot rearrange their receptors. As predicted Sox13

expression was indeed detected in Ragr

/' 

precursor subsets showing that the onset of

Sox13 expression occurs independent of, and prior to, TCR signals (data not shown) (K.

Narayan and 1. Kang, unpublished).

Interestingly, Sox13 expression was signficantly reduced at the TN3 stage in

which af3 lineage-specific f3-selection occurs (successful pairng of rearranged TCRf3

with a surogate preTa chain is required for progression to the DP stage. This

observation could imply that af3 T cell specific receptor signaling was necessar to

eliminate Sox13 expression in af3 lineage cells. To determe if this was tre, we

determined if Sox13 was expressed in TcrfJ

/- 

DP cells. "af3 lineage" DP thymocytes in

TcrfJ/- arise via yb TCR-dependent signaling. Therefore, if signals through the af3-



specific preTCR were required to suppress Sox13 expression Sox13 expression would be

expected in TcrfJ

/- 

DP cells. If Sox13 expression is regulated independently of the

preTCR, we would not expect to detect Sox13 transcript in DP cells from Terti' mice.

Significantly, no Sox13 expression was detected by RT-PCR in TcrfJ/' DP cells (Figue

II-5A). Together, these results suggest that the onset of Sox13 expression is not lied 

TCR expression or signaling and that yb TCR signaling is insufficient to maintain Sox13

expression in af3 lineage thymocytes. Therefore, the expression pattern of Sox13

correlates with T cell lineage but not TCR tye. It should be noted, however, that recent

reports suggest that TCR signal strength rather than TCR isotye govern lineage choice.

It is therefore possible that the quantity of signal that yb TCR-selected "af3 lineage

thymocytes in TCRf3-deficient mice receive may result in Sox13 gene silencing.

We also sought to determe if IL-7R signals were necessar for Sox13

expresslOn. Sox13 expression is increased in precursor populations that express IL-7Ra

and IL-7R signals are necessar for yb T cell development (76, 77). In addition, it has

recently been suggested that IL-7R signaling regulates expression of other HMG-box

transcription factors Tefl and Lefl (94). However, when we analyzed expression of

Sox13 in thymocytes from IL- - mice by RT-PCR, we could detect Sox13 expression

suggesting that IL-7R signaling is not necessary for Sox13 expression (Figue II-5B).

The observation that Sox13 expression is biased towards IL-7Rabi subsets is also

suggestive that SOX13 may regulate II- 7R expression. Although we do have evidence

suggesting that SOX13 is not suffcient to drive II- 7R expression (data not shown), we
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Figure 11-5. Sox13 expression is regulated independently of TCR and IL-7R signals.

(A) Semi-quantitative RT-PCR assay to determine Sox13 expression in sorted DP and yb

thymocytes from TCRf3-1 mice (four-fold serial dilutions) (thymocytes pooled from:; 5

mice) (n= l). (B) Analysis of Sox13 expression in total thymocytes from IL-

+/- 

and lL-

/- 

mice (thymocytes from 1 or 3 mice pooled, respectively) (n=l).
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have not ruled out that it may playa role in its expression in conjunction with other

cellular factors.

Summar and Futue Directions

We have identified Sox13 as a yb T cell-specific gene that is also expressed

among thymocyte precursor populations. The onset of Sox13 expression appears to be

regulated independently of TCR gene expression and signaling. The heterogeneous

expression of Sox13 within the precursor subset segregates with yb lineage-biased

precursor subsets suggesting that it may be a marker of yb precursor cells. To determe

if Sox13 expression is indeed a marker of the yb T cell lineage in precursor cells, we are

generating reporter transgenic mice in which GFP expression is regulated by the Sox13

promoter. This model may allow us to purify Sox13 expressing precursor cells based on

GFP expression, and then determe their developmental potential via fetal thymic organ

cultue and intrathymc transfer of Sox13 and Sox13- precursor populations.

Experiments presented in this chapter identified a restrcted pattern of Sox13

expression during thymocyte development. The pattern of expression is suggestive of

SOX13 playing a role in T cell development, lineage choice, or perhaps precursor cell

maintenance. The following chapters wil examne the role of SOX13 in T cell

development.
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Materials and Methods

Mice

All mice used in these experiments were housed in a pathogen-free rodent barier

facility. The University of Massachusetts Medical School Institutional Care and Use

Commttee approved all anmal experiments. All mouse strains used for expression

analysis includig IL- 7R" , Ragr and TCRfJI- mice were maintained on the C57BL/6

background.

Cell sorting

Thymocytes were stained with the following antibodies purchased from

eBiosciences or BD Pharingen: antibodies specific for mouse CD4 (PE, PE-Cy5 , and

biotin), CD8 (FITC, PE-Cy5 , and biotin), CD3 (PE-Cy5 and biotin), ybTCR (biotin), IL-

7Ra (PE), CD25 (FITC), CD44 (PE), and CD117/c-kit (APe). Streptavidin-PE and

streptavidin-Pacific Blue were purchased from eBiosciences and Molecular Probes

respectively. Samples were sorted using the DakoCytomation MoFlo or F ACSV antage

SE/Diva.

RT-PCR, Real-time qPCR, and single cell RT-PCR

For RT-PCR and real-time qPCR, total RNA was isolated from cells using Trizol

reagent (Invitrogen) and cDNA was prepared using AM RT (Roche). The following

primer pairs were used for PCR: tubulin- for CAG GCT GGT CAA TGT GGC

AAC CAG ATC GGT-3' and tubulin-rev GGC GCC CTC TGT GTA GTG GCC

TTT GGC CCA- actin- for CTA GGC ACC AGG GTG TGA TGG-3' and 



actin-rev TCT CTI TGA TGT CAC GCA CGA- Sox13- for CGG AAC AGC

AGC CAC ATC AAG AGA-3' and Sox13-rev ATG GTG TAG CTT TGG CGA

GCA , Tefl- for GCC AGC CTC CAC ATG GCG TC-3' and Tefl-rev GCT

GCC TGA GGT CAG AGA ATA A- Leffor GTC CTC TCA GGA GCC CTA

CC-3' and Lefrev 5' CAT CTG ACG GGA TGT GTG AC- Sox4- for ATG GTA

CAA CAG ACC AAC AAC GCG G-3' and Sox4-rev GGC GAG CAT CCC GGG

CCT CCA T-

qRT-PCR was performed using SYBR green (Applied Biosystems) fluorescence

detection using the BioRad iCycler system. The following primers were used for qRT-

PCR: qSox13(3047)-for 5' CCC TAT TIC TCT CCA GAC TGT TTC TT-3' and

qSox13(3142)-rev GCT GGT TAA GTT ATI CAT CAT TAT CTT CTT- , qf

actin- for CGA GGC CCA GAG CAA GAG AG- qfactin-rev 
CGG TTG GCC

TTA GGG TTC AG-3' (109), Tefl-for and Tefl-rev.

For single cell RT-PCR, thymocytes were sorted into 96-well plates containng

5JAl of lysis buffer (0.4% NP40, 25JAM DTI, 0. 5U RNasin, and 65JAM dNTP) at one cell

per well. To each well, 5JAl of 2x Sensiscript RT (Qiagen) reaction mix was added and

incubated at 37 C for one hour. For first round PCR reactions, 1 JAl (f3-actin) or 4JAl (Tcfl

or Sox13) of the RT reaction was amplified in a 25JAl PCR reaction mix for 35 cycles.

