The Librarian & the Big Data: Bridging the Gap

Arcot Rajasekar
University of North Carolina at Chapel Hill, rajasekar@unc.edu

Follow this and additional works at: http://escholarship.umassmed.edu/escience_symposium

Part of the Library and Information Science Commons

This work is licensed under a Creative Commons Attribution 4.0 License.

http://escholarship.umassmed.edu/escience_symposium/2014/program/6

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in University of Massachusetts and New England Area Librarian e-Science Symposium by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
The Librarian & the Big Data: Bridging the Gap

Arcot Rajasekar
rajasekar@unc.edu
The University of North Carolina at Chapel Hill
Outline

• Challenges in Big Data
 – Scientific Data Explosion & Role of Librarians

• Projects at UNC
 – Gearing to Meet the Challenges

• Looking Towards the Future
 – Integration of Data, Computing & Networks
Big Data Challenges for Information & Library Science
Let's Start with an Analogy
ILLS - Today
Big Data EveryWhere!

- Lot of data collected and analyzed
 - Web data, e-commerce
 - Scientific projects
 - Commercial/Financial transactions
 - Social Network data
 - Medical & Health Information
How much data?

- Google processes 20 PB a day (2008)
- Wayback Machine has 3 PB (3/2009)
 - Growing at 100 TB/month
- Facebook has 2.5 PB of user data (4/2009)
 - Growing at 30 TB/day
- eBay has 6.5 PB of user data (5/2009)
 - Growing at 50 TB/day
- CERN’s Large Hydron Collider (LHC) generates 15 PB/year
Characteristics of Big Data

• Five Vs -

 – Volume – Exponential Increase in Size & Count
 – Velocity – Speed at which Data is Created, Processed or Used
 – Variety – Multi-dimensionality, arrangement, format, etc.
 – Veracity – Integrity & Fidelity
 – Value – Worth
Paradigm Shift

• **Compute** Intensive to **Data** Intensive
• **Large Actions** on Small Amounts of Data to **Small Actions** on Large Numbers of Data
• **Move Data** to Processing Site (Supercomputer Model)
 Move Process to Data Site (Map-Reduce Model)
• **Function Chaining** to **Service Chaining**
• **Model-based Science** to **Data-based Science** (Data Mining, Knowledge Discovery)
Information Science in the Future

- Organization
- Classification
- Ontologies
- Metadata
- Retrieval
- Management
- Collection building
- Analysis
- Information seeking
- Knowledge Representation
- Human Computer Interaction
- Social Skills
- Information Behavior
- Ethics
- Privacy
- Security
- Information Technology
- Transformation
- Interpretation
- Dissemination
- Application
- Reference Collections
- Information Processing
- Data Mining
- Information Visualization
- Communication Network
- Policy

The List is the Same for Tomorrow – No Different than Today
But Changes are needed to meet the 5Vs
New Methodology, New Way of Thinking, New Processing Paradigms, New Interactions
THE FUTURE IS BRIGHT
Building a Big Data Platform

Integrated Rule Oriented Data Systems (iRODS)
- Life Time Library – Personal Digital Library
- Carolina Digital Repository – Institutional Repository
- DataNet Federation Consortium – National-scale Cross Disciplinary Collaboration
- Data Bridge – Long-tail of Science “Data Communities”
Motivations & Ingredients

• Two Early Projects: 1996 -1999
 – Massive Data Analysis System (MDAS) - DARPA
 – Distributed Object Computation Testbed (DOCT) – DARPA, USPTO, NARA
 – Motivation: Perform data-intensive computation across distributed resources administered by multiple organizations
 – Ingredients:
 • Hide the Data Distribution
 • Virtualize Resources
 • Uniform Access Mechanisms
 – Platform: Storage Resource Broker (SRB) Data Grid

• Multiple Follow-on Projects: 1999 - 2006
 – Transcontinental Persistent Archives Prototype (TPAP) – NARA, NSF
 – National Partnership for Advanced Computing Infrastructure – NSF
 – Others (DOE, DOD, NASA, NIH)
 – Motivation: Federation of multiple data grids for scientific collaboration
 – Ingredients:
 • Associate Metadata
 • Virtualize the User
 • Empower Sharing and Collaboration
 – Platform: Storage Resource Broker (SRB) Federated Data Grid
Motivations & Ingredients (Contd.)

