May 22nd, 4:30 PM - 6:00 PM

CD81/CD9 tetraspanins aid plasmacytoid dendritic cells in recognition of HCV-infected cells and induction of IFNα

Shuye Zhang
University of Massachusetts Medical School, shuye.zhang@umassmed.edu

Karen Kodys
University of Massachusetts Medical School, Karen.Kodys@umassmed.edu

Gyongyi Szabo
University of Massachusetts Medical School, gyongyi.szabo@umassmed.edu

Follow this and additional works at: http://escholarship.umassmed.edu/cts_retreat

Part of the Digestive System Diseases Commons, Gastroenterology Commons, and the Immunology and Infectious Disease Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.


This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Recognition of hepatitis C virus (HCV)-infected hepatocytes and interferon (IFN) induction are critical in antiviral immune response. We hypothesized that cell-cell contact between pDCs and HCV-infected cells was required for IFN\(\alpha\) induction via involvement of cell surface molecules. Co-culture of human peripheral blood mononuclear cells (PBMCs) with genotype 1a full length HCV genomic replicon cells (FL) or genotype 2a JFH-1 virus infected hepatoma cells (JFH-1), not with uninfected hepatoma cells (Huh7.5), induced IFN\(\alpha\) production. Depletion of pDCs from PBMCs attenuated IFN\(\alpha\) release and purified pDCs produced high levels of IFN\(\alpha\) after co-culture with FL replicons or JFH-1 infected cells. IFN\(\alpha\) induction by HCV-containing hepatoma cells required viral replication, direct cell-cell contact with pDCs, and receptor-mediated endocytosis. We determined that the tetraspanin proteins, CD81 and CD9 and not other HCV entry receptors were required for IFN\(\alpha\) induction in pDCs by HCV infected hepatoma cells. Disruption of cholesterol-rich membrane microdomains, the localization site of CD81 or inhibition of CD81 downstream molecule, Rac GTPase, inhibited IFN\(\alpha\) production from co-cultures. IFN\(\alpha\) production by HCV infected hepatoma cells was decreased in pDCs from HCV infected patients compared to normal controls. We found that pre-exposure of normal PBMCs to HCV viral particles attenuated IFN\(\alpha\) induction by HCV infected hepatoma cells or TLR ligands and this inhibitory effect could be prevented by an anti-HCV E2 blocking antibody. In conclusion, our novel data show that recognition of HCV-infected hepatoma cells by pDCs involves CD81/CD9-associated membrane microdomains and induces potent IFN\(\alpha\) production.