4-3-2011

Innate immune sensing of DNA

Shrutie Sharma
University of Massachusetts Medical School, shrutie.sharma@umassmed.edu

Katherine A. Fitzgerald
University of Massachusetts Medical School, katherine.fitzgerald@umassmed.edu

Follow this and additional works at: http://escholarship.umassmed.edu/infdis_pp

Repository Citation

http://escholarship.umassmed.edu/infdis_pp/131

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Infectious Diseases and Immunology Publications and Presentations by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Innate Immune Sensing of DNA

Shruti Sharma, Katherine A. Fitzgerald*

Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America

DNA Is a Potent Activator of Innate Immunity

When a pathogen attacks, the immune system rapidly mobilizes host defenses in order to reduce the microbial burden and limit damage to the host [1]. Innate immunity is the first line of defense and relies on germ line-encoded pattern recognition receptors (PRRs) such as the Toll-like receptors (TLRs), which sense microbial products that are not normally found on or in mammalian cells. The considerable potency of nucleic acids as triggers of the innate immune response has gained appreciation over the last few years. In particular, nucleic acid sensing of viruses is central to anti-viral defenses through recognition of viral genomes or nucleic acids generated during viral replication. Distinct classes of nucleic acid sensing molecules have been uncovered that function in different cell types and subcellular compartments to coordinate innate defenses (reviewed in [2]).

While recognition of RNA molecules is dependent on members of the TLR family and cytosolic RNA helicases, the mechanisms underlying the sensing of DNA have been less well defined. It has been known for over a decade that DNA, the most recognizable resident of the TLR family and cytosolic RNA helicases, the mechanisms underlying the sensing of DNA have been less well defined. It has been known for over a decade that DNA, the most recognizable unit of life, is a potent inducer of inflammatory responses in many mammalian cell types. The discovery of TLR-9, a receptor for hypomethylated CpG-rich DNA, partially explained these findings [3]. TLR9 is localized to the endosomal compartment and in humans is expressed in B cells as well as in plasmacytoid dendritic cells (pDCs). However, it has become clear that the immune stimulatory activity of microbial DNA was not compromised in many cell lines lacking TLR9 [4]. These observations prompted new efforts to understand how DNA triggers immune responses, an endeavor that has led to the discovery of several new DNA recognition receptors and fresh insights into infectious as well as autoimmune diseases.

There Are Multiple Receptors for Microbial DNA

A significant effort from many laboratories has highlighted the importance of cytosolic DNA sensing in the innate immune response. At least six intracellular receptors have been implicated to date. These include DNA-dependent activator of interferon (IFN)-regulatory factors (DAI) (also called Z-DNA-binding protein 1, ZBP1) [5], absent in melanoma 2 (AIM2) [6–9], RNA polymerase III (Pol III) [10,11], leucine-rich repeat (in Flightless I) interacting protein-1 (Lrrfip1) [12], DExD/H box helicases (DHX9 and DHX36) [13], and most recently, the IFN-inducible protein IFI16 [14]. DAI was the first to be implicated in synthetic B- and Z-form dsDNA recognition [5]; however, the role of DAI is still unclear, as DAI-deficient mice and cells coordinate normal immune responses to DNA [13]. Cyttoplasmic dsDNA also triggers IFN production via RNA Pol III, which transcribes the DNA into 5′-ppp RNA, a ligand for the RNA helicase RIG-I [10,11]. In pDCs, DHX9 and DHX36 contribute to cytosolic CpG-DNA and HSV-1-driven IFN responses [13], which likely account for previously reported TLR9-independent cytokine responses to some DNA viruses [12]. Lrrfip1 appears to bind both DNA and RNA; however, Lrrfip1 does not regulate the transcription factors that drive IFN gene transcription, but rather signals a co-activator pathway involving β-catenin and CBP/p300 histone modifying complexes to enhance the transcription of type I IFNs in the nucleus [16]. DNA from Listeria monocytogenes and RNA from vesicular stomatitis virus (VSV) activate this Lrrfip1-β-catenin pathway to mediate these effects.

Immune responses to DNA are not restricted to type I IFN-inducing pathways: cytosolic DNA also activates caspase-1-dependent maturation of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18. This pathway is mediated by AIM2, a PYHIN (Pyrin- and HIN200-domain-containing) protein. Recent evidence from knockout studies has revealed the importance of AIM2 in host defense to cytosolic bacteria such as Francisella spp., as well as DNA viruses such as mouse cytomegalovirus (reviewed in [17–20]). The newest receptor identified, IFI16, binds viral DNA and is critical in the immune response to certain DNA viruses [14]. Like AIM2, IFI16 is a PYHIN protein that binds viral DNA via HIN domains; however, IFI16 does not appear to associate with ASC to regulate IL-1β maturation. Rather, IFI16 activation induces IFN-β and inflammatory cytokine production in response to cytosolically administered viral DNA or HSV1 infection.

