University of Massachusetts Medical School eScholarship@UMMS

Preventive and Behavioral Medicine Publications and Presentations

Preventive and Behavioral Medicine

6-2010

Beverage Consumption Among Low-Income Hispanics with Uncontrolled Type 2 Diabetes

Milagros C. Rosal *University of Massachusetts Medical School,* Milagros.Rosal@umassmed.edu

Stephenie C. Lemon University of Massachusetts Medical School, Stephenie.Lemon@umassmed.edu

Barbara C. Olendzki University of Massachusetts Medical School, barbara.olendzki@umassmed.edu

Follow this and additional works at: http://escholarship.umassmed.edu/prevbeh_pp Part of the <u>Behavioral Disciplines and Activities Commons, Behavior and Behavior Mechanisms</u> <u>Commons, Community Health and Preventive Medicine Commons, Dietetics and Clinical</u> <u>Nutrition Commons, and the Preventative Medicine Commons</u>

Repository Citation

Rosal, Milagros C.; Lemon, Stephenie C.; and Olendzki, Barbara C., "Beverage Consumption Among Low-Income Hispanics with Uncontrolled Type 2 Diabetes" (2010). *Preventive and Behavioral Medicine Publications and Presentations*. Paper 202. http://escholarship.umassmed.edu/prevbeh_pp/202

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Preventive and Behavioral Medicine Publications and Presentations by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.

Beverage Consumption Among Low-Income Hispanics with Uncontrolled Type 2 Diabetes

Milagros C. Rosal, Ph.D., Stephenie Lemon, Ph.D., Barbara Olendzki, RD. Division of Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, MA Funded by NIDDK Grant # 1 R18 DK65985

BACKGROUND

• Hispanics/Latinos are the largest (14% of the US population) and fastest growing minority group in the US.

• Hispanics suffer twice the incidence of type 2 diabetes as do non-Hispanic white individuals, and also exhibit poorer diabetes control and greater rates of diabetes-related complications and mortality. Identifying factors that contribute to these statistics is critical to reduce human suffering and societal costs.

• Soft drinks and other sugar-sweetened beverages (SSBs) are the number one source of added sugars in the American diet. Most women should consume no more than 100 calories of added sugars per day; most men, no more than 150 calories. SSB intake is a significant contributor to weight gain in the population and may contribute to increased risk of type 2 diabetes and cardiovascular disease.

• Little is known about the caloric contribution of beverages to total caloric intake among Hispanics with type 2 diabetes. SSBs may contribute to the epidemic of obesity and diabetes, and deter optimal metabolic control, among Hispanic individuals with type 2 diabetes.

Study Objective

This study sought to describe beverage consumption, caloric contribution of beverages to total caloric intake, and associations between beverage consumption and metabolic factors among a sample of low-income Hispanics participating in a trial of a diabetes selfmanagement intervention.

METHODS

Population and Setting

- Subjects were participants in a randomized clinical trial (RCT) of a diabetes selfmanagement intervention.
- Patients were recruited from five urban community health centers in central and western Massachusetts.
- Screening and recruitment followed a systematic multi-step process to ascertain eligibility based on the criteria listed below.

Eligibility Criteria for the RCT

- •Hispanic/Latino origin.
- 18 years old.
- •Documented diagnosis of T2DM.
- •HbA1c > 7.5 (in previous 7 months).

•Functionally capable of meeting the intervention goals (able to walk, no evidence of cognitive impairments, no medical contraindications). •No current or recent (past 2 years) history of alcoholism/drug abuse; no psychiatric hospitalization or suicidality within past 5 years. •Physician approval to participate in the study.

•Not planning to move out of the area.

Baseline Measurements

Laboratory Measures: HbA1c, Lipid profile (HDL, LDL and triglycerides)

Anthropometric Measures:

Height and weight ; calculated body mass index (BMI) Waist circumference Systolic and diastolic blood pressure (SBP, DBP)

Survey Measures:

Demographics: Age, gender, education, birth place, income, medical insurance, years since diabetes diagnosis.