For nested PCR, 1JAl of the first round PCR reaction was amplified with an additional 35

cycles using internal primers. The sensitivity of Sox13 PCR reactions was tested on

single yb T cell clones (DN2.3), where all single cells tested gave Sox13-specific

products. Repeated samplings (n ::50) of 4-fold diluted RNA samples from single
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precursor cells also gave differential expression pattern for Tefl and Sox13 when

expression of these genes was tested simultaneously from the same clone. The following

primers were used for single cell RT-PCR: f3actin- for and f3actin-rev, qfactin-for and

qfactin-rev, Sox13- for and Sox13-rev 1303-for and 1384-rev Tefl-for and Tefl-rev

Tcflnest-for 5' CCC CAG CTT TCT CCA CTC TA-3' and Tcflnest- - AAT CCA

GAG AGA TCG GGG GT -
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CHAPTER II

SOX13 ANTAGONIZES THE WNT/TCF1 SIGNALING PATHWAY IN T CELL
DEVELOPMENT

Introduction

Sox13 determed by gene expression profiing and later confirmed by RT-PCR

to be a yb T cell-specific gene, was identified as a potential marker of precursors destined

for the yb T cell lineage and/or an important gene in yb T cell development. Since a

number of other HMG-box transcription factor family members have been implicated in

af3 T cell development Sox13 was the focus of intensive research to determe if it, too

played an important role in differentiation and lineage choice. In addition, contrasting

with Tefl , Lefl and Sox4 the restrcted pattern of Sox13 expression suggested a unique

role for SOX13 in yb T cell development.

Preliminar over-expression studies of Sox13 in an af3 lineage DP cell line

indicated that SOX13 may act to inibit cell proliferation and oppose af3 lineage

differentiation (K. Narayan and J. Kang, unpublished.) Therefore, to test the possibility

that SOX13 is a physiological antagonist of af3 lineage development, we generated

several Sox13 transgenic founder lines that over-express Sox13 under the control of the

Lck proximal promoter, which is active durg early thymocyte development (110).

There are two obvious outcomes that one could predict with respect to lineage

commtment: 1. Sox13 over-expression has no affect on lineage commitment or

thymocyte development as seen by normal proportions and numbers of thymocyte
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subsets in the transgenic model, or 2. Sox13 is a master regulator of yb T cell lineage

causing all Sox13 over-expressing thymocyte precursors to develop into yb T cells at the

expense of af3 lineage development. This chapter reports thorough analysis of the role of

Sox13 function in T cell development.

i _

Results and Discussion

SOX13 inhibits af3 lineage development.

To determne the effect of Sox13 over-expression in thymc precursors on T cell

development, we analyzed fetal and adult thymocytes from Sox13 transgenic and

littermate control (LMC) mice by flow cytometr. Flow cytometrc analysis of Sox13

transgenic embryonic day 17 (E 17) thymuses revealed only a modest reduction (less than

fold) in thymic cellularity as compared to LMCs. However, af3 lineage T cell

development was nearly ablated in 
Sox13 transgenic E17 thymuses as evidenced by the

near absence of DP cells (Figue III- 1A). In contrast, the percentage and calculated

cellularity ofthe yb T cell comparent appeared largely unaffected (Figue II- I B).

Analysis of adult (4-6 week old) transgenic mice demonstrated that af3 lineage

development was severely impaired as demonstrated by the signficant reduction in the

proportion of af3 lineage DP thymocytes (Figue III-2A). Strngly, the absolute

numbers of thymocytes in the Sox13 transgenic mice were reduced by 10-50 fold

depending on age and founder line (Figue III-2D). This signficant decrease was due

for the most par, to the signficant reduction in af3 lineage DP cells (Figue III-2D).
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Figure III- SOX13 inhibits af3 lineage development in the fetal thymus.

Thymocytes from WT and Sox13 transgenic E l7 fetuses were analyzed by flow

cytometr for (A) af3 (CD4 and CD8) and (B) yb (TCRb and Vy3 , gated on CD4-CD8-

cells) lineage markers. Representative profies from analyses of three litters of two Tg

founder lines are shown.
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Figure 111-2. af3 lineage T cell development is inhibited in adult Sox13 transgenic

I -

mice. Thymocytes from 6-8 week old adult WT and Sox13 transgenic mice were

analyzed by flow cytometr for (A) af3 (CD4 and CD8) lineage markers, (B) precursor

subsets (CD44 and CD25 , gated on CD4-CD8-CD3- cells), and (C) yb (TCRb, gated on

CD4' CD8- cells) lineage markers. Representative profies from analyses of multiple mice

(2 to 7 per transgenic founder line) are shown. Seven out of nie total transgenic

founder lines showed defects in T cell development. (D) Absolute numbers of

thymocyte subsets from WT (filled bars, n=7) and Sox13 transgenic (open bars, n=8)

mice. Error bars represent standard deviation.
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Although the number of TN precursor cells was also modestly decreased in the Sox13

transgenic mice, the TN subset distribution, based on CD25 and CD44 expression, was

largely normal (Figue III-2B and D). Similar to the Sox13 transgenic fetal thymocytes

and despite an increase in the proportion of yb TCR+ thymocytes (Figure II-2C), the

absolute numbers ofyb lineage thymocytes were similar to that of the LMCs (Figue II-

2D). Importantly, the af3 lineage thymocytes that do develop in Sox13 transgenic mice

express the af3 TCR with no detectable yb TCR on their cell surface (Figue 1II-3A and

B). Collectively, these data suggest that over-expression of Sox13 in thymocyte

precursors inibits one or more aspects of af3 T cell lineage development, while yb T cell

steady-state numbers appear normal.

SOX13 acts independently of the type ofTCR expressed

To determine whether the effects of SOX13 on af3 lineage development was

associated with the lineage differentiation program per se or the tye of TCR signals

Sox13 transgenic mice were crossed to TCRf3/- mice. TCRf3. mice generate "af3

lineage" DP thymocytes via selection through yb TCR signals (22). Sox13 transgenic

expression in TCRf3/. mice suppresses the proportion and absolute numbers of af3 lineage

yb TCR-dependent DP cells (Tg : 9.3 x 10 :! 8.9 X 10 and Tg : 1.2 x 10 :! 4. 8 X 10

, p-

value -: 0.05) while not affecting the cellularity of the yb lineage comparent (Tg : 8.6 x

:! 1.1 X 10 and Tg : 1.0 x 10 :! 5.0 X 10 , p-value = 0.7) (Figue II-4A and B).

Therefore, these .data suggest that SOX13 acts independently of the tye of TCR

expressed to impact T cell development, and its expression is specifically detrmental to

the af3 T cell lineage.

'"'
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Figure DI-3. DP cells from Sox13 trasngenic mice do not express the yb TCR. DP

thymocytes from Sox13 transgenic mice were analyzed by flow cytometr for expression

of (A) TCRf3 and (B) TCRb expression. Representative flow cytometric profiles are

shown. (WT: n=7 , Tg: n=8).
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Figure 111-4. SOX13 inhibits af3 lineage development independent of the type 

TCR expressed. Representative flow cytometric profies of thymocytes from TcrfJI-

(n=4) and TcrfJI-Sox13 transgenic (n=8) mice analyzed by flow cytometr for (A) af3

(CD4 and CD8) and (B) yb (TCRb , gated on CD4-CD8- cells) lineage markers.



SOX13 inhibits cell-turnover and survival.

