Excavations at Tel Kabri, Israel: A Case Study in Data Management for Archaeological Research

Elizabeth Christian
Simmons College, Graduate School of Library & Information Science, chrise@simmons.edu

Follow this and additional works at: http://escholarship.umassmed.edu/escience_symposium

Part of the Scholarly Communication Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.
EXCAVATIONS AT TEL KABRI, ISRAEL
A CASE STUDY IN DATA MANAGEMENT FOR ARCHAEOLOGICAL RESEARCH
Elizabeth Christian, Simmons College, School of Library & Information Science
chrise@simmons.edu

• OBJECTIVE
This case study aims to identify data management needs in archaeological research by examining one project’s current practices.

• CONTEXT
Tel Kabri was a Middle Bronze Age palace near the Mediterranean coast. Excavations started in the 1980s, and apply a range of technologies and methods to gain a holistic understanding of daily life and trade at Kabri.

• MODULES FOR RESEARCH DATA

• Types, Formats, and Storage of Data
 • Data stored in paper notebooks, databases, and spreadsheets
 • Extremely large quantities of raw and processed data

• Data Storage, Backup, and Security
 • Strict long-term data storage requirements from Israel Antiquities Authority, which pose access issues

• Data Sharing & Reuse Policies
 • Use of cloud-based applications for data sharing

• Repositories, Archiving, and Preservation
 • Need to digitize data from 30+ years and standardize formats
 • Material will be permanently held by foreign government agency

• METHODS
An interview instrument, based on the Digital Curation Centre’s Checklist for a Data Management Plan 4.0, was developed and used in an interview with lead staff to focus on understanding the project’s data workflow throughout the data lifecycle.

• ARCHAEOLOGICAL RESEARCH PRODUCTS

• Documents
 • Field reports
 • Articles and presentations
 • Lab notes

• Data Sets
 • Artifact catalogs
 • Locus sheets
 • C-14 dating results
 • Chemical analysis results

• Images
 • Photographs & orthophotographs
 • Technical drawings
 • Artifact illustrations

• Virtual Archaeology
 • Remote sensing data (e.g., LiDAR)
 • 3D scans and models
 • GIS datasets

• Cultural Material
 • Pottery sherds
 • Mosaics
 • Reconstructed vessels

• RECOMMENDED DATA MANAGEMENT PLAN

• Types, Formats, and Stages of Data
 • Data will be imported to software that can manage multiple file types, assign metadata, and provide versioning control

• Data Storage, Backup, and Security
 • All data will be duplicated and stored in a U.S.-based repository or cloud-based storage service

• Data Sharing & Reuse Policies
 • Re-use is subject to approval of the PIs and may be requested by contacting the PIs or the Israel Antiquities Authority

• Repositories, Archiving & Preservation
 • Data in paper notebooks will be digitized
 • Data will be stored in open-source formats where possible
 • Israel Antiquities Authority will be responsible for storing, archiving, and preserving all materials

• CONCLUSIONS
Archaeology as a discipline is centered on the importance of context and data preservation. Partnering with archaeologists may allow LIS professionals to pursue a model for global data services that addresses the complexities of collecting data in foreign countries, incorporating legacy data, and preserving multiple data types.

• ACKNOWLEDGEMENTS
• Alex Ratzlaff & the Tel Kabri Archaeological Project
• Elaine Martin, Regina Fisher Raboin & Julie Goldman, Simmons LIS 432G Fall 2015

• ARCHAEOLOGICAL DATA WORKFLOW

Data Collection In the Field
• Locus data recorded in Excel, accessed on a tablet and stored in the cloud
• Architectural features are excavated, numbered, and drawn to scale
• Files are synced twice per day using mobiles as hotspots for offsite collaborators to use
• High-resolution images (up to 1,000/day) are taken and later transferred to portable hard drives
• Artifacts are collected, labeled, and sent to onsite lab
• Samples for residue analysis, floatation, and dating are collected, labeled, transported to the onsite lab

In the Onsite Lab
• Graduate students build excel spreadsheets to catalog artifacts
• Artifacts pre-processed for laboratory analysis

Post-Excavation
• Artifacts processed; packed for storage and preservation
• Selected vessels reconstructed
• Data from across seasons is reviewed, compared, and analyzed

Consultation
Specialists produce additional data from remote sensing, chemical analysis, 3D modeling, and dating.

Publication
• Preliminary field report written and published on institutional website
• Season reports and copies of collected data submitted to Israel Antiquities Authority as required by permit
• Articles written and submitted for publication
• Data made available to other researchers upon request
• Funding applications for the next season submitted