May 8th, 3:30 PM - 5:00 PM

Collaborative Tagging of Phenotypic Data for Clinical and Translational Sciences

James Allan
University of Massachusetts Amherst, allan@cs.umass.edu

W. Bruce Croft
University of Massachusetts Amherst, croft@cs.umass.edu

Thomas K. Houston
University of Massachusetts Medical School, Thomas.Houston@umassmed.edu

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat

Part of the Bioinformatics Commons, Databases and Information Systems Commons, Health and Medical Administration Commons, Health Information Technology Commons, and the Translational Medical Research Commons

http://escholarship.umassmed.edu/cts_retreat/2013/presentations/19

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
James Allan, W. Bruce Croft, Thomas K. Houston, Rajani S. Sadasivam, Ariana Kamberi, Weize Kong, and Youngho Kim

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Collaborative Tagging of Phenotypic Data for Clinical and Translational Sciences

James Allan (presenting), W. Bruce Croft, Tom Houston, Rajani Sadasivam, Ariana Kamberi Weize Kong, and Youngho Kim

May 8, 2013
Clinical Information

- Structured Data (labs, meds, ICD-9)
- Unstructured Data
 - Trapped
 - Not Easily
 - computer-interpretable
 - Organized
 - Retrievable
Outside Medicine

- Collaborative Tagging
 - Labels users create to represent topics in documents
 - Other users (and information retrieval systems) use these tags to explore information
 - Often unstructured, open-ended and interpretive

Wikipedia
Collaborative tagging of clinical notes

- **Motivation**
 - Structured clinical data using standard taxonomies are accurate but limited, relatively static, and represent a single view
 - Unstructured text is a rich source of information but NLP techniques are fragile, training and review is expensive

- **Middle ground: tagging**
 - Groups of individuals add or mark phrases ("tags")
 - Resulting *folksonomy* may be simpler to use and can evolve quickly

- This work explores that middle ground
Clinicin tagging of clinical notes

- Used existing, de-identified i2b2 collection
- Recruited clinicians to highlight and tag notes
- Approximate breakdown of resulting group
 - 50% family medicine doctor
 - 42% internal medicine doctor
 - 3% each nurse practitioner, physician assistant, senior resident
Their instructions

- **Highlighting**
 - Please use a highlighter to precisely select (highlight) tags, as many as you want, as few as you think you would need to best represent the most important aspects of the note you would like to share with others (could be two tags, could be ten tags, could be more).

- **Tag generation**
 - These tags are things you as a clinician might infer from the note, but are not explicitly stated (e.g., “missed diagnosis”, “good preventive care”, “depression prolonged hospital stay”).
HISTORY OF PRESENT ILLNESS: Mr. Little is a 53 year old male who is under the care of Dr. Royendchaelmares, at Hend Geadcoastcar Hospital, with the diagnosis of coronary artery disease. He has a history of an old inferior myocardial infarction. He was well until three days prior to admission, when he developed an episode of shoulder and arm pain, with minimal exertion. The night prior to admission, he slept well, but the following day, he had a prolonged episode of chest pain. He went to the Emergency Ward of Hend Geadcoastcar Hospital, where was found, on electrocardiogram, to have a right bundle branch block, and ST-segment elevations in the inferior and apical leads. He was treated with intravenous Streptokinase, intravenous heparin, intravenous nitroglycerin. He had a brief episode of bradycardia and hypotension, which responded to atropine and dopamine. He had some ventricular ectopy that responded to Xylocaine. He did well, without recurrent chest pain, congestive heart failure, or further arrhythmias. He ruled in for myocardial infarction, with a peak CPK of 660 units, 16% mB. An echocardiogram revealed an ejection fraction of 52%. He had cardiomegaly. He underwent an exercise tolerance test with Thallium, where he exercised for 2 minutes. The test was positive. Coronary angiography was performed on Sep 8, which demonstrated a mean pulmonary capillary wedge pressure of 7 millimeters of mercury. There was a 30% stenosis of the main left coronary artery. There was a 50% stenosis of the left anterior descending. The circumflex artery had a total occlusion. His right coronary artery had a severe 95% stenosis. The left ventricle has normal size, and an ejection fraction of 65%. His PAST MEDICAL HISTORY is remarkable for an old O-wave myocardial infarction. He has a hiatus hernia. He had prior surgery for hernia.
Summary of collected data

- 366 notes highlighted
 - Average of 2.1 annotators per note (766 notes)
 - Average of 5.8 notes per annotator (132 annotators)
 - From 16 to 496,506 words long

- 7,642 highlighted tags
 - Average of 20.9 highlighted tags per note
 - Average length is 4.36 words
Where do highlighted tags occur?

- Heavily skewed to a few sections of note

![Bar chart showing distribution of highlighted tags]

25% of tags in tail that is not shown
Use highlights to train *automatic* highlighting?

- **cTakes**, named entity tagger (small sample)
 - Identifies average of 232 tags
 - Here, 24 tags per notes, 17 of which overlapped
 - 70% recall, 7% precision

- **SVM classifier**
 - 21 features: length of tag, frequency, frequency in medical domain, which section, where in section, etc.
 - Pilot evaluation (27 train, 26 test)
 - 37% of top 5 words match
 - 16% of top 50 words match
Retrieving related medical records

- Query: medical record
- Goal: past medical records including related diseases, conditions, or treatments/interventions

Pilot evaluation
- 9 medical record “queries”
- Average of 5.7 related past medical records

<table>
<thead>
<tr>
<th></th>
<th>Prec @ 20</th>
<th>Recall@20</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>12%</td>
<td>43%</td>
<td>32%</td>
</tr>
<tr>
<td>Tags</td>
<td>13%</td>
<td>47%</td>
<td>37%</td>
</tr>
<tr>
<td>Expansion</td>
<td>17%</td>
<td>61%</td>
<td>44%</td>
</tr>
</tbody>
</table>
Example Applications

- **Similarity**
 - Identify a record with a medical error THEN
 - Find OTHER records with similar errors
 - Identify a specific hospital course THEN
 - Find OTHER records with similar

- **Prioritize**
 - Information within a note
 - OR within a patient record