Many HMG-box transcription factors have been implicated in modulating both

cell cycle and cell surival. For example, thymocyte subsets in Tefl-I. mice have reduced

proliferative capacity and inhibited surival, not unexpectedly as it has been suggested

that cyclin1 , c-Myc, and Bcl-xL are proposed targets of TCF transcription factors (82

111- 113). Other HMG-box transcription factors, such as HBP1 , however, appear to

inhibit cell cycle progression (114). Therefore, we sought to determne if the signficant

decrease in development of af3 lineage T cells in Sox13 transgenic mice was caused by a

decrease in cell proliferation and/or increased cell death. Adult Sox13 transgenic mice

and LMCs were injected with Bromodeoxyudine (BrdU) and sacrificed one-hour post-

injection to determine the percentage of cells in S phase of the cell cycle. There was

approximately a 2. fold decrease in BrdU incorporation in the TN precursor population

in Sox13 transgenic mice as compared to LMCs (Figue III-5A). This inibition of

proliferation was limited to the precursor population as no signficant differences in BrdU

incorporation were detected in the DP, CD4 or CD8 single positive, or yb lineage

thymocytes from Sox13 transgenic mice as compared to LMCs (Figue II-5A and data

not shown). Since the vast majority of proliferating TN precursor cells in a normal

thymus are af3 lineage cells undergoing f3-selection and destined to become DP

thymocytes, SOX13 likely inhibits the proliferative burst associated with the af3 T cell

lineage-specific TN to DP developmental transition.

To determne if Sox13 over-expression was also affecting cell surival, we

examined cell surface Anexin V expression, an early marker of apoptosis, on Sox13
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Figure 111-5. SOX13 inhibits cell-turnover and survival. (A) Analysis of BrdU

incorporation in thymocytes from WT and Sox13 transgenic adult mice that were treated

with BrdU for 1 hour. Thymocytes were stained with mAbs specific for lineage markers

and BrdU, and analyzed by flow cytometr. Filed circles represent the percentage of

BrdU incorporation in individual mice; the bar represents the average BrdU incorporation

in each subset. (B) Thymocytes from WT (filled bars, n=4) and Sox13 transgenic (open

bars, n=4) mice were stained with mAbs specific for lineage markers and AnexinV, and

analyzed by flow cytometr. Error bars represent standard deviation. (C) Quantitative

real-time RT -PCR assay (presented as Bel-xL/f3-actin ratio, ratios are presented using

arbitrary unts) to determe relative Bel-xL expression in thymocytes from WT control

and Sox13 transgenic mice. Error bars represent standard deviation (thymocytes pooled

from::2 mice of each tye, samples ru in duplicate, n=l).
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transgenic and LMC thymocytes. Although no difference in Anexin V stainng was

observed in the TN precursor population, increased rates of apoptosis were identified in

DP and yb TCR+ thymocytes in Sox13 transgenic mice as compared to LMCs (Figue II-

5B). In control mice, approximately 10% of af3 lineage DP cells express AnexinV on

their cell surface (FigueIII-5B). In contrast, DP thymocytes from Sox13 transgenic

mice showed a greater than two-fold increase in the proportion of cells expressing cell-

surface AnexinV (Figue II-5B). Similarly, yb lineage thymocytes exhibited a similar

increase in Anexin V staining (Figue III-5B). The increase in cell death among yb

TCR+ thymocytes from Sox13 transgenic mice suggests that Sox13 over-expression is not

neutral event for yb lineage thymocytes. Normal steady-state numbers of yb

thymocytes in Sox13 transgenic mice despite an increased rate of cell-death, and coupled

with normal cell proliferation, suggests that there may be an increase in the frequency of

precursor cell differentiation in the yb T cell lineage. Collectively, these results indicate

that the decrease in af3 lineage thymc cellularity in Sox13 transgenic mice is the result of

reduced proliferation and altered differentiation of the precursor comparment, fuer

compounded by increased cell death in differentiated DP thymocytes.

The mechanism of increased cell death in af3 lineage DP cells in 
Sox13 transgenic

mice is unown. In thymocyte development, another HMG-box transcription factor

family member, TCF1 , is thought to regulate levels of genes involved in cell surival

specifically, Bel-xL (82). Hence, we sought to determine if over-expression of Sox13 was

leading to disregulated expression of anti-apoptotic genes. Although not comprehensive

in scope, initial studies suggested that their were no signficant differences in the relative
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levels of certain anti-apoptotic genes, such as Bel-xL in Sox13 transgenic DP cells as

compared to DP cells from LMCs (Figue II-5C). From this we may only infer that

SOX13 is regulating pro- or anti-apoptotic genes that we have not tested and/or that some

-; -::-

of the cell death seen in the DP compartment in the Sox13 transgenic mice is due to

SOX13 imposing an aberrant developmental program on af3 lineage precursors or

inhibiting their differentiation such that these cells have diffculty passing through

selection processes.

SOX13 imposes a y6-biased molecular profile in DP cells from Sox13 transgenic mice.

The effects of ectopic Sox13 expression in vivo are most consistent with SOX13

acting as an inhibitor of af3 T cell lineage proliferation and/or surival. We suggest an

additional hypothesis that SOX13 is acting as an inhibitor of the af3 lineage

differentiation program as well as cell division and surival. This would implicate

SOX13 as a molecular switch that prevents the intiation of molecular programs

associated with af3 T cell differentiation in yb T cell biased precursor cells, and/or that its

shutdown permts the intiation of af3 T cell lineage-specific molecular program in

precursors destined to become af3 lineage cells. In addition, it is equally possible that

SOX13 is required to impose a yb lineage molecular differentiation program on

developing T cells. To test this possibility, we took advantage of the fact that some "af3

lineage" DP cells did develop in adult Sox13 transgenic mice, and sought to determne if

they were molecularly "normal." We reasoned that analyses of molecular changes in this

phenotyically classified af3 lineage population should reveal the extent to which SOX13

enforces yb lineage-specific gene expression. To define the yb lineage-specific gene
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Figure llI-6. SOX13 imposes a yb-biased molecular profIe on DP cells from Sox13

transgenic mice. Genes showing differential expression between Sox13 transgenic DP

and WT DP thymocytes as determned by analyses using Affyetrix Mu11K (expt.1) and

MuU74Av2 (expt.2) DNA microarrays. Total RNA (/5ug) was made from DP cells

sorted from pooled thymocytes of minmum of two 4-6 week old mice (expt.1: Sox13

transgenic, n=4 and WT, n=3; expt.2: Sox13 transgenic, n=2 and WT, n=2) Biotinylated

cRNA used for hybridization was obtained after one round of in vitro transcription. Fold-

change values (y-axis) were calculated with Affymetrx GeneChip softare with

expression values from LMC DP thymocytes as the baseline. Only those genes whose

expression are increased, and designated as Present (A), or decreased, from positive

expression values of the baseline designated as Present, (B) in Sox13 transgenic DP

thymocytes in both experiments are shown. denotes genes whose expression are also

differentially expressed in yb thymocytes as compared to DP thymocytes (baseline, /2-

fold change, increased (A) and decreased (B)) based on two independent experiments

using Mu11K or MuU74Av2 DNA micro arrays (S. Der and J. Kang, unpublished).
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expression pattern, we compared the global gene expression profies of sorted DP

thymocytes from Sox13 transgenic and LMCs using Affyetrx gene chip technology.

Importantly, the majority of differentially expressed genes between these two 

populations (70% and 57% of genes whose expression was decreased or increased

respectively, in Sox13 transgenic DPs relative to baseline LMC DP cells) were also the

genes that are normally differentially expressed between wild-tye yb and af3 lineage DP

thymocytes. A full list of the "yb lineage molecular signatue" in Sox13 transgenic DP

thymocytes that was repeatable over two different gene chip experiments is presented in

Figue III- Confirmation of select genes differentially expressed between Sox13

transgenic and LMC DP populations was achieved by semi-quantitative RT -PCR (Figue

III-7). Notably, among the differentially expressed genes in DP cells from Sox13

transgenic and wild-tye DP cells, TCRy genes , which are generally silenced in af3

lineage cells from the DP stage onward, were aberrantly expressed in Sox13 transgenic

DP cells (Figue III-6A and 7). TCRy is one ofthe prototyic yb T cell lineage markers.

