May 8th, 12:30 PM - 1:30 PM

Glyconanoparticle Uptake Profile in Lung Carcinoma Cells

Kalana W. Jayawardana
University of Massachusetts Lowell

H. Surangi N. Jayawardena
University of Massachusetts Lowell

Thareendra De Zoysa
University of Massachusetts Lowell

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat

Part of the [Biochemistry Commons](http://escholarship.umassmed.edu/cts_retreat), [Cancer Biology Commons](http://escholarship.umassmed.edu/cts_retreat), [Chemistry Commons](http://escholarship.umassmed.edu/cts_retreat), [Nanoscience and Nanotechnology Commons](http://escholarship.umassmed.edu/cts_retreat), [Neoplasms Commons](http://escholarship.umassmed.edu/cts_retreat), and the [Translational Medical Research Commons](http://escholarship.umassmed.edu/cts_retreat)

http://escholarship.umassmed.edu/cts_retreat/2013/posters/45

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Kalana W. Jayawardana, H. Surangi N. Jayawardena, Thareendra De Zoysa, and Mingdi Yan

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This event is available at eScholarship@UMMS: http://escholarship.umassmed.edu/cts_retreat/2013/posters/45
Glyconanoparticle uptake profile in lung carcinoma cells

Kalana W. Jayawardana, H. Surangi N. Jayawardena, Thareendra De Zoysa, Mingdi Yan*
Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854
Fax: (978)-334-3013; Tel: (978)-334-3647; E-mail: mingdi_yan@uml.edu

ABSTRACT: Non-small cell lung carcinoma (NSCLC) is responsible for nearly 85% of lung cancer, and early diagnosis and treatment of lung cancer can circumvent possible death. We focus on glyconanoparticles with a magnetic or a fluorescent core that act as multivalent glyco-scaffold to study cell surface interaction and internalization. The glyconanoparticles were synthesized by conjugating various carbohydrates on magnetic nanoparticles and fluorescent silica nanoparticles by a photocoupling technique developed in our laboratory. The size of nanoparticles used varies from 6 nm to 60 nm. The resulting glyconanoparticles were treated with human adenocarcinoma non-small lung epithelial cells (A549) and the primary small airway epithelial cells (PCS-301-010). The cellular uptake was studied and quantified by confocal fluorescence microscopy, flow cytometry, thin section TEM, and prussian blue staining. We found that the extent of cellular uptake was dependent on the type of carbohydrate ligands and the nature of the nanoparticles used. Experiments were conducted to investigate the mechanism of the uptake, and results will be discussed.