3-24-2012

Transfusion-Related Acute Lung Injury during Liver Transplant: Case Report

Nathanael Slater
University of Massachusetts Medical School, nathanael.slater@umassmemorial.org

Nicholas C. Watson
University of Massachusetts Medical School, nicholas.watson@umassmed.edu

Follow this and additional works at: http://escholarship.umassmed.edu/anesthesiology_pubs

Part of the [Anesthesiology Commons](http://escholarship.umassmed.edu/anesthesiology_pubs)

Repository Citation
Slater, Nathanael and Watson, Nicholas C., "Transfusion-Related Acute Lung Injury during Liver Transplant: Case Report" (2012).
Anesthesiology Publications and Presentations. 117.
http://escholarship.umassmed.edu/anesthesiology_pubs/117

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Anesthesiology Publications and Presentations by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Introduction

Transfusion-related acute lung injury (TRALI) is defined as noncardiogenic pulmonary edema temporally related to the transfusion of blood products. We present a patient who, while undergoing orthotopic liver transplantation, developed acute pulmonary edema within minutes of administration of fresh frozen plasma (FFP).

Intraoperative Course

A 71-year-old female presented for orthotopic liver transplantation. She was brought to the operating room and underwent uneventful induction of general anesthesia, vascular access placement, and tracheal intubation. The operative field was noted to have continued bleeding and blood products were administered to improve hemostasis. Within minutes of administration of FFP, copious amounts of pale yellow, frothy fluid filled the endotracheal tube and the patient’s oxygen saturation dropped from 100% to 90%. The patient was placed on 100% FiO2, intermittent suctioning removing 1L of fluid, and IV furosemide was given. Hemodynamics and oxygenation stabilized, the operation was completed without further difficulty, including transfusion of additional blood products.

SICU Course

The patient arrived in the SICU on 100% FiO2 and 10 of PEEP. Vasopressin and norepinephrine were being administered due to persistent hypotension, likely secondary to large intraoperative volume shifts during the procedure (approximately 7 liters of ascites were drained from her abdomen). Over the next 36 hours, the goal of therapy shifted from volume resuscitation to diuresis and weaning from mechanical ventilation. By the end of post-op day #2, the patient had a tracheostomy placed post-op day #6. She was successfully liberated from mechanical ventilation the next day. The remainder of her hospital course was uneventful and she was discharged to rehab three weeks later. As of this past January, on follow-up in transplant clinic, she is doing well, has a healthy appetite, and is able to participate in the day to day activities of her family life. She has had multiple types and scores done and her antibody screen remains persistently negative.

TRALI: Differential diagnosis

The differential diagnosis of TRALI includes transfusion-associated circulatory overload (TACO), left ventricular failure, exacerbation or progression of ALI from another cause, ARDS, sepsis, trauma, aspiration pneumonia or pneumonia. The patient had no prior ALI, no active infections, and had not been subject to trauma. Intraoperative TEE demonstrated normal function of the left and right ventricles. TACO was ruled out on the basis of preoperative hypotension, removal of 7 L of ascites, a normal TEE, no changes on EKG, and a temporal relationship with the transfusion of 2 units of FFP.

TRALI: Figure 1. Intraoperative Diagnosis

At left: One of two containers of pulmonary edema suctioned from the patient’s ETT.

At right: Sequential ABGs obtained intraoperatively and immediately post-op. Induction was at 6:45 AM, transfusion of FFP occurred at 6:54 AM. FiO2 at induction was 40% with 5 of PEEP on volume cycled ventilation. The second ABG is at 05:51, at which time copious amounts of fluid were being removed from the ETT via suction. FiO2 was 100%, PEEP 15. Post-operatively, almost 12 hours later, ventilation, oxygenation, and respiratory mechanics had improved significantly. The patient was on 60% FiO2 with 5 of PEEP.

<table>
<thead>
<tr>
<th>ABG</th>
<th>Post-Induction</th>
<th>Onset of TRALI</th>
<th>Post-op</th>
</tr>
</thead>
<tbody>
<tr>
<td>FiO2</td>
<td>40%</td>
<td>100%</td>
<td>60%</td>
</tr>
<tr>
<td>pH</td>
<td>7.32</td>
<td>7.11</td>
<td>7.36</td>
</tr>
<tr>
<td>PaCO2</td>
<td>38</td>
<td>59</td>
<td>36</td>
</tr>
<tr>
<td>PaO2</td>
<td>138</td>
<td>129</td>
<td>108</td>
</tr>
<tr>
<td>HCO3</td>
<td>19.2</td>
<td>16.2</td>
<td>20</td>
</tr>
<tr>
<td>O2 sat%</td>
<td>99</td>
<td>98</td>
<td>100</td>
</tr>
</tbody>
</table>

TRALI: Figure 2. Imaging

At left: Pre-op demonstrating mild left lower lobe collapse, but otherwise clear lungs.

At right: CR immediately post-op, showing diffuse bilateral infiltrates consistent with pulmonary edema.

TRALI: Definition and Current Concepts

Brittingham reported the first link between symptoms of ALI, transfusion and leukoagglutinins in 1957. The term TRALI was coined by Popovsky in 1983 after describing a series of cases of ALI in association with leukoagglutinins in the blood component. Partially because of vigilance in preventing the spread of TRALI, the Blood and Transfusion Safety Act of 1978 established the National Heart, Lung, and Blood Institute convened a panel to provide a clinically useful definition which is, “new ALI occurring during or within 6 hours after a transfusion, in patients with or without risk factors for ALI other than transfusion.” There are two theories as to how injury to the lung occurs in relation to transfusion. One is the “Two Hit Hypothesis” which involves immune priming and the introduction of a TRALI producing agent. Priming sensitizes the vascular endothelium to a trigger which may be the same agent at a higher dose or another agent entirely. The trigger in TRALI appears to be lipids from stored blood. The “Antibody Hypothesis” focuses on donor derived anti-leukocyte antibodies that trigger increased vascular permeability in the lung. HLA Class I and II from female, multiparous donors have been implicated in cases of TRALI. The components with the highest risk of producing TRALI are FFP and platelets. Treatment is supportive, with sequelae resolving within 96 hours of onset. The incidence of TRALI in liver transplant patients is 1.3% and was found to be associated with plasma-containing products only (FFP, platelets). Rate of infection was directly related to PRBC administration in a dose dependent manner. Given the complications related to transfusion, it is prudent to minimize transfusion of blood products as much as possible.

References

2. Lacey M, Cooper IA, Medley M. Transfusion Related Acute Lung Injury-A Review. Chest 2004; 126; 2462-2473
3. Gillis BM, Looney MR. Experimental Models of TRALI. Transfusion Med Rev 2011; 25(1); 1-11

Abbreviations

ALI: acute lung injury
ARDS: adult respiratory distress syndrome
CAH: chronic allograft nephropathy
CXR: chest x-ray
CPAP: continuous positive airway pressure
CT: computerized tomography
CR: creatinine
CVP: central venous pressure
DPL: double lumen endotracheal tube
FFP: fresh frozen plasma
FiO2: fraction of inspired oxygen
HCO3: bicarbonate concentration
H2O: water
TRALI: transfusion-associated acute lung injury