Collectively, these results suggest that SOX13 is regulating a central molecular featue of

the yb T cell lineage. Importtly, many, but not all, genes differentially expressed in the

yb T cell lineage as compared to the af3 lineage are also shared by the precursor

population. Therefore, some of the genes that are altered in Sox13 transgenic DP cells

are also "precursor-like In addition, it has previously been suggested that yb-biased

gene expression that is also evident in precursor cells is actively down-regulated as cells

matue into the af3 T cell lineage (27). Hence, interpretation of these gene expression

profiling results from Sox13 transgenic DP cells suggests that SOX13 may act, in par, by
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Figure 111-7. Confirmation of precursor and yb- like molecular profie of DP cells

from Sox13 transgenic mice. TN and yb thymocytes from WT mice, and DP

thymocytes from WT and Sox13 transgenic mice were sorted and analyzed by semi-

quantitative RT-PCR assay to confirm select genes identified by Affymetrix DNA

microarrays as differentially expressed between Sox13 transgenic and WT 

thymocytes (thymocytes were pooled from;: 3 mice per subset using a different Sox13

transgenic founder line than those used for gene-chip analysis, n=l).
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Figure 111-8. TCRy gene expression in Tefl- mice. Semi-quantitative RT -PCR

analysis of the rearranged Vy2-Jy 1 gene expression in sorted DP thymocytes and CD8+ T

cells from Tcll- and Tefl-/ mice (four-fold serial dilutions) (n=2).



imposing a yb-like molecular signatue on the developing af3 lineage thymocytes and/or

by inhibiting appropriate differentiation of af3 T cells.

SOXi3 inhibits TCF i-dependent gene expression.

To date, the only other in vivo model in which TCRy is mis-expressed in af3

lineage T cells is in Tcfr mice (W. Held and J. Kang, unpublished.) Expression of the

dominant Vy2-Jy1.1 gene rearrangement is evident in both DP thymocytes and peripheral

CD8+ af3 T cells from Tcfr

/- 

mice (Figue II-8). Intriguingly, aside from this molecular

similarty, the overall phenotye of Sox13 transgenic and Tcfr mice are strikngly alike

(Table II- I). Both mouse models have signficant decreases in total thymic cellularity

due, in part, to inibition of af3 T cell lineage development. Thymocytes in Sox13

transgenic and Tcfj"l- mice proliferate less, and an increase in apoptosis has been noted.

Also, thymic yb T cell development appears unmpaired in both models. In concert with

the phenotyic and molecular similarities between Sox13 transgenic and Tcfr mice, we

hypothesized that SOX13 may act, at least in par, by antagonizing TCF1 in T cell

development. TCF1 acts as a transcriptional transactivator, but importantly, although

SOX13 is known to bind to similar concensus sequences in DNA, it does not appear that

SOX13 can promote transcription of reporter genes containng multiple SOX binding

sites, at least in the cell line tested (98). The activity of certain TCF1 isoforms, along

with the closely related LEF 1 , is regulated by morphogenetic WNT signaling via the

canonical f3-cateni pathway (82, 115). In lower organisms, as well as in mice, some

Sox family members have been shown to negatively influence WNT signaling (116-

118). To test if SOX13 also inibits the WNT/f3-catenin signaling pathway, specifically



Table III-

Lck-Sox13Tg TCF1-

lineage development: Inhibited Inhibited

yb lineage development: Normal Normal

Thymic cellularity: Decreased Decreased

Thymocyte proliferation: Inhibited Inhibited

Thymocyte survival: Decreased Decreased

Table 111-1. Comparison of observed phenotypes in Sox13 transgenic and Tcjl-t- mice.

*',

ii::



through TCF 1, we took advantage of previously published luciferase reporter assay

systems.

First, in 293T (human embryonic kidney) cells expressing endogenous TCF1 and

optimal levels of co-transfected constitutively active f3catenin we sought to determine if

SOX13 could antagonize transcription of a 
Luciferase reporter gene controlled by an

upstream element containg multiple TCF1 binding sites (TOPFLASH) (119). SOX13

did, indeed, inibit the transcriptional activation of the TOPGAL reporter constrct in a

dose-dependent maner (Figue II-9A). To extend this fmding for a physiological target

gene of TCF1 in lymphocytes, we tested whether SOX13 can interfere with the

expression of the TCF1-regulated Ly49A gene. It has previously been shown that a

regulatory upstream region of the Ly49A gene contains fuctionally relevant TCF1

binding sites (120). An Ly49A promoter-Luciferase reporter construct was transiently co-

transfected into EL4 (T cell lymphoma) cells in the presence or absence of an expression

vector containig Sox13 cDNA. A signficant, dose-dependent decrease in the relative

Luciferase activity was observed with increasing amounts of transfected Sox13

expression plasmid (Figue III-9B), demonstrating that SOX13 can inibit expression of

TCF1 target genes in T cells in vitro.

Importntly, TCF1 transactivation of the Ly49A gene promoter appears to be

independent of WNT/f3-cateni signaling, as the 
Ly49A promoter reporter is active in the

absence of co-transfected constitutively active f3-catenin 
expression plasmid. In EL4

cells, the generic TCF1 reporter TOPFLASH requires constitutively active f3catenin 
for

expression (Figue III-9C). These data suggest that SOX13 can, indeed, antagonize 13-
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Figure 111-9. SOX13 antagonizes TCFl-dependent target gene transcription. (A)

SOX13 inhibits f3-catenin dependent TCF1 transcription activation. 293T cells were

transiently transfected with a pGL3 firefly luciferase plasmid containng multiple TCF1

consensus binding sites , TOPFLASH (filled bars), or the luciferase reporter plasmid in

which the TCF1 consensus DNA binding sites have been mutated, FOPFLASH (open

bars). The cells were co-transfected with an expression plasmid pEF-Bos containng

constitutively active f3-catenin and increasing concentrations of pEF-Bos containng

Sox13 cDNA. A Renilla luciferase plasmid was included as a transfection control. After

32-36 hours, cells were lysed to measure luciferase activity. Results are presented as

firefly/Renilla luciferase ratio. Error bars represent standard deviation. (Transfections

performed in duplicate or trplicate within each experiment, and performed C! 2 times.

(B) SOX13 inibits TCF1-controlled Ly49A gene transcription. EL4 cells were

transiently co-transfected with a promotorless pGL3 firefly luciferase plasmid or the

pGL3 firefly luciferase plasmid containng the 5' promotor region of the 
Ly49A gene

along with increasing concentrations of an expression plasmid pEF-Bos containig Sox13

cDNA, and the assay was performed as in (A). (Transfections performed in duplicate or

triplicate within each experiment, and performed C! 2 times.) (C) f3-cateni is necessary

for TOP GAL reporter transcription. EL4 cells were transiently co transfected with either

the TOPGAL or Ly49A promotor reporter constrct in the absence (filled bars) or

presence (open bars) of constutively active f3-catenn, and the luciferase assay performed

as in (A). (Transfections performed in duplicate, n=l).



catenin dependent and independent TCF1 transactivation of targets. In the thymus , there

are several TCF1 isoforms, only some of which include the f3-catenin transactivation

domain that is required for mediating the surival of DP af3 lineage thymocytes (82).

The role of other isoforms has not been solidified at present, but may be responsible for

the activation of some TCFL targets such as the TCRa enhancer and the L Y49A

promoter.

Summar and Futue Directions

The signficant, but incomplete, inibition of af3 lineage development when

Sox13 is over-expressed in early thymocyte precursor cells, in combination with the yb-

and precursor-biased molecular profie that over-expression of Sox13 imposes on DP af3

lineage thymocytes, suggests that SOX 13 plays an important role in T cell development.

The precise fuction of SOX13 , however, has not been fully resolved. It is apparent that

SOX13 acts to inibit cell proliferation and surival, but it is also possible that SOX13

affects the molecular program of developing thymocytes, either by imposing a yb T cell

expression profile or by inhibiting genes necessar for af3 T cell differentiation.

