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Abstract
Alcoholic liver disease (ALD) is one of the leading causes 
of liver diseases and liver-related death worldwide. Of 
the many factors that contribute to the pathogenesis 
of ALD, gut-derived lipopolysaccharide (LPS) plays a 
central role in induction of steatosis, inflammation, 
and fibrosis in the liver. In this review, we discuss the 
mechanisms by which alcohol contributes to increased 
gut permeability, the activation of Kupffer cells, and the 
inflammatory cascade by LPS. The role of the Toll-like 
receptor 4 (TLR4) complex in LPS recognition and the 
importance of the TLR4-induced signaling pathways are 
evaluated in ALD. 
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INTRODUCTION
The clinical spectrum of  alcoholic liver disease (ALD) 
includes alcoholic fatty liver, alcoholic steatohepatitis, 
alcoholic cirrhosis (Laennec’s cirrhosis), and increased 
risk of  hepatocellular carcinoma[1,2]. The pathomecha-
nism of  ALD involves complex interactions between 
the direct effects of  alcohol and its toxic metabolites 
on various cell types in the liver, induction of  reactive 
oxygen species (ROS), upregulation of  the inflammatory 
cascade, and other cell-specific effects in the liver[3,4]. 
Lipopolysaccharide (LPS), also known as endotoxin, has 
been identified as a major factor in the pathogenesis of  
ALD. Indeed, LPS can lead to liver steatosis, as it in-
duces inflammation and contributes to cirrhosis, which 
are all features of  ALD[5,6]. These effects of  LPS are 
manifested in the various cell types in the liver and the 
source of  LPS appears to be the gut in ALD, resulting 
from alcohol-induced disturbance of  gut permeability. 
At the cellular and molecular level, LPS is recognized 
by the Toll-like receptor 4 (TLR4) complex and induces 
specific intracellular activation pathways. This review will 
focus on the role of  LPS in ALD and will summarize 
the current state of  art on alcohol-related changes in the 
gut-liver axis.

Gut-liver axis
The gut is a habitat for billions of  microorganisms and 
the gut mucosal epithelium serves as a barrier between 
microbiota and gut lumen[7]. LPS (endotoxins) derived 
from Gram-negative bacteria in the intestinal microflora 
normally penetrate the mucosa only in trace amounts, 
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enter the portal circulation, and become cleared in the 
liver to maintain the control of  immune homeostasis. 
Resident macrophages (Kupffer cells) and hepatocytes 
both contribute to this process through different LPS 
recognition systems[3,8-10]. There is a positive correlation 
between liver dysfunction and the occurrence of  bacte-
rial translocation[11-14], and the clearance of  LPS from the 
circulation is decreased in states of  hepatic dysfunction, 
such as cirrhosis[15]. Studies in animals suggest that the 
liver quickly removes about 40%-50% of  an intravenous 
dose of  LPS from the bloodstream[16,17]. Hepatic uptake 
and detoxification is important for preventing systemic 
reactions to blood-borne LPS. It has been proposed that 
LPS initially is taken up by Kupffer cells and then by 
hepatocytes[18]. LPS is removed via several mechanisms, 
including molecules that bind LPS and prevent it from 
activating TLR4, enzymes that degrade the lipid A moi-
ety to decrease its activity, inactivation of  LPS following 
uptake into the liver and spleen, and cellular adaptations 
that modify target cell responses[19]. Another mechanism 
for LPS neutralization is by serum lipoproteins, HDL, 
LDL, VLDL, and chylomicrons, apolipoproteins apoE 
and apoA-I LPS[20-22]. All of  these mechanisms can 
chaperone endotoxin to hepatocytes, Kupffer cells, or 
sinusoidal endothelial cells, resulting in clearance of  LPS 
without significant inflammatory cell activation.

ALD and endotoxin
The role of  LPS in alcoholic liver injury has been shown 
in several studies[12,23,24]. The importance of  gut-derived 
endotoxin in ALD was suggested by experiments where 
treating the animals either with antibiotics or with lacto-
bacilli to remove or reduce the gut microflora provided 
protection from the features of  ALD[12,25,26]. In mice and 
rats, circulating endotoxin levels were increased after 
chronic alcohol feeding[27,28] and plasma endotoxin levels 
were also increased in patients with ALD compared to 
normal subjects[29]. The persistence of  endotoxin not 
only activates the liver immune cells but also affects the 
function of  liver parenchymal cells. 