• Paradigm Shift: 2005 - 2013
 – Policy-based Data Management - NARA, NSF
 – Motivation: Improve Customizability and Integrate Distributed Processing
 – Ingredients:
 • Automate Administration
 • Manage with Policy
 • Enable server-side processing
 • Empower User-centric Customization
 • Support Workflows and Computational Services
 – Platform: DICE integrated Rule Oriented Data Systems (iRODS)

• Future: 2012 -
 – 1000s of projects all over the world and growing
 – DataNet Federation Consortium at UNC-Chapel Hill (NSF)
 – Motivation: Sustainability of the iRODS software and extensions
 – Ingredients:
 • Encapsulate domain knowledge in procedures
 • Enable reproducible data driven research
 • Sustainability through Formation of an iRODS Consortium
 – Platform: Consortium iRODS - released early April 2014
iRODS Distributed Data Management
The iRODS Data System can install in a “layer” over existing or new data, letting you view, manage, and share part or all of diverse data in a unified Collection.
Policy-based Collection Management

- **Purpose**
 - Defines: Collection

- **Collection**
 - Has: DATA_ID, DATA_REPL_NUM, DATA_CHECKSUM
 - Has: HasFeature
 - Isa: Digital Object
 - Isa: Attribute
 - Updates: Policy, Procedure

- **Digital Object**
 - Has: HasFeature
 - Isa: Attribute
 - Updates: Policy, Procedure

- **Attribute**
 - Isa: Persistent State Information

- **Property**
 - Isa: Digital Object
 - Isa: Data Type
 - Isa: Integrity
 - Isa: Authenticity
 - Isa: Access control
 - Isa: Completeness
 - Isa: Correctness
 - Isa: Consensus
 - Isa: Consistency

- **Policy**
 - Defines: Policy Enforcement Point
 - Has: SubType
 - Isa: Periodic Assessment Criteria Policy
 - Isa: Policy-based Collection Management

- **Periodic Assessment Criteria Policy**
 - Isa: Policy-based Collection Management
 - Isa: Updates: Policy

- **Procedure**
 - Isa: Policy-based Collection Management
 - Updates: Policy, Procedure

- **Micro-service**
 - Isa: Policy-based Collection Management
 - Isa: Calls: msiGetUserACL, msiSetDataType, msiSetQuota, msiDataObjRepl, msiSysChksumDataObj

- **Operation**
 - Isa: Policy-based Collection Management

- **Workflow**
 - Isa: Policy-based Collection Management
 - Isa: Calls: msiGetUserACL, msiSetDataType, msiSetQuota, msiDataObjRepl, msiSysChksumDataObj
iRODS: Types of Scalability

- **Largest data grid**
 - > 10 Petabytes (French National Institute for Nuclear Physics and Plasma Physics)
 - > 500+ storage resources (Australian Research Collaboration Service)
 - > 15,000 users (the iPlant Collaborative)
 - > 300 million attributes (NASA Center for Climate Simulations)
 - > Inter-continental sharing (Cinegrid – Americas, Asia, Europe)
Data Management Applications

• International projects
 – BaBar, International Neuroinformatics Coordinating Facility, Cyber Square Kilometer Array (radio astronomy), Cinegrid (movies)

• National data grids
 – Australia-ARCS, New Zealand, Portugal, UK, France-IN2P3

• Federal agency archives
 – NOAA National Climatic Data Center, NASA Center for Climate Simulation, National Optical Astronomy Observatories, NSF XSEDE

• Grand challenge research projects
 – iPlant Collaborative, Ocean Observatories Initiative

• Institutional repositories
 – Carolina Digital Repository, UNC-SILS LifeTime Library, Texas Digital Library, French National Library, Broad Institute genomics data grid, Sanger Institute genomics data grid

• Projects in 39 countries, 62 academic institutions in the US
Using the Big Data Platform

Integrated Rule Oriented Data Systems (iRODS)
- Life Time Library – Personal Digital Library
- Carolina Digital Repository - Institutional Repository
- DataNet Federation Consortium – National-scale Cross Disciplinary Collaboration
- Data Bridge – Long-tail of Science “Data Communities”
SILS LifeTime Library Vision

- Inculcate digital collection assembly habits
- Teach insights into policies – hands on
- Provision with micro-services for extraction of metadata
- Provision with indexing mechanisms
- Assignments in class
- Keep beyond the UNC degree program
- Student digital libraries
 - Enable students to build collections of
 - Photographs
 - MP3 audio files
 - Class documents – presentations, projects, homeworks, reading material
 - Video
 - Web site archive
 - Track social media
SILS LifeTime Library