Additionally, since conversion of all precursors to the yb T cell lineage is incomplete

these results would suggest that SOX13 is not a "master regulator" of lineage fate

redirecting all cells in which it is expressed into the yb T cell lineage. However, it is

possible that this mode of over-expression is limiting. First, it is possible that the Lck

proximal promoter drving Sox13 expression, active from TN2 onward, may not be early



enough to convert precursors to the yb T cell lineage. Also, it is not known if Lck 

expressed in every precursor cell, and at the same level among cells. Therefore, to

determine if SOX13 is a "master regulator" ofyb T cell lineage fate, we are attempting to

retrovirally over-express Sox13 in bone marrow hematopoietic stem cells that we can

transfer into Rag r mice to determe the developmental potential of cells when Sox13 

expressed in the earliest precursors at high levels.

We have also presented data that SOX13 may regulate thymocyte development, at

least in par, by inbiting TCF1 target gene transcription in vitro. In addition, mis-

expression of TCRy genes in DP cells in both the Sox13 transgenic and Tefl-deficient

mouse models is intrguing, but perhaps not defitive evidence of this antagonism 

vivo as we canot decisively rule out the possibility that SOX13 inibits the af3

differentiation program necessar to silence the TCRy locus. This question is the focus

of on-going research in the lab as we are attempting to determine the effect of SOX13 on

expression of known TCF target genes in vivo as well as develop additional model

systems to more definitively address this issue. In addition, we are attempting to

determine the mechansm of TCF1 antagonism by SOX13. One mode of SOX inibition

of the WNT signaling pathway is competition with TCF for f3-catenin binding, though

alternate modes of action may exist. It is possible that SOX13 is blockig TCF1 target

gene transcription by binding to and sequestering f3-cateni, TCF1 itself, and/or perhaps

by competing with TCF 1 for DNA concensus sequence binding sites. Due to the lack of

anti-mouse SOX13 antibody, the answer to this question has been delayed. We have



however, generated a V5-tagged SOX13 constrct that we may be able to use to

determine possible protein interactions to resolve this issue,

Materials and Methods

Mice

All mice used in these experiments were housed in a pathogen-free rodent barer facility.

The University of Massachusetts Medical School Institutional Care and Use Committee

approved all animal experiments. To generate Sox13 transgenic mice, a full-length mouse

Sox13 cDNA (105) was cloned downstream of the Lck proximal promoter in the

p1017mod vector. The transgenic constrct was injected diectly into fertilized day 0.

C57BL/6 embryos and maintained on the C57BL/6 background. Transgenic mice were

identified by PCR of tail DNA (Sox13- for CGG AAC AGC AGC CAC ATC AAG

AGA-3' and Sox13-rev ATG GTG TAG CTT TGG CGA GCA All other

mouse strains including TcrfJI. and Tefl-I. mice were maintained on the C57BL/6

background.

FA CS and cell sorting

The following antibodies were purchased from eBiosciences or BD Pharmingen:

antibodies specific for mouse CD4 (PE and PE-Cy5), CD8 (FITC and PE-Cy5), CD3

(PE-Cy5), ybTCR (biotin), Vy2 (FITC), Vy3 (FITC), CD25 (FITC), CD44 (PE), and

Anexin V (PE). Streptavidin-PE was purchased from eBiosciences. For BrdU

experiments, mice were injected intraperitoneally with O.1mg of BrdU twice at one hour

intervals and thymocytes analyzed one hour after the second injection. Cells were stained



with the appropriate lineage antibodies and with anti-BrdU FITC. Samples were analyzed

on the EPICS XL cytometer (Coulter), and data analyzed using FloJo softare (Tree Star

San Carlos, CA.) Samples were sorted using the DakoCytomation MoFlo system.

RT-PCR and Real-time qPCR

For RT-PCR and real-time qPCR, total RNA was isolated from cells (Trizol Reagent

Invitrogen) and cDNA prepared using AM RT (Roche). The following primer pairs

were used for PCR: tubulin- for CAG GCT GGT CAA TGT GGC AAC CAG ATC

GGT-3' and tubulin-rev GGC GCC CTC TGT GTA GTG GCC TTT GGC CCA-

actin- for CTA GGC ACC AGG GTG TGA TGG-3' and actin-rev TCT CTT

TGA TGT CAC GCA CGA- Vy2-for CTG GGA ATT CAA CCT GGC AGA

TGA-3' and Jy1. 1-rev CTT ACC AGA GGG AAT TAC TAT GAG-3' (22), Onzin-

for 5' TGC TCC CCA AA TTC CAA CTG-3' and Onzin-rev AA ATA AAT

CAA AA GCC CAA CTA-3' (121), Calcyclin- for CAG TGA TCA GTC ATG

GCA TGC 3' and Calcyclin-rev ACG GTC CCA TTT TAT TTC AGA GCT-

(122), Notch3-for GAT GTC ACA TAT GAC TGT GCT TGC-3' and Notch3-rev 

GAT ATT CTG ACT GCA GCT CTC ACC-

qRT-PCR was performed using SYBR green (Applied Biosystems) fluorescence

detection using the BioRad iCycler system. The following primers were used for qRT-

PCR: qfactin- for CGA GGC CCA GAG CAA GAG AG-3' and qfactin-rev 5'

CGG TTG GCC TTA GGG TTC AG-3' (109), qBcl-xL-for 5' ATT GGT GAG TCG

GAT TGC- , and qBcl-xL-rev CAC AGT CAT GCC CGT CAG-

Luciferase Assays



Full- length Sox13 cDNA was cloned into the pEF-Bos expression vector. Other vectors

used in luciferase assays have previously been described (120). Briefly, 2.5 x 10 293T

cells were transiently transfected, using Lipofectamine and Plus Reagent (Invitrogen),

with 0. 5!lg of a constitutively active form of 
f3-catenin in the expression plasmid pEF-

Bos, increasing amounts of pEF-Bos-Sox13 TOPFLASH or FOPFLASH firefly

luciferase reporter, and pRL-TK (Renila luciferase) as a transfection control. Cells were

washed and lysed in Passive Lysis Buffer (Promega) by freeze-thaw, 32-36 hours post-

transfection, and analyzed using the Dual-Luciferase Reporter Assay System (Promega).

For EL4 cell transfection, 10 cells were electroporated with a pGL3 firefly luciferase

reporter vector containng the WT Ly49A promoter or a promoterless pGL3 vector along

with increasing amounts of pEF-Bos-Sox13 plasmid, and pRL-TK as the transfection

control. Luciferase activity was measured as above.

DNA microarrays

Cell subsets were sorted by F ACS using total pooled thymocytes from minimum of two

mice and immediately lysed in Trizol. Gene expression profiling was performed

according to the manufactuer s protocol (Affymetrx). Labeled cRNA (from total RNA)

was generated and applied to Affymetrx MullK(A and B) or muU74Av2 microarays.

All experiments were performed twice using RNA samples from two independently

sorted cell subsets. Results were analyzed using Microaray Analysis Software v4 and v5

(Affymetrx).



CHATER IV

SOX13 IS NECESSARY FOR NORM yb T CELL DEVELOPMENT

Introduction

We have demonstrated that SOX13 is suffcient to impose signficant molecular

yb and/or precursor T cell like qualities in developing af3 lineage precursor cells.