Should we add medication status to table 1?

Analysis

Overall descriptive statistics are provided including frequencies and percents for categories and means and standard deviations for continuous variables. {Stephenie to add}

Sample Characteristics (n=252)		
Characteristic	N (%)	
Age	Status Rectan	
18-44	39 (14 6)	
45-54	65(27.3)	
55-64	05(27.5)	
>65	81 (34.0)	
200	53 (22.3)	
Gender: Female	184(77.3)	
Education	E	
< 4th grade	68 (28.6%)	
4 th -8 th grade	68 (28 6%)	
9 th -12 th grade (not HS)	45 (18 9%)	
S araduata	F7 (22 0%)	
no graduale	57 (23.9%)	
Income: < \$10K	113 (47.5%)	
Birthplace: Puerto Rico	214 (91 5%)	
	211(01.070)	
Year since diabetes		
diagnosis		
< 5	74 (32,3%)	
6-10	57 (24 9%)	
11-15	43 (18 8%)	
×15	55 (24 0%)	
Have health insurance or receive free	250 (98%)	
HbA1c > 7.0	219 (86.9%)	
Controlled blood pressure (SBP ≤130		
mmHg and DBP <u>></u> 80 mmHg)		
LDL < 100 mg/dl	116 (48.7%)	
HDL > {Steph: how did you	163 (68.5%)	
define it at the end ?}	144 (60 5%)	
Waist circumference < {Steph: how	22 (9.2%)	
did you define it at the end?}		
BMI > 30	(73.9%)	

RESULTS

Total and Percentage of Calories from Beverages

	Mean (SD)
Total calories from beverages	344.2 (222.9)
Percent calories total beverages	20.6 (11.8)
Sugar sweetened beverages	9.0 (8.7)
All milk products (excluding coffee/tea additives))	8.7 (11.8)

Percentage of Calories by Beverage Type		
Individual Beverage Types		
Whole milk	3.9 (6.4)	
2% milk	3.0 (5.6)	
1% milk	2.3 (4.6)	
Skim milk	.06 (.53)	
Soy milk	.05 (.82)	
Sugared milk	.30 (2.1)	
Juice	2.8 (4.9)	
Fruit drinks	1.6 (3.7)	
Regular soda	2.3 (4.3)	
Diet soda	.08 (.19)	
Сосоа	.41 (1.7,)	
Coffee/tea/additives	.63 (1.3)	
Shakes	.20 (2.2)	
Alcohol	.28 (1.9)	

Percentage of Calories from Beverages by Metabolic Characteristics

A1c > 7.0 (Yes/No); SBP >130 mmHg and DBP < 80 mmHg (Yes/No); LDL > 100 (YES/NO); HDL <45 in men and < 55 in women(Yes/No); TG > 150 in men and women(Yes/No);

DISCUSSION

- Treatment strategies to improve glucose control and reduce diabetes complications among Hispanics are needed.
- There is a high consumption of calories from beverages, accounting for one-fifth of total caloric intake, among this high-risk **Hispanic population**
- Milk, juices, fruit drinks and regular soda are particular sources of calories.
- Beverage consumption is associated with metabolic markers, including HbA1c, cholesterol, blood pressure, BMI and waist circumference, and may thus increase risk for diabetic and cardiovascular complications in this population.
- Beverage consumption among low-income Hispanics warrants further clinical and research attention, including development of interventions that target all liquid calories, not just sugar-sweetened beverages.
- Targeting beverage consumption through simple messages that are in line with the literacy challenges posed by this population may be feasible. The vast benefit of clarifying a single food group that can be modified to reduce risk factors of diabetes and obesity in this population cannot be overstated.

ACKNOWLEDGEMENT

The authors wish to thank the study staff and the participants for making the study possible.