The progression of  ALD is a complex phenomenon, 
as it not only results from the direct effects of  alcohol 
and its metabolites, but other factors also play an impor-
tant role in its pathogenesis, such as leaky gut, which re-
sults in endotoxemia[30]. Both chronic ethanol- mediated 
microbial proliferation[31,32] and acetaldehyde-mediated 
opening of  intestinal tight junctions (TJs)[33] enhance the 
passage or release of  endotoxins into the intestinal lu-
men, which are later transported to liver. However, when 
excess amounts of  endotoxin are not cleared efficiently 
by the liver and accumulate in blood circulation, innate 
immune cells, including Kupffer cells, are activated, lead-
ing to the release of  various pro-inflammatory cytokines, 
chemokines, and other factors[34,35]. 

Kupffer cell activation has been identified as one of  
the key elements in the pathogenesis of  alcoholic ste-
atohepatitis. Studies in mice and rats demonstrated that 

inactivation of  Kupffer cells with gadolinium chloride or 
clodronate injection can almost fully ameliorate alcohol-
induced liver disease[36,37]. These observations led to 
the currently accepted model of  ALD, where Kupffer 
cell activation by gut-derived endotoxin, induction of  
chemokines such as MCP-1, and upregulation of  the 
inflammatory cascade represent a central component of  
the pathomechanisms of  ALD (Figure 1).

MECHANISMS OF GUT BARRIER 
DISRUPTION BY ALCOHOL 
The mechanisms underlying the disruption of  the intes-
tinal barrier by alcohol appear to be at multiple levels, 
including disruption of  the gut barrier and changes in 
microbial flora.

Disruption of gut integrity by alcohol and its metabolites
Tight junctions are scaffolds of  various transmembrane 
proteins (e.g. claudins, occludin, JAMs, and tricellulin) 
and a complex network of  adaptors proteins that cross-
link junctional membrane proteins (i.e. ZO-1/2/3, PATJ, 
PAR-3, and PAR-6) to the actin cytoskeleton as well as 
to different intracellular signaling components. Both al-
cohol and its metabolites affect the integrity of  TJs.

Several studies in the literature suggest the role of  
acetaldehyde (one of  the metabolites of  alcohol) in 
increasing intestinal permeability[30,38,39]. Acetaldehyde 
causes the redistribution of  tight junction proteins (oc-
cludin and ZO-1) and adherens junction (E-cadherin and 
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Figure 1  Mechanisms of alcohol induced liver damage. Alcohol consump-
tion alone, or with its metabolites, disrupts the gut integrity by various mecha-
nisms, including increased reactive oxygen species (ROS), inducible nitric 
oxide synthase (iNOS), alteration of microRNAs, proliferation of Gram-negative 
bacteria, and changes in bacterial species. These factors alone, or in combina-
tion, mediate increased gut permeability and subsequent bacterial or microbial 
translocation into intestinal lumen and thus an increase in lipopolysaccharide 
(LPS) in the portal circulation. The excess of LPS in the liver affects immune, 
parenchymal, and non-immune cells and in response there is release of various 
inflammatory cytokines, and recruitment of neutrophils and other inflammatory 
cells. Persistence of the above mentioned factors are hallmark of alcoholic liver 
disease (ALD).



β-catenin) proteins from the intercellular junctions[40,41]. 
Furthermore, acetaldehyde increases the tyrosine phos-
phorylation of  ZO-1, E-cadherin, and β-catenin, with-
out affecting tyrosine kinase activity[40]. Acetaldehyde also 
disrupts the interactions between E-cadherin, β-catenin, 
and PTP1B, which are the vital components of  adherens 
junctions and epithelial cell-cell adhesion[42]. These stud-
ies indicate the central role of  acetaldehyde in disruption 
of  gut integrity, however, not much is known about the 
effects of  other metabolic products of  alcohol on gut 
permeability.

Increased expression of  inducible nitric oxide syn-
thase (iNOS) is another factor by which alcohol disrupts 
the intestinal barrier function. Increase in iNOS, NO, 
and superoxide correlates with an increase in nitration 
and oxidation of  tubulin, causing increased levels of  dis-
assembled tubulin that subsequently damage the micro-
tubule cytoskeleton and result in disruption of  barrier 
function in alcohol treated CaCo2 cells[43,44]. NF-κB is 
involved in oxidation-induced upregulation of  iNOS as 
well in nitration and oxidation of  cytoskeleton[45]. Inter-
estingly epidermal growth factor has a protective role in 
intestinal barrier function via downregulation of  iNOS 
activity, which results in the stabilization of  cytoskel-
eton[46-48].