- Resources provided by School of Information and Library Science at UNC-CH
- Replication at RENCI – two copies
- Policies are student driven
- Collections are student assembled:
 - Student collections range from 2 GBytes to 150 Gbytes
 - Number of files from 2000 to 12,000 per student
 - Policies: 5 policies on the average
SILS LifeTime Library Policies

• Library management policies
 – Replication
 – Checksums
 – Versioning
 – Strict access controls
 – Quotas
 – Metadata catalog replication
 – Installation environment archiving

• Ingestion
 – Automated synchronization of student directory with LifeTime Library
 – Automated loading or extraction of metadata
Sample Student Collections (2012)

<table>
<thead>
<tr>
<th># files</th>
<th># metadata</th>
<th>Size</th>
<th>#metadata/file</th>
<th>Collection</th>
<th>Metadata type</th>
<th>Metadata load</th>
</tr>
</thead>
<tbody>
<tr>
<td>2111</td>
<td>8684</td>
<td>16.0 GB</td>
<td>4.1</td>
<td>iTunes</td>
<td>AVUs</td>
<td>XML load</td>
</tr>
<tr>
<td>2734</td>
<td>4500</td>
<td>4.3 GB</td>
<td>1.6</td>
<td>Photo</td>
<td>Tags</td>
<td>Hand</td>
</tr>
<tr>
<td>1109</td>
<td>8174</td>
<td>1.2 GB</td>
<td>7.4</td>
<td>Photo, Music</td>
<td>Tags, AVUs</td>
<td>Hand</td>
</tr>
<tr>
<td>5697</td>
<td>15472</td>
<td>47.0 GB</td>
<td>2.7</td>
<td>iTunes</td>
<td>AVUs</td>
<td>ASCII load</td>
</tr>
<tr>
<td>1692</td>
<td>8098</td>
<td>0.1 GB</td>
<td>4.8</td>
<td>Photo</td>
<td>AVUs</td>
<td>Hand</td>
</tr>
<tr>
<td>125</td>
<td>1100</td>
<td>0.8 GB</td>
<td>8.8</td>
<td>iTunes</td>
<td>AVUs</td>
<td>XML load</td>
</tr>
</tbody>
</table>
Carolina Digital Repository

Policy-Driven Repository Infrastructure project funded by the Institute for Museum and Library Services
Carolina Digital Repository
Ingest Workflow

- Unprocessed Files
 - Curator's Workbench
 - METS Manifest
 - Ingest Service
 - Fedora
 - Staging Storage
 - Archival Storage
 - Access Storage
 - iRODS Grid
 - Web UI
 - Tabular Metadata
 - iRODS Grid

DataNet Federation Consortium Vision

• Enable collaborative research
 – Sharing of data, information, and knowledge

• Build national data cyberinfrastructure
 – Federation of existing data management systems

• Support reproducible data-driven research
 – Encapsulate knowledge in shared workflows

• Enable student participation in research
 – Policy-controlled access to “live” data
Data Driven Science and Engineering

• Collaboration Environments
 – Oceanography – Ocean Observatory Initiative
 • Archiving of climatic data records from real-time sensor data streams, replay of sensor data
 – Engineering – CIBER-U
 • Engineering Digital Library: curation of civil engineering data, student training materials
 – Hydrology - CUAHSI, ...
 • Automation of hydrology research workflows (reproduce, reuse and repurpose)
 – Plant Biology – iPlant Collaboratory
 • Project data I sharing and integration, virtualized metadata services
 – Social Science – Odum Institute
 • Survey data and Statistical data processing
 – Cognitive Science – Temporal Dynamics Learning
 • Inter-team collaboration policies, human data
Knowledge Management

• DFC is exploring three types of knowledge management
 – Encapsulate knowledge needed to enforce a community consensus on shared collections
 • Policies and procedures
 – Encapsulate knowledge needed to automate a research analysis
 • Research workflows
 – Encapsulate knowledge needed for interoperability between data cyberinfrastructure components
 • Micro-services
Data and Model Integration Needed to Support Hydrologic Science

DFC

Physical Data

Weather and Climate Models

Observations

Hydrologic Models

Socioeconomic Data

CUAHSI HIS
A Use Case: National Water Model

Hydrologic scientist have expressed a “grand research challenge” of building a National Water Model for flood and drought applications.