Observations of the impact of Sox13 over-expression in af3lineage cells demonstrate that

SOX13 can inibit proliferation, increase apoptosis, and impose an aberrant molecular

profile on non-yb T cells. One of the few known critical differences in af3 and yb T cell

lineage development is the extent of cell division durg development before thymc

egress. af3 lineage T cells undergo as many as ten cell divisions before becoming matue

af3 T cells (21). In contrast, yb T cells, before matuation, only divide two or three times

(22). Hence, it is possible that SOX13 is responsible, in par, for determng differences

in this intrnsic cell cycling propert that may be intimately associated with the

differentiation process. Therefore, it is important to determe if SOX 13 is playing these

same roles in the yb T cell lineage where it is endogenously expressed. Given that other

HMG-box transcription factors are necessar for various aspects of af3 lineage T cell

development, and that over-expression of Sox13 signficantly alters the development of

cells in which it is not normally expressed, we sought to determe if SOX13 was

necessar for yb T cell development. To this end, we have generated Sox13-deficient

mice to determine if SOX13 is necessar for proper development ofyb lineage T cells.



Results and Discussion

Generation of Sox13-deficient mice.

Within the Sox13 gene , three protein domains are predicted. The leucine zipper

motif is encoded in exon 4, a glutamine rich region in exons 4 and 5 , and the HMG-box is

encoded in exons 11 and 12 (Figue IV- 1A) (123). To create Sox13 null alleles, exons 4

through 11 , approximately 5 kilobases of genomic sequence, were excised via

homologous recombination in ES cells of a targetig constrct containg loxP sites and

subsequent in vitro CRE expression, deleting the regions encoding the leucine zipper, the

glutamine rich region, and the majority of the DNA-binding HMG-box (Figue IV-1A).

Deletion of the appropriate genomic region was confirmed by Southern blot (Figue IV-

1B). As expected, we could not detect any Sox13 transcript in homozygous Sox13 null

mice generated from these targeted ES cells by RT-PCR (Figue IV- 1C).

Sox13-deficient mice have signifcant developmental abnormalities.

In mice, there are over 20 SOX transcription factor family members (Figue IV-

(101). Several knock-out mouse models of these genes have been developed, and due to

the important role of many SOX transcription factors in various aspects of development

many of these Sox knock-out models result in embryonic or peri-natal lethality (124- 127).

Specifically, a deficiency in SoxS or Sox6 the most closely related Sox gene family

members to Sox13, leads to early post-natal lethality. SoXS.
I. mice die shortly after birth

due to respiratory distress, while Sox6-deficient mice show severe dwarfism about one

week after birh, stop feeding days later, and die by three weeks of age (127). Similarly,



Figue IV-

Ndel

Genomic
locus

Targeting
construct

Null
allele

Ndel

+/+ +/- -

+-8.7kb
+-5.7kb

+/+ +/-

Sox13

.. ,,'.

tubulin

-...... 

_Ii

ej'



Figure IV- I. Generation and genotyping of Sox13- mice. (A) Sox13 genomic locus

and targeting construct. Genomic region (not to scale) encoding leucine zipper shaded in

black (exon 4), exons encoding glutamine rich region shaded in light grey (exons 4 and

5), and exons encoding the HMG box shaded in dark grey (exons 11 and l2.) Correctly

targeted ES cell clones were subjected to transient CRE expression to recombine the most

5' and 3' loxP sites to generate a null allele. Triangles indicate loxP sites. (B)

Representative Southern blot to identify Sox13+ , Sox13+ and Sox13'

/' 

mice. Tail DNA

was digested with HindII and NdeI. Digested DNA was subject to Southern blot. (WT

allele is - 7kb, and null allele is - 7kb.) (C) Semi-quantitative RT-PCR for Sox13

expression in total thymus of Sox13

+/+

, Sox13

+/-

and Sox13. mice.
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Figure IV-2. Phylogenentic analysis of SOX family members. Phylogenic tree of the

SOX family of transcription factors was compiled using ClustalW. Similar trees and

family annotation has been previously been published, but exclude one or more of the

more recently described family members. Of note, SOX13 is most closely related to

family members, SOX5 and SOX6 as indicated by *



some Sox13-deficient 1lce died shortly after birth, while in others, we observed

significant dwarfism and death by three weeks of age (Figue IV -3A). These severe, but

as yet uncharacterized, abnormalities are observable in the majority of Sox13- mice.

However, some Sox13-deficient mice do survive to adulthood and appear, at least

superficially, normal, leading to skewed Mendelian ratios from Sox13 intercrosses.

Less than half of the predicted number of Sox13- mice are actually viable at 3 weeks of

age.

yc5 T cell development is impaired in the absence of Sox13.

Due to the signficant generalized defects between post-natal LMC and Sox13-

mice, we sought to determe the effect of Sox13-deficiency in embryonic development

where there are no overt signs of dwarfism. In the thymus, however, there is a gene-dose

dependent decrease in total thymc cellularty in Sox13+ and Sox13. mice as compared

to LMC E18. 5 fetuses (WT: 5.3 x 10 :t 4. l X 10 , het: 3.9 x 10 :t 1.0 X 10 , KO: 2.7 x

:t 1.0 X 10 , p-values between each genotye s 0.05). Despite this decrease in total

thymic cellularity, no signficant differences in the proportions of af3 lineage T cells were

observed at E18.5 (Figue IV-4A). There was however, a signficant decrease in CD4+

and CD8+ SP cell numbers in Sox13- mice as compared with LMC (WT: 3.0 x 10 :t 5.

X 10 , KO: 1.8 x 10 :t 7.2 X 10 , p-value = 0.02). In contrast, there was a gene-dose

dependent decrease in the proportion of yb lineage thymocytes in Sox13 and Sox13-

mice as compared to LMC (Figue IV-4A). The absolute number of total yb TCR

thymocytes were also decreased in Sox13 and Sox13- mice (Figue IV -4B), resulting in

a signficantly increased ratio of the absolute numbers of SP af3 lineage thymocytes
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Figure IV-3. Sox13- mice have severe growth abnormalities. Representative Sox13-

and WT mice. 5 week-old littermates from a Sox13 F2 intercross. Significant

dwarfism is apparent approximately one week after birth, and the time to death 

variable.
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Figure IV-4. Sox13-deficient mice have impaired 
yb T cell development. (A)

Representative flow cytometric profiles of thymocytes from E18. Sox13 , Sox13+ and

Sox13+ fetuses for af3 (CD4 and CD8 , top panels) and yb (TCRb) lineage markers on

total and CD4-CD8- thymocytes, respectively. (B) Absolute numbers of CD4-CD8- yb

cells from Sox13+ (n=3), Sox13 (n=l1), and Sox13- (n=13) fetuses and (C) ratio of

the absolute number of matue af3 lineage cells (CD4+CD8' and CD4-CD8+ thymocytes)

to the absolute number of yb cells. Error bars represent standard deviation.



relative to yb TCR+ thymocytes (Figue IV-4C). These results suggest that deficiency in

SOX13 preferentially impacts yb T cell development.

Sox13 may diferentially infuence yo T cell subsets.

The different subsets of yb T cells develop at different stages of ontogeny,

rearanging the five different Vy genes at specific times durg development. At E18.

the predominant yb T cell subsets developing in the fetal thymus are those expressing

Vy3 and Vy2. As it is possible that the requirement for SOX13 varies in different yb T

cell subsets, we co-stained yb TCR+ thymocytes from E18.5 fetuses with anti-Vy3 or anti-

Vy2 antibody. Data from these experiments indicate that there is no signficant decrease

in the proportion of Vy3+ yfJ TCR+ thymocytes in Sox13. at E18.5 (Figue IV-5A). In

contrast, preliminar results suggest that there may be a gene-dose dependent decrease in

the proportion ofVy2+ yb TCR+ thymocytes in Sox13 and Sox13- mice (Figue IV-5B).

Although preliminary, these data suggest that SOX13 may play different roles in the

development or maintenance of subsets of yb T cells. Additional experiments wil 

required to confirm these observations, and it wil also be interesting to determine the

role of SOX l3 in other yb T cells subsets.

