A Phosphorylcholine Polymer Platform for Cancer Drug Delivery

Todd Emrick
University of Massachusetts Amherst

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Biochemical and Biomolecular Engineering Commons, Polymer and Organic Materials Commons, Polymer Chemistry Commons, Polymer Science Commons, Therapeutics Commons, and the Translational Medical Research Commons

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
A Phosphorylcholine Polymer Platform for Cancer Drug Delivery

Todd Emrick & Sallie Schneider
UMass Amherst Polymer Science and Engineering
and the Pioneer Valley Life Sciences Institute
PolyMPC: current applications and future potential

PolyMPC is extremely hydrophilic and biocompatible: Ishihara, Nakabayashi, Iwasaki, Armes, Lewis,..
Why Polymers? Polymers Enhance Drug Delivery
Prolonged Circulation; Enhanced Permeation and Retention

Normal vessels have tight junctions between cells – allow minimal extravasation into healthy tissue

Tumor vessels are disorganized and leaky

Polymer-drug conjugates are large and are taken up into tumor tissue

Passive targeting

Normal vessels

Tumor vessels

pH ~ 7.4

pH ~ 6.0 - 6.8

Polymer/drug flow through capillary

~ < 400 nm
PolyMPC-CPT: the first polyMPC pro-drug

Drug loading: 18 wt %, CPT equivalent solubility: 36.7 mg/mL

Drug loading: 3.7 wt %, CPT equivalent solubility: 6.7 mg/mL
PolyMPC-Doxorubicin pro-drugs

Labile bond

Bioconjugate Chemistry 2012

DOX release from polyMPC-DOX conjugates at pH 5.0 and 7.4

Half-life of polyMPC-Dox samples range from 8-28 hours, depending on molecular weight and drug loading

PolyMPC-Dox soluble in water and injectable saline at very high DOX loading
In vitro and in vivo evaluation

Cell uptake MCF7 24 h

(a) Pro-drug
(b) Pro-drug
(c) DOX

Maximum tolerated dose (MTD) of polyMPC-Dox

- Nuclear uptake seen for polyMPC-Dox
- MTD values of 50 mg/kg or greater
- About 10 times that of Dox alone
- About twice that of Doxil

Bioconjugate Chemistry 2012
In vivo experiments in mice: 4T1 breast cancer model

Highly invasive and spontaneously metastatic tumor line
Large tumor starting volume; 1 injection

Survival
Doxil: 40% at 7 days, 0% at 14 days
polyMPC-Dox: 100% at 7 days
50% at 14 days

Survival
Day 15 with Dox: 10% survival
Day 15 with polyMPC-Dox: 90% survival