Excavations at Tel Kabri, Israel: A Case Study in Data Management for Archaeological Research

Elizabeth Christian

Simmons College, Graduate School of Library & Information Science

Follow this and additional works at: https://escholarship.umassmed.edu/escience_symposium

Part of the Scholarly Communication Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Repository Citation

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in University of Massachusetts and New England Area Librarian e-Science Symposium by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
EXCAVATIONS AT TEL KABRI, ISRAEL
A CASE STUDY IN DATA MANAGEMENT FOR ARCHAEOLOGICAL RESEARCH
Elizabeth Christian, Simmons College, School of Library & Information Science

chris@simmons.edu

- OBJECTIVE
This case study aims to identify data management needs in archaeological research by examining one project's current practices.

- CONTEXT
Tel Kabri was a Middle Bronze Age palace near the Mediterranean coast. Excavations started in the 1980s, and apply a range of technologies and methods to gain a holistic understanding of daily life and trade at Kabri.

- MODULES FOR RESEARCH DATA

 Types, Formats, and Storage of Data
 - Data stored in paper notebooks, databases, and spreadsheets
 - Extremely large quantities of raw and processed data

 Data Storage, Backup, and Security
 - Strict long-term data storage requirements from Israel Antiquities Authority, which pose access issues

 Data Sharing & Reuse Policies
 - Use of cloud-based applications for data sharing

 Repositories, Archiving, and Preservation
 - Need to digitize data from 30+ years and standardize formats
 - Material will be permanently held by foreign government agency

- METHODS
An interview instrument, based on the Digital Curation Centre’s Checklist for a Data Management Plan 4.0, was developed and used in an interview with lead staff to focus on understanding the project's data workflow throughout the data lifecycle.

- ARCHAEOLOGICAL RESEARCH PRODUCTS

 Documents
 - Field reports
 - Articles and presentations
 - Lab notes

 Data Sets
 - Artifact catalogs
 - Locus sheets
 - C-14 dating results
 - Chemical analysis results

 Images
 - Photographs & orthophotographs
 - Technical drawings
 - Artifact illustrations

 Virtual Archaeology
 - Remote sensing data (e.g., LiDAR)
 - 3D scans and models
 - GIS datasets

 Cultural Material
 - Pottery sherds
 - Mosaics
 - Reconstructed vessels

- RECOMMENDED DATA MANAGEMENT PLAN

 Types, Formats, and Stages of Data
 - Data will be imported to software that can manage multiple file types, assign metadata, and provide versioning control

 Data Storage, Backup, and Security
 - All data will be duplicated and stored in a U.S.-based repository or cloud-based storage service

 Data Sharing & Reuse Policies
 - Re-use is subject to approval of the PIs and may be requested by contacting the PIs or the Israel Antiquities Authority

 Repositories, Archiving & Preservation
 - Data in paper notebooks will be digitized
 - Data will be stored in open-source formats where possible
 - Israel Antiquities Authority will be responsible for storing, archiving, and preserving all materials

- CONCLUSIONS
Archaeology as a discipline is centered on the importance of context and data preservation. Partnering with archaeologists may allow LIS professionals to pursue a model for global data services that addresses the complexities of collecting data in foreign countries, incorporating legacy data, and preserving multiple data types.

- ACKNOWLEDGEMENTS
- Alex Ratzlaff & the Tel Kabri Archaeological Project
- Elaine Martin, Regina Fisher Raboin & Julie Goldman, Simmons LIS 432G Fall 2015

- ARCHAEOLOGICAL DATA WORKFLOW

<table>
<thead>
<tr>
<th>Data Collection In the Field</th>
<th>In the Onsite Lab</th>
<th>Post-Excavation</th>
<th>Consultation</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locus data recorded in Excel, accessed on a tablet and stored in the cloud</td>
<td>Graduate students build excel spreadsheets to catalog artifacts</td>
<td>Artifacts processed; packed for storage and preservation</td>
<td>Specialists produce additional data from remote sensing, chemical analysis, 3D modeling, and dating</td>
<td>Preliminary field report written and published on institutional website</td>
</tr>
<tr>
<td>Architectural features are excavated, numbered, and drawn to scale</td>
<td>Artifacts pre-processed for laboratory analysis</td>
<td>Selected vessels reconstructed</td>
<td></td>
<td>Season reports and copies of collected data submitted to Israel Antiquities Authority as required by permit</td>
</tr>
<tr>
<td>Files are synced twice per day using mobiles as hotspots for offsite collaborators to use</td>
<td>Data from across seasons is reviewed, compared, and analyzed</td>
<td>Data made available to other researchers upon request</td>
<td></td>
<td>Articles written and submitted for publication</td>
</tr>
<tr>
<td>High-resolution images (up to 1,000/day) are taken and later transferred to portable hard drives</td>
<td></td>
<td>Funding applications for the next season submitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artifacts are collected, labeled, and sent to onsite lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples for residue analysis, floatation, and dating are collected, labeled, transported to the onsite lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>