Distinct Classes of DNA Sensors Engage Distinct Signaling Complexes

Most of these DNA sensors utilize a subset of adapter molecules, which relay signals to NF-κB and members of the interferon regulatory factor (IRF) family. TLR9 as well as DHX9 and DHX36 recruit MyD88 to activate IFN production in pDCs in response to DNA. In contrast, recognition of DNA by RNA-Pol III generates an RNA intermediate, which signals via RIG-I and MAVS. In the case of IFI16, the endoplasmic reticulum–resident protein stimulator of interferon genes (STING) relays signaling downstream [21]. Whether STING binds IFI16 directly or merely acts as a signaling intermediate for this pathway is unclear. AIM2 triggers caspase-1 activation via the PYD domain containing adapter molecule ASC. Although IFI16 also contains a PYD domain, it does not appear to utilize ASC for IFN production. It is likely that the DAI pathway also involves STING, although this


Editor: Hiten D. Madhani, University of California San Francisco, United States of America

Published: April 21, 2011

Copyright: © 2011 Sharma, Fitzgerald. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by grants from the NIH (AI057497, AI64349, AI083713, and AI079293) awarded to KAF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kate.fitzgerald@umassmed.edu
Cytosolic DNA Recognition Pathways Also Contribute to the Pathogenesis of Autoimmune Disease

While DNA recognition receptors and associated signaling pathways are part of the normal immune response to infection, self DNA that gains access to compartments where these sensors are localized can also trigger inflammation, with deleterious consequences for the host (reviewed in [1]). Systemic lupus erythematosus (SLE) is one of the first autoimmune diseases where aberrant self-DNA recognition and type I IFNs play a role in disease pathogenesis. DNA and RNA complexed with autoantibodies trigger immune activation, leading to autoantibody production and significant cell death. Here, TLR7- and TLR9-sensing pathways in autoreactive B cells and pDCs appear to be central to disease pathogenesis [1]. Mutations in enzymes that normally degrade DNA have been linked to SLE and other diseases. For example, defective clearance of extracellular nucleic acids from dying cells due to deficiency or mutation of DNAse I causes a lupus-like syndrome in mice and humans [22,23]. The sensing of accumulated DNAase I substrates is unclear but likely involves TLR-independent but dependent on IFR3 and IFR7. It is likely that one or more of the DNA sensors described above account for these responses. Another type of deoxyribonuclease, DNAse III, also called 3’ repair exonuclease 1 (TREX1), is found on the endoplasmic reticulum and has been shown to digest...
cell-intrinsic DNA generated as a result of reverse transcription from endogenous retroelements. Under normal circumstances TREX1 prevents the accumulation of this reverse transcribed DNA [26]. However, in situations where TREX1 is non-functional, DNA accumulates and can lead to activation of cytokine sensing pathways. Mutations in TREX1 are found in patients with Aicardi-Goutières syndrome (AGS) and chilblain lupus, diseases that clinically resemble congenital viral infections [26,27]. Mutations in the sterile a motif (SAM) domain and HD domain-containing protein 1 (SAMHD1) are also linked to this disease [27,28]. Although there is no direct evidence linking SAMHD1 to cytosolic DNA sensing per se, it is likely that SAMHD1 also acts to counterbalance cytosolic DNA sensing and/or signaling, perhaps by interfering with one or more of the sensors above.

There Are Still Major Unknowns in the World of DNA Sensing

Fresh new insights into infectious as well as autoimmune diseases have been gained as a result of the studies on DNA sensing and signaling pathways. While there has been great progress in this area, many important questions arise from these discoveries. How these different sensors coordinate cell type–specific and or species-specific responses to DNA is still a major question and undoubtedly the focus of future research efforts in this area. Another key issue to be resolved is how DNA ligands, which are often enclosed in membrane-bound compartments (e.g., DNA viruses replicating in the nucleus), meet these cytokotic receptors. The identification of TREX1 as well as SAMHD1 suggests that in healthy cells, tightly controlled DNA levels prevent engagement of these pathways. It is likely that additional counter regulatory mechanisms that dampen these responses will be uncovered. Moreover, it is also likely that future discoveries will unveil mechanisms by which pathogens inactivate these defenses to prevent the immune response from sampling their genomes and turning on anti-viral defenses. Further characterization of these DNA sensing and counter regulatory mechanisms is likely to impact our understanding of common autoimmune and autoinflammatory diseases as well as build a framework for our understanding of infectious diseases. Future discoveries in this area will no doubt unveil new opportunities for therapeutic interventions in infectious and autoimmune disease.

Acknowledgments

We apologize to those in the field whose work was not cited here owing to space limitations.

References