Not only chronic alcohol intake results in the disrup-
tion of  intestinal barrier, but acute alcohol consumption 
also damages intestinal mucosal membrane, as reported 
in a rat model[49]. In a mouse model, a single dose of  
acute ethanol (6 g/kg) causes injury to the mucosal lin-
ing of  the small intestine[50].

Exploitation of mircoRNAs (miRs) by alcohol to target 
the tight/adherent junction proteins
Another mechanism by which alcohol increases intesti-
nal permeability is by indirectly affecting tight junction 
proteins through miRs. In particular, a recent study 
showed the involvement of  miRs in gut barrier disrup-
tion in alcohol treated cells. miR-212 targets the ZO-1 
protein negatively, thus increasing intestinal permeabil-
ity[51]. Consistent with this in vitro observation, higher 
levels of  miR-212 and lower amounts of  ZO-1 protein 
were found in colon biopsy tissues from patients with 
ALD[51]. However, more work needs to be done to ex-
plore the role of  miRs in regulating tight and adherent 
junction proteins in ALD.

Change or increase in gut microflora by alcohol 
Chronic alcohol abuse not only causes gut leakiness, but 
also affects the composition of  colonic mucosa-associ-
ated bacterial microbiota in alcohol-fed rats[52]; however, 
the latter finding needs to be validated in human subjects. 
While there is evidence of  bacterial overgrowth (Gram 
negative) in the gut of  alcoholics[53], little is known about 
how alcohol consumption is related to increased intestinal 
bacterial growth. Interestingly, we do not know whether 
alcohol consumption affects Gram-positive bacteria, 
which are the source of  peptidoglycan. Nevertheless, 

increased peptidoglycan levels were found in mice after 
prolonged administration of  alcohol in their drinking 
water. Interestingly, this mode of  alcohol administration 
does not result in ALD[54]. 

Endotoxin receptors and 
signaling pathways
LPS is a major component of  the outer membrane of  
Gram-negative bacteria and it comprises three distinct 
parts: a carbohydrate “O-antigen”, the oligosaccharide 
core region, and a lipid portion “lipid A”. Only the lipid 
A moiety is toxic and is responsible for the activation 
of  the innate immune response in mammals[55]. LPS and 
other bacterial cell wall constituents are released during 
bacterial multiplication or when bacteria die or lyse[56]. 
As soon the immune system recognizes the presence of  
microorganisms (bacteremia) or LPS in the blood stream 
(endotoxemia), various proinflammatory cytokines, 
chemokines, ROS, and other mediators are released to 
activate monocytes, macrophages, and to recruit lympho-
cytes. The liver plays an important role in the body’s de-
fense mechanism against bacteria and bacterial products. 

LPS is recognized by various receptors in the cells. 
CR3 (CD11b/CD18) was the first described LPS recep-
tor[57] in human macrophages. Later on, cluster of  differ-
entiation 14 (CD14) and LPS binding protein (LBP) were 
recognized as receptors for LPS[58]. Recently, myeloid dif-
ferentiation factor-2 (MD-2) was found as another LPS 
binding molecule (direct binding)[59]. However, CD14 
and MD-2 lack a transmembrane domain and, therefore, 
a second receptor is required to activate the signaling 
cascade, which was recently described as TLR4 (indirect 
binding)[60,61]. 

TLR4
Toll receptors were first discovered in Drosophila[62] and 
later on their human homologs were identified[63]. TLR4 
recognizes LPS with the cooperation of  its co-receptors, 
CD14 or MD-2[64,65]. LPS recognition by TLR4 results 
in recruitment of  the adaptor molecules MyD88 and 
TRIF, which each activate separate downstream signal-
ing cascades (Figure 2). Formation of  the TLR4-MyD88 
complex activates the IRAK kinases, which turn on the 
IKK complex to activate NF-κB, which results in in-
creased production of  pro-inflammatory cytokines, such 
as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and 
IL-1β[64]. Activation of  TRIF pathway results in TBK/
IKKe phosphorylation and activation of  the interferon 
regulatory factor-3 (IRF3), which leads to induction of  
Type-Ⅰ interferons (IFNs)[66]. Activation of  both of  the 
pro-inflammatory and Type-Ⅰ IFN pathways by TLR4-
LPS is unique, and evaluation of  these specific pathways 
has recently received attention in ALD. 

