The Ino80 complex prevents invasion of euchromatin into silent chromatin

Yong Xue
University of California, Los Angeles

Christopher Van
University of Massachusetts Medical School

Suman K. Pradhan
University of California, Los Angeles

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/pmm_pp

Part of the Biochemistry Commons, Developmental Biology Commons, Molecular Biology Commons, and the Molecular Genetics Commons

Repository Citation
Xue, Yong; Van, Christopher; Pradhan, Suman K.; Su, Trent; Gehrke, Jason; Kuryan, Benjamin G.; Kitada, Tasuku; Vashisht, Ajay; Tran, Nancy; Wohlschlegel, James; Peterson, Craig L.; Kurdistan, Siavash K.; and Carey, Michael F., "The Ino80 complex prevents invasion of euchromatin into silent chromatin" (2015). Program in Molecular Medicine Publications and Presentations. 67.
http://escholarship.umassmed.edu/pmm_pp/67

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Program in Molecular Medicine Publications and Presentations by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
The Ino80 complex prevents invasion of euchromatin into silent chromatin

Authors
Yong Xue, Christopher Van, Suman K. Pradhan, Trent Su, Jason Gehrke, Benjamin G. Kuryan, Tasuku Kitada, Ajay Vashisht, Nancy Tran, James Wohlschlegel, Craig L. Peterson, Siaavash K. Kurdistani, and Michael F. Carey

Keywords
Dot1, H3K79 methylation, Ino80, Sir proteins, heterochromatin, silencing

Comments
Copyright © 2015 Xue et al.; Published by Cold Spring Harbor Laboratory Press. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Rights and Permissions
Citation: Genes Dev. 2015 Feb 15;29(4):350-5. doi: 10.1101/gad.256255.114. Link to article on publisher's site

This article is available at eScholarship@UMMS: http://escholarship.umassmed.edu/pmm_pp/67
The Ino80 complex prevents invasion of euchromatin into silent chromatin

Yong Xue, Christopher Van, Suman K. Pradhan, Trent Su, Jason Gehrke, Benjamin G. Kuryan, Tasuku Kitada, Ajay Vashisht, Nancy Tran, James Wohlschlegel, Craig L. Peterson, Siavash K. Kurdistani, and Michael F. Carey

1Department of Biological Chemistry, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095, USA; 2Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA

Here we show that the Ino80 chromatin remodeling complex [Ino80C] directly prevents euchromatin from invading transcriptionally silent chromatin within intergenic regions and at the border of euchromatin and heterochromatin. Deletion of Ino80C subunits leads to increased H3K79 methylation and noncoding RNA polymerase II [Pol II] transcription centered at the Ino80C-binding sites. The effect of Ino80C is direct, as it blocks H3K79 methylation by Dot1 in vitro. Heterochromatin stimulates the binding of Ino80C in vitro and in vivo. Our data reveal that Ino80C serves as a general silencing complex that restricts transcription to gene units in euchromatin.

Supplemental material is available for this article.

Received November 20, 2014, revised version accepted January 16, 2015.

Euchromatin in the yeast Saccharomyces cerevisiae is characterized by Dot1-mediated H3K79 trimethylation [H3K79me3] [Briggs et al. 2002; van Leeuwen et al. 2002; Henry et al. 2003; Wood et al. 2003; Kao et al. 2004; Xiao et al. 2005; Pavri et al. 2006; Shilatifard 2006]. H3K79me3, a mark closely associated with active transcription, is typically present in the coding regions of genes but absent from intergenic regions as well as subtelomeric heterochromatin [Ng et al. 2003; Pokholok et al. 2005], both of which are transcriptionally silent. In heterochromatin, Sir3’s BAH domain binds over H3K79 [Armache et al. 2011] and blocks access of Dot1 to its substrate [Alfaro et al. 2007], but whether this is the only mechanism preventing euchromatin invasion into heterochromatin is not known. It has also been unclear what molecular factor delimits Dot1 to transcribed regions and prevents silent regions flanking genes in euchromatin from being methylated at H3K79 and transcribed. Here we show that the Ino80C chromatin remodeling complex [Ino80C] demarcates units of transcription across the genome, confining gene activity to gene bodies and away from silent regions, including heterochromatin.