SoxS may partially compensate for the absence ofSox13.

As mentioned earlier Sox13 is most closely related to SOX family members SoxS

and Sox6 (101). These three members of SOX transcription factors make up the Group D

Sox genes. All contain a leucine zipper and glutamine rich region, as well as an HMG

box that is highly conserved among group members (Figue IV -6A). It has previously
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Figure IV - Sox13-deficiency may differentially affect yb T cell subsets.

Representative flow cytometr profies of CD4-CD8' thymocytes from E18. Sox13+

Sox13+ and Sox13- fetuses stained with mAbs to identify (A) Vy3 (n=3, 11 , and 13

respectively) and (B) Vy2 (n=l , 6, and 5 , respectively) expressing yb T cells.
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Figure IV -6. Sox5 is also expressed in yb-lineage thymocytes. (A) Amo acid

sequence similarity in known protein motifs among Group D SOX family members

SOX5 , SOX6, and SOX13. Percent amio acid homology is reported for regions

encoding the Leucine zipper, glutamine-rich region, and HMG-box. Regions of the

protein outside of these domains is not signficantly conserved. Adapted from Wegner

Nuceic Acids Res, 1999 (lOl). (B) RT-PCR analysis of expression of closely related Sox

gene family members SoxS and Sox6 in sorted TN, DP, and yb thymocytes from WT

mice. (Thymocytes pooled from:: 3 mice per subset, n=2).



been shown that some closely related SOX family members with over-lapping expression

patterns have redundant or partially redundant fuctions (127). Therefore, it was

important to determe the thymic expression patterns of closely related 
SoxS and Sox6.

Sox6 is not detected by RT-PCR in sorted TN precursors, af3 lineage DP cells, or yb

TCR+ thymocytes (Figue IV-6B). SoxS however, shares an over-lapping expression

pattern with Sox13 with expression restrcted to thymocyte precursors and yb lineage

cells, but absent in DP thymocytes inviting the possibility that SoxS may parially

compensate in the absence of Sox13 (Figue IV-6B). Thus, the adverse effects of Sox13-

deficiency in yb T cell development that were evident despite the fact that Sox13- mice

stil express SoxS suggest that developing yb T cells may be exquisitely sensitive to

levels of SOX13 , and likely SOX5 , and that SOX13 is necessary for normal yb T cell

development. To this end, we are curently generating Sox13- SoxS-I. compound knock-

out mice. It is also plausible, albeit less likely, that Sox13 and SoxS play redundant roles

but in different subsets of yb T cells. These hypotheses remain to be tested.

Summar and Futue Directions

Sox13- mice have signficant generalized developmental abnormalities that limit

the study of the role of Sox13 in thymocyte development. Analyses to date, have been

limited to studying the effect of Sox13-deficiency in the fetal thymus. From these

experiments, it is apparent that Sox13 is necessar for normal yb T cell development, as

there is a gene-dose dependent decrease in the proportion and absolute numbers of yb



TCR+ thymocytes in Sox13 and Sox13- mice. Preliminar experiments suggest that the

effect of the Sox13-deficiency may be yb T cell subset specific. This observation requires

additional experimentation. Not only wil it be necessar to determine the fuction of

SOX13 in the other yb T cell subsets
, it will be interesting to determine whether 

Sox13 

also expressed differentially among these various yb T cell subsets. Finally, due to the

overlapping expression of SoxS the mostly closely related family member to Sox13

suggest that SoxS and Sox13 may have parially redundant fuctions in yb T cell

development.

The intial analysis of the Sox13- mice suggests that SOX13 is necessar for

normal yb T cell development. However, some of these observations appear incongrent

with expectations based on analyses of the 
Sox13 transgenic mouse model presented in

Chapter III. The previous data suggested that SOX13 impacts T cell development, at

least in par, by inibiting the proliferation and surival of thymocyte subsets. One

obvious prediction of the Sox13. phenotye would be, then, an increase in proliferation

and cell surival in the absence of Sox13 leading to an increase in cell populations, such

as thymocyte precursor subsets and yb lineage T cells that endogenously express this

gene. In contrast, we observe a decrease in these populations. In addition, if SOX 13 acts

to inhibit differentiation of af3 lineage T cells, it is possible that an increase in DP or SP

af3 lineage thymocytes would be observed. Again, this appears not to be the result of

Sox13-deficiency. Although the exact mechansm ofyb T cell impairent in the absence

of Sox13 is not known, it is possible that SOX13 is necessary for appropriate

differentiation of this subset through direction of a yb-specific molecular program. As



analysis of this mouse model system has commenced only recently, signficant effort to

elucidate the fuction of SOX 13 is underway.

Sox13 conditional knock-out mice were generated in parallel with the Sox13"

m1ce. Breeding of the Sox13 conditional knock-out mice with transgenic lines expressing

Cre recombinase under the control of a number of different promoters expressed at

various stages of lymphocyte development wil allow more thorough understanding of

the role of Sox13 at different stages of thymocyte cell development. In addition, since

curent analysis of Sox13- is limited to the fetal thymus, these conditional knock-out

lines wil allow us to study the effect of Sox13-deficiency in adult mice, and therefore, in

peripheral y T cells.

Additionally, it is apparent that SOX13 alone is not absolutely necessar for yb T

cell development. Due to the over-lapping expression pattern of SoxS and its similarity to

Sox13 we have hypothesized that SOX5 may parially compensate for the loss of Sox13

though we have not ruled out a plethora of other possibilities. At present, this hypothesis

is solely theoretical so to clarify any redundant roles between 
Sox13 and SoxS durng yb T

cell development, we are curently generating compound Sox13- SoxS-I- mice. It 

hypothesized that these compound knock-out mice wil be embryonic lethal similar to the

SOXS- Sox6"l. double knock-out mice which die around E16. 5 due to generalized heart

failure. However, we hope to determine if compound knock-out mice are able to

generate yb lineage thymocytes and if SOX13 and SOX5 affect different subsets of yb

lineage T cells.
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Materials and Methods

Mice

All mice used in these experiments were housed in a pathogen-free rodent barrier

facility. The University of Massachusetts Medical School Institutional Care and Use

Commttee approved all animal experiments. The Sox13 targeting vector was cloned

from a BAC clone identified by a screen of a 129/Sv genomic library. The targeting

constrct included a neo resistance gene flanked by 10xP sites between exons 3 and 4, and

an additionalloxP site in the intron betweenexons 11 and 12. A 500bp deletion in the

intron between exons 5 and 6 was generated for ES cell screening 
puroses. A thymidine

kinase (TK) gene was inserted at the end of the 3' homology ar. ES cells were

electroporated and selected for Neomycin (G4l8) resistance and TK sensitivity.

Correctly targeted clones were exposed to transient CRE recombinase expression, and

subsequently analyzed for recombination of the most 5' and 3' loxP sites. 
Sox13 gene-

deleted (exons 4 to 11) clones were injected into C57Bl/6 blastocysts to generate Sox13-

mice. Sox13- mice were backcrossed one or two generations to C57Bl/6 mice. Sox13-

mice were identified by Souther analysis (genomic DNA digested with HindII and

NdeI, and probed with radiolabeled 750bp probe corresponding to exon 1 and flanng

sequence) or PCR (WT allele: 285-for 5' CAA CCG CAA CTT ACA GGA GGT T-

and 1384-rev 5' GCT GTT TCT CCT GGT TGG TCA T- , KO allele: 1303-for 5' GCC

TTC CCA GAC ATG CAT AAC-3' and 1384-rev 5' GCT GTT TCT CCT GGT TGG

TCA T-
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FA CS and cell sorting

The following antibodies were purchased from eBiosciences or BD Pharingen:

antibodies specific for mouse CD4 (PE and PE-Cy5), CD8 (FITC and PE-Cy5), CD3

(PE-Cy5), ybTCR (biotin), Vy2 (FITC), and Vy3 (FITC). Streptavidin-PE was purchased

from eBiosciences. Samples were analyzed on the EPICS XL cytometer (Coulter), and

data analyzed using FloJo softare (Tree Star, San Carlos, CA.) Samples were sorted

using DakoCytomation MoFlo system.