The TLR4-LPS signaling pathway plays a critical role 
in alcohol-induced liver injury. Both chronic and acute 
(or binge) alcohol use affect the various components of  
TLR4 signaling[67-71]. The effect of  alcohol use on TLR4 
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signaling was recently reviewed in detail[3]. There is in-
creased expression of  TLR4 and its co-receptors, as well 
as other TLRs, in ALD in mice. Early studies in TLR4 
mutant mice demonstrated protection from early ALD[72] 
and more recent reports using TLR4 deficient mice vali-
dated the important role of  TLR4 in the pathogenesis 
of  ALD[73]. We also investigated the specific role of  the 
MyD88 adapter in ALD and found that MyD88-deficient 
mice were not protected from alcoholic steatosis and in-
flammation. Consistent with the hypothesis that MyD88-
independent, TLR4-mediated, pathways are involved in 
ALD, we found protection from ALD in TLR4-deficient, 
as well as in IRF3-deficient, mice[73]. The role of  IRF3 in 
ALD was also indicated by another study[74].

MD-2
MD-2 is a type Ⅱ acute phase protein and is expressed on 
the surface of  myeloid and endothelial lineage cells[75,76]. 
Although it lacks a transmembrane domain, it attaches 
to the cell surface through its interaction with TLR4[77,78]. 
MD-2 also presents in a soluble form (sMD-2) and is 
secreted by various cells[79,80]. Increased sMD-2 activity is 
found in plasma of  sepsis patients[81,82]. It is postulated 
that at high concentrations, sMD-2 might inhibit endo-
toxin induced cell activation in a similar way to LBP and 
soluble CD14[78,83]. IL-1β regulates the production of  
MD-2 in hepatocytes and myeloid cells[83]. Chronic alcohol 
feeding results in an upregulation of  MD-2 in the liver[73]. 

CD14
CD14 is expressed in various cell types, including mono-
cytes, macrophages, B cells, liver parenchymal cells, and 
some fibroblast cells[84,85]. It is absent in early myeloid 
progenitor cells; however, with maturation, its expres-
sion increases. Human CD14 transgenic mice are hyper-
sensitive to LPS[86], whereas CD14 knockout mice are 

resistant to endotoxin shock[87], indicating its crucial role 
in LPS signaling. CD14 is also present in soluble forms, 
as sCD14 α and sCD14 β, and is secreted by macro-
phages[88] and liver parenchyma cells[89]. 

Alcohol consumption affects CD14 expression and 
plays an important role in LPS induced immune ac-
tivation in alcoholics. Increased expression of  CD14 
is found in Kupffer cells or whole livers of  chronic 
ethanol-fed animals[25,90,91]. A correlation between CD14 
expression and the severity of  ALD has been reported 
in humans and it has been suggested that CD14 is one 
of  risk factor in ethanol-induced pathology[92,93]. Interest-
ingly, acute alcohol treatment also induces CD14 expres-
sion in whole liver cells[94] and CD14-deficient mice were 
protected from alcohol-induced liver steatosis[92].

LBP
LBP is an acute phase protein and is induced by LPS, 
IL-6, and IL-1β[95,96]. Although liver is a major source of  
LBP production, other organs, such as lungs, kidneys, 
and heart, also produce LBP[97]. This protein is present in 
normal serum; however, its levels become elevated dur-
ing acute phase responses[98,99]. LBP catalyzes the transfer 
of  LPS to CD14, and thus enhances the LPS-induced 
activation of  monocytes, macrophages, and other im-
mune cells[100]. Anti-LBP antibodies, together with LPS, 
protected the mice from death[101]. Neutralization of  
LBP protects the host from LPS-induced toxicity, sug-
gesting its critical role in innate immunity[102].

 In addition to its pro-inflammatory role, it also acts 
as an antiinflammatory, where it transfers LPS (Gram 
negative) or LTA (Gram positive) to HDL and other 
lipoproteins, and also aids the neutralization of  LPS[103]. 
The antiinflammatory role of  this protein is well de-
scribed in various reports[99,104-107]. It is postulated that 
low concentrations of  LBP enhance the LPS-induced 
activation of  mononuclear cells, whereas the acute-phase 
rise in LBP concentrations inhibit LPS-induced immune 
cell activation[108].

Not much is known about the role of  LBP in alco-
holics, except one report where its role is described in 
early alcohol-induced liver injury where it enhances the 
production of  cytokines, such as TNF-α. Ethanol fed 
LBP KO mice showed reduced TNF-α expression and 
reduced liver damage[109]. There was no change in endo-
toxin levels of  both wild-type and LBP knockout mice; 
however, decreased steatosis in LBP knockout ethanol-
fed mice was observed[109]. A potential antiinflammatory 
role of  the above mentioned LBPs in the pathogenesis 
of  ALD is yet to be explored. 