Terrain in the Neuse River Basin, NC constructed from 390 million LiDAR measurements

Flooding in the Mississippi River Basin, August 1993 observed from satellite imagery

Achieving this goal will require a system like DFC to handle the massive data requirements. Can it be done in real-time with streaming data?
Policies at the Center of the DFC

- Policies for automating data management
- Policies for metadata extraction
- Policies for Deletion & redaction
- Policies for collaboration and reuse
- Policies for publication & federation
- Policies for IPR & citations
- Policies for provenance & sustainability
- Policies for change management
- Policies for authentication & authorization
- Policies for archiving, staging & caching
- Policies for replication & synchronization
- Policies for technology migration
- Domain-centric policies
- Policies for analysis and workflow
- Policies for retention & disposition
- Policies for curation & preservation
- Policies for trust
- Policies for education and outreach
- Policies for analysis and workflow
- Policies for technology migration
- Domain-centric policies
The DataBridge Vison

Build a Social Network for Scientific Data – Data as a Citizen

• Long-tail of Science Data
 • Enormous amounts of atomistic, distributed and unconnected dark data!
 • Non homogenous formatting and metadata
 • Gathered by one scientist or a small group
 • Not easily sharable or discoverable.

• Community detection through multi-dimensional sociometric analyses.

• Three Tasks and Challenges:
 - Evaluate the similarity/relevancy of data sets
 - Perform community detection on the resulting set of similarities
 - Provide ingestion, query and access to this multi-dimensional network
The DataBridge: A Social Network for Data
The DataBridge: Simple Social Network Example

- Basic similarity: people who are Facebook friends with me
- Not a lot of additional information
The DataBridge Strategy: Building a Social Network for Scientific Data

• Investigate similarity measures:
 - Data to Data Connections: metadata and derived data about the data set
 - User to Data Connections: metadata about the usage and users of the data set
 - Method to Data Connections: metadata about the analyses of the data set

- Multi-dimensional similarities Examples
 - Eigen values and vector spaces
 - Cosine Similarities
 - Term Frequency and Inverse Doc Frequency
 - Principle Component Analysis
 - Latent Semantic Semantic Analysis
 - Digital Signature Analysis
DataBridge Implementation

- Visualization and Query Clients
- Relevance Engines Including Relevance Algorithms and SNA
- Metadata & Ontology Database
- AMQP Based Message Oriented Middleware
- Data Reformatters
- Network Database
- Data and Meta Data Gatherers
- DataVerse Instances
- iRODS Data Grids
Future Big Data Platforms
Building Informatics for Next-Generation Genomics

TAGCTAGGATCGAAGCA ...

> Genomic data currently for ~3000 patients

Identifying genomic variants relevant to clinical care

Exploring ethical/legal issues around reporting genomic findings

In collaboration with UNC Research Computing, UNC Dept of Medical Genetics, Lineberger Comprehensive Cancer Center, Institute for Pharmacogenetics and Personalized Treatment, UNC High Throughput Sequencing Core, UNC Center for Bioinformatics, DICE Center
End-to-End Clinical Genomics Informatics

- Blood draw to clinical relevant variants
- High performance analysis pipelines
- Large-scale data storage systems
- System-level workflow management
- Laboratory information management systems
- Orchestration around multiple storage and computer systems
- Closed loop system with independent validation paths (CLIA lab and exom chips)
The challenge of storing the genome

- $15 to $75 billion dollars is the cost for disk space alone

- High costs push for limiting sequencing and data deletion
 - Exomic: only store around the genes
 - Genome chip: only store around known variants
 - Delete unaligned reads

- Yet, science is pushing for even more human genomic data
 - Epigenomic data
 - Cancer-specific data from sequencing
 - Micro-organism sequences (e.g., HIV virus) which are captured in human sequence data
 - All these vary over tissue and time
Aggregating Knowledge

Approach:
- Traditional ETL and SQL queries
- Leverages RDBMS strengths

VarDB:
- ~1.5 TB
- Reference Genomes
- Canonical Variants
- Annotations
- Indexes
- Dell PowerEdge 2950 (8 core) 32 Gb RAM
- MD 1000 storage array 750Gb SAS, ~ 4Tb

Other databases
- dbSNP
- NCBI RefSeq
- HGMD (commercial)
- PolyPhen
- Protein Effects
- Other tools...
iRODS gracefully allows for introducing control:

- Data movement and replication
- Metadata standards
- Archival, deletion, and retention
- Integration with workflows, hadoop, databases
- Hiding complexities
- Automation
- …, all policy driven
- …, without breaking the in-place systems
ExoGENI Rack Software Stack
Conclusion

• Challenges in Big Data
 – Scientific Data Explosion & Role of Librarians

• Projects at UNC
 – Gearing to Meet the Challenges

• Looking Towards the Future
 – Integration of Data, Computing & Networks