RT-PCR

For RT-PCR, total RNA was isolated from cells (Trizol Reagent, Invitrogen) and

cDNA prepared using AM RT (Roche). The following primer pairs were used for

PCR: fJtubulin-for CAG GCT GGT CAA TGT GGC AAC CAG ATC GGT-3' and

fJtubulin-rev GGC GCC CTC TGT GTA GTG GCC TTT GGC CCA- Sox13-for

CGG AAC AGC AGC CAC ATC AAG AGA-3' and Sox13-rev ATG GTG TAG

CTT TGG CGA GCA , SoxS- for TGG AGA TTC TGA CGG AAG CG-3' and

SoxS-rev 5' CTT GTC CCG CAA TGT GGT T-3' (107), Sox6- for CAT ATG CCT

GAC GAA GGG AGT CGG GA-3' and Sox6-rev GGA TCC CAT GTG CCC CTG

AAC CTG GA-
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CHATER V

GENERAL DISCUSSION

The work presented herein describes a yb T cell-specific gene Sox13 that

regulates T cell development from a multi-potent precursor population of cells in the

thymus. Cumulatively, we have demonstrated that, unlike other HMG-box transcription

factor family members Sox13 expression is restricted during thymocyte development

being present in both the precursor subset and yb T cells, but not in af3 lineage

thymocytes. As Sox13 expression is highest in the earliest thymocyte precursor

populations, before any TCR rearangement occurs, yb TCR signals cannot be

responsible for directing Sox13 expression in the yb T cell lineage. In fact, within the

precursor population Sox13 is heterogeneously expressed in a lineage-biased manner

suggesting that Sox13 expression may identify a subset of precursor cells restricted to the

yb T cell lineage prior to rearangement and expression of TCR chains. This would be in

conflict with several models of lineage specification that suggest that divergence of these

two T cell lineages is dependent upon TCR signals. We have ruled out the possibility

that af3-specific signals are responsible for suppressing 
Sox13 expression as f3-selected

cells fuher differentiate to the DP stage and have shown that yfJ TCR signals canot

maintain expression in af3 lineage cells. As mentioned briefly, however, we cannot, at

present, rule out that the strength of TCR signal impacts Sox13 expression. Therefore

Sox13 expression is likely, but not absolutely, reguated independently ofTCR signals.
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Complementar over-expression and deletion studies fuher imply an important

role for SOX13 in T cell development. Ectopic expression of 
Sox13 inibits normal af3 T

cell development, in part by inibiting proliferation of TN cells and leading to increased

apoptosis in immature af3 lineage DP cells. The most convincing evidence that Sox13 

also altering the differentiation program of af3 lineage T cells is the abnormal expression

profie expressed by DP cells in Sox13 transgenic mice. Signficant changes in gene

expression occur that resemble that of yb and/or precursor cell tyes implying, that

SOX13 may impart a yb lineage-specific program on expressing cells or by inhibiting an

af3-specific differentiation program. One potential mechansm of action of SOX13

appears to be antagonism of the WNT/f3-cateni signaling pathway via inibition of

TCF 1 target genes. Together with the fact that Sox13-deficient thymocytes have

impaired generation ofyb lineage T cells, these data support an important role for SOX13

in yb T cell development.

Based on these data, we suggest a model for the role of SOX13 in a stochastic T

cell specification process (Figue V-I). We have identified a heterogeneous precursor

population in the thymus based on Sox13 expression. We propose that precursor cells

expressing Sox13 are precursors fated to the yb T cell lineage. SOX13, acting, in part, by

antagonizing WNT /f3-cateni signals, would direct cells toward a yb-specific

differentiation pathway which would include expression of lineage-specific genes as well

as limited proliferation. yb lineage precursor cells receiving the appropriate TCR signals

would then progress to matuation. Conversely, in the absence of SOX13 , af3 lineage

programmed precursor cells with requisite WNT/f3-catenin signaling through TCF1
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Figure V- Model of SOX13 function in thymocyte development. We have

identified heterogeneity withi the thymocyte precursor population based on Sox13

expression. We propose that Sox13 expression identifies yb-lineage precursor cells prior

to TCR expression and signaling. Sox13 expressing cells with a successfully rearanged

yb TCR wil go on to differentiate into matue yb T cells. We propose that SOX13 acts to

limit the proliferative capacity of these cells and to impart a yb-specific differentiation

program, in par, by antagonizing TCF durg development.
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would undergo multiple rounds of proliferation and differentiation into matue af3 lineage

cells given that they pass necessar TCR check-points. Only successful purification of

Sox13 expressing progenitors wil allow definitive support of this model. We are

currently generating Sox13 reporter mice that wil potentially allow such purfication, and

subsequently, determination of the lineage potential of Sox13 expressing and non-

expressing precursor cells.

In addition to Sox13 and several other HMG-box transcription factors, such as

Tefl , Lef1 and Sox4 that are implicated in thymocyte development and differentiation, it

stands to reason that there are likely other SOX transcription factor family members

involved at discrete stages of T cell development. We have presented evidence of

differential SOX gene expression in thymocyte populations. In addition, gene expression

profies of peripheral af3 and yb T cells, using gene chip technology, also suggests

differential expression of SOX family members (J. Kang, unpublished). Although a more

thorough expression analysis through dissection of more discrete subsets of lymphocytes

is needed, these data suggest that Sox genes may play intrcate roles at various aspects of

development as the interplay between these molecules appears to be important in

regulating specification within other tissues.

How the expression of Sox13 and other family members is regulated durng

thymocyte development remains to be seen. Although an obvious candidate, our data

suggests that TCR nor IL-7/IL-7R signals are necessar for the commencement or

maintenance of Sox13 expression within the thymus. However, a number of Sox genes

are known to interact with other morphogen signaling pathways. As this interaction
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appears to be dependent on tissue, cell tye, and SOX family member, there is no

absolute mechansm of action or expression regulation. SOX family members have been

found to interact positively or negatively, upstream or downstream, of a number of

morphogen and other signaling pathways, including WNT, BMPs , FGF, and Notch in

various tissues and cell tyes (117 , 128- 130). We have presented evidence that SOX13 is

capable of antagonizing WNT signaling to inibit af3 T cell differentiation, but the

mechanism of action is curently unown. In addition, the interplay of SOX13 with

other signaling pathways remains to be seen. Identification of SOX13 binding parters

and perhaps analysis of its transcriptional regulation, wil clarify some of these issues.

We have proposed a role for SOX13 in the stochastic lineage commitment ofyb T

cells from a common progenitor population in the thymus. If this model holds tre

through additional experimentation as suggested earlier, it becomes logical to question

when this lineage specification occurs. We have identified heterogeneous expression

withi the TN2 precursor population, but also detect strong expression in TN1 progenitor

cells, suggesting that these cells may be lineage commtted at the earliest stages of thymic

development.

In conclusion, we have presented convincing evidence that SOX13 is likely an

important regulator of T cell development, yet the mechansm and extent of the impact of

SOX13 on this process and lineage commtment is not fully realized. Our experimental

endeavors have raised a plethora of additional questions concerng the mechanism of

SOX13 action as well as how SOX13 may be interacting globally with a number of other

regulatory signaling processes. The task of identifying how these networks interact to
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determine af3 vs. yb lineage commitment wil, undoubtedly, be a complex and exciting

task for futue experimentation.
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