In summary, it appears that LBPs and receptors 
modulate the LPS response bifunctionally, either by neu-
tralizing or enhancing its response. 

effects of LPS on the liver
Activation of inflammatory cells in ALD
There is ample evidence for increased inflammatory 
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cascade activation in ALD[3]. Alcoholic steatohepatitis 
is characterized by infiltration of  various inflammatory 
cells into the liver, including neutrophils, leukocytes, 
monocytes, and macrophages and this occurs as a re-
sult of  chemokine activation (e.g. IL-8, MCP-1, and 
MIPs)[110-112]. In humans with alcoholic steatohepati-
tis, serum TNF-α, IL-6, and IL-8 levels are increased 
and there is also evidence for activation of  circulating 
monocytes based on increased TNF-α production and 
increased NF-κB activation[113-115]. Serum levels and liver 
expression of  these LPS-inducible pro-inflammatory cy-
tokines are also increased in animal models of  ALD[73]. 
Isolated Kupffer cells from mice and rats show increased 
production of  TNF-α after chronic alcohol feeding[116] 
and this has been linked to increased TNF-α mRNA 
stability, as well as to upregulation of  Erk, MAPK, and 
Egr-1 kinases[117]. While LPS has been proposed to play a 
major role in Kupffer cell and macrophage activation in 
ALD, in vitro studies in human monocytes/macrophages 
suggest that chronic alcohol exposure itself  can promote 
a pro-inflammatory phenotype and amplify LPS-induced 
pro-inflammatory responses[71]. Our laboratory showed 
that increased LPS responsiveness after chronic alcohol 
exposure in monocytes is due to reduced expression of  
IRAK-M, which is a negative regulator of  TLR4 activa-
tion[71]. Thus, chronic alcohol exposure alone not only 
results in pro-inflammatory activation of  macrophages, 
but also sensitizes cells to LPS-induced pro-inflammatory 
signals[71]. 

Effects of endotoxin on the liver parenchymal and other 
non-immune cells in ALD
TLR4, the LPS receptor, is expressed in all cell types in 
the liver; thus, gut-derived endotoxin can modulate the 
function of  all liver cells in ALD[3]. In hepatocytes, LPS 
can promote apoptosis, particularly in combination with 
other hepatotoxins[118,119]. TLR4 expression in hepatic 
stellate cells (HSC) has been shown to mediate inflam-
matory signaling by LPS and manifests in activation 
of  Jnk kinase and NF-κB[120]. Oxidative stress induced 
by alcohol and its metabolites has also been shown to 
sensitize HSC to LPS-induce activation and subsequent 
induction of  hepatic fibrosis[121,122]. Thus, LPS affects 
hepatocytes as well as HSC, both directly and via inflam-
matory cell activation.

role of gut-liver axis in other 
liver diseases
The balance of  gut microbial flora, intestinal perme-
ability, hepatocyte function, and Kupffer cell activation 
appears to be critical in the maintenance of  normal 
homeostasis (Figure 1). Indeed, increasing evidence sug-
gests an importance for a gut-liver connection in differ-
ent liver diseases where gut-derived LPS delivered to the 
liver through the portal circulation might play a role. For 
example, increased intestinal permeability was detected 

in patients with intrahepatic cholestasis of  pregnancy[123], 
and in hepatitis C virus (HCV)-induced liver injury in 
human immunodeficiency virus infected individuals[124]. 
An increase in serum endotoxin levels was associated 
with pro-inflammatory activation of  circulating mono-
cytes in chronic HCV infection, even in the absence of  
cirrhosis[125]. These observations underscore the impor-
tance of  the gut-liver axis in the pathogenesis of  ALD, 
as well as in other types of  liver injuries.

CONCLUSION
The gut-liver axis, particularly gut-derived endotoxin, 
seems to play a crucial role in the pathogenesis of  liver 
diseases caused by various insults, including alcohol. 
However, the mechanisms and source of  endotoxin in 
liver diseases are not fully understood. The importance 
of  alcohol-induced alterations in the gut and the role of  
the liver in elimination of  gut-derived pathogen-derived 
compounds require further investigation. Furthermore, 
interactions between immune, non-immune, and pa-
renchymal cells, which take place in vivo, contribute and 
determine the progression of  ALD. Understanding the 
role of  TLR signaling and the cell-specific effects of  gut-
derived microbial products will provide new insights, not 
only into the pathomechanisms of  ALD, but might also 
reveal new targets for therapeutic interventions. 
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