Expression of ITGB8 in Epicardial Adipose Tissue is Highly and Directly Correlated with the Severity of Coronary Atherosclerosis

Nancy Lee
University of Massachusetts Medical School

Et al.
Expression of \textit{ITGB8} in Epicardial Adipose Tissue is Highly and Directly Correlated with the Severity of Coronary Atherosclerosis

Nancy Lee MSIV, Sarah Nicoloro PhD, Juerg Straubhaar PhD, Melinda Darrigo NP/PhD, Stanley Tam MD, Michael Czech PhD, and Timothy Fitzgibbons MD, PhD

1University of Massachusetts Medical School, Molecular Medicine, Worcester, MA, 2University of Massachusetts Medical School, Division of Cardiothoracic Surgery, Worcester, MA, 3University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA.

Background

Obesity and its associated cardiovascular diseases have reached epidemic proportions. Prior studies suggest that in those with increased visceral adiposity, immune cells in visceral adipose tissue (VAT) establish chronic local inflammation that results in ectopic lipid deposition in peripheral organs and insulin resistance.

Epicardial adipose tissue (EAT) has been advanced as a possible direct link between obesity and cardiovascular disease. In patients with coronary artery disease (CAD), EAT has been shown to express increased levels of inflammatory cytokines.

What is not currently understood is whether or not inflammatory gene expression influences the development of atherosclerosis or is a compensatory response to established disease.

Methods

- Informed consent obtained from controls (pts without CAD) and cases (pts with CAD) scheduled for elective cardiothoracic surgery.
- 500 mg EAT and SAT collected at the time of surgery, fixed for microscopy and frozen for RNA extraction.
- RNA was hybridized to Affymetrix Human Gene 1.0 ST chips.
- Genes w/ FC>3 in EAT vs. SAT were identified.
- Gensini scores for participants determined through review of cardiac catheterization data.
- Probe intensities for these resultant genes were then correlated with the severity of atherosclerosis in each patient as determined by the Gensini score.

Objectives

The purpose of this study was to determine:
- Whether there are differences in gene expression between EAT and subcutaneous adipose tissue (SAT)
- If gene expression in EAT of patients with and without CAD differs
- If there is a difference, whether these differentially expressed genes participate in the inflammatory pathways.

Results

- Differential expression of 13% TOTAL (3831/28K) genes
- Of these, 35 genes differentially expressed in EAT vs SAT by FC>3 and p<0.05

<table>
<thead>
<tr>
<th>Gene</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITGB8</td>
<td>0.94</td>
<td>0.0005</td>
</tr>
<tr>
<td>PLAU16</td>
<td>0.76</td>
<td>0.0174</td>
</tr>
<tr>
<td>COL8A2</td>
<td>0.70</td>
<td>0.024</td>
</tr>
<tr>
<td>FN1</td>
<td>0.77</td>
<td>0.0262</td>
</tr>
<tr>
<td>ITGAM</td>
<td>0.72</td>
<td>0.0374</td>
</tr>
<tr>
<td>ITGB1</td>
<td>0.72</td>
<td>0.047</td>
</tr>
<tr>
<td>ITGB8</td>
<td>0.72</td>
<td>0.058</td>
</tr>
<tr>
<td>ITGB1</td>
<td>0.72</td>
<td>0.067</td>
</tr>
<tr>
<td>ITGB8</td>
<td>0.72</td>
<td>0.074</td>
</tr>
<tr>
<td>ITGB8</td>
<td>0.72</td>
<td>0.08</td>
</tr>
<tr>
<td>ITGB8</td>
<td>0.72</td>
<td>0.092</td>
</tr>
</tbody>
</table>

Of the 35, 14 are correlated with CAD severity measured by Gensini score.

Conclusion

Expression of \textit{ITGB8} was found to be directly correlated with CAD severity. \textit{Integrin \alpha v \beta 8 (ITGB8)} has been previously shown to be expressed by fibroblasts and functions to activate immune-modulating TGF\(\beta\). TGF\(\beta\) signaling has also been correlated with advanced atherosclerosis. We speculate that EAT expression of \textit{ITGB8} may have pro-inflammatory effects, possibly through activation of TGF\(\beta\), and stimulating recruitment of dendritic cells or T cells to secondary lymphoid organs in EAT. Whether or not this is the case is a goal of future studies.

Acknowledgements

- CT Surgery Team
- Dr. Rebecca Baumann
- Phyllis Spatrick (Genomics Core)
- DERC Morphology Core
- Dr. John Keaney
- American Heart Association (FTF Award to TPF)