Ino80C is conserved from yeast to humans [for review, see Conaway and Conaway 2009] and blocks mononucleosomes to a central position on a DNA template while tightly organizing nucleosomes within arrays [Udagama et al. 2011]. Ino80C functions in maintaining genome stability and acts oppositely to the SWR-C complex by removing H2AZ from nucleosomes [Papamichos-Chronakis et al. 2006, 2011; Yen et al. 2013]. Little is known of the function of Ino80C in gene regulation, but we argue that it is likely to be repressive, since it removes H2AZ, a histone variant associated with transcription [Conaway and Conaway 2009; Biterge and Schneider 2014]. The EM structure and interaction map of Ino80C bound with a nucleosome show it to contain a core module bearing the Ino80 catalytic subunit, Rvb1/2, and Ies2; a module with Nhp10, Ies1, Ies3, and Ies5; and two chromatin docking modules bearing Arp4, Arp5, Taf14, and Ies4 and Arp5 and Ies6 [Tosi et al. 2013]. Here we employed biochemistry, RNA-seq [RNA sequencing], and ChIP-seq [chromatin immunoprecipitation [ChIP] combined with deep sequencing] along with extensive informatics analysis to show that Ino80C demarcates units of transcription across the genome, confining gene activity to gene bodies and away from silent regions, including heterochromatin.

Results and Discussion

Ino80C is enriched at the boundaries of the transcribed region of a gene and prevents H3K79 methylation

To determine the genome-wide distribution of Ino80C, we performed ChIP-seq on the chromatin-binding subunit Arp5 and compared it with the positions of H3K4me3 and H3K79me3, histone modifications characteristic of active genes (Fig. 1 A–C). Figure 1A shows a genome-wide heat map, Figure 1B shows a metagene profile, and Figure 1C shows a browser track of two typical genes. Collectively, the data illustrate that Ino80C binds upstream of the transcription start site [TSS] and downstream from the transcription termination site [TTS]. Importantly, Ino80C flanks the peaks of H3K4 and H3K79 methylation, which, as expected, are enriched at the 5’ ends and the bodies of genes, respectively. Our positioning is somewhat consistent with previous studies, with the caveat that Ino80C is clearly upstream of both the TSS and H3K4 methylation, suggesting that it does not occupy the first nucleosome within the gene [Shimada et al. 2008; Yen et al. 2012].

The dense packing of genes in the S. cerevisiae genome raised the possibility that the Ino80C peaks could, in principle, be located upstream of the TSS, downstream from the TTS, or both. To distinguish between these, we plotted Arp5 upstream of the TSS of genes bearing di-
Ino80C transcriptional silencing

Ino80C enhances transcriptional silencing in the flanking extragenic regions

Considering the strong correlation between H3K79me3 and transcription [Im et al. 2003; Jaskelioff and Peterson 2003; Martin and Zhang 2005; Vakoc et al. 2006; Guenther et al. 2007; Kitada et al. 2012], we next asked whether enhanced H3K79 methylation in the flanking extragenic regions correlated with their ectopic transcription. We performed RNA-seq of polyA-containing transcripts (i.e., mRNA-seq) in wild-type and mutant strains of Ino80C bearing deletions of either ARP5, IES6, IES2, or INO80. Figure 1G shows a metagene analysis revealing that extragenic transcription occurred in all deletion mutants and peaked at the locations of Arp5 binding in wild-type strains. Figure 1H shows an example with a browser track. Although the transcript levels were typically much lower than in the gene body, they nonetheless were clearly apparent and statistically significant. Importantly, arp5Δ, ies2Δ, ies6Δ, and ino80Δ elicited similar increases in transcription, arguing that Ino80C and not a subcomplex is suppressing extragenic transcription.

To determine whether the extragenic transcription was due to sense and/or antisense transcription, we performed strand-specific mRNA sequencing. To exclude transcriptional signals from nearby genes, we analyzed only those genes that are separated from their neighboring genes on the opposite strand by >1 kb either upstream of the TSS or downstream from the TTS. Supplemental Figure S1E shows that in the Ino80C mutants, both sense and antisense transcription are up-regulated.

Ino80C prevents H3K79 methylation and enhances transcriptional silencing within heterochromatin in vivo

Ino80C’s role in suppressing H3K79 methylation and transcription within euchromatin raised the possibility that Ino80C may perform a similar role in heterochromatin. Analysis of Sir3 showed that, on average, its binding is highest in the region closest to the telomere, decreases
Ino80C binding within heterochromatin suggested becomes clearly apparent as the binding of Sir3 decreases. In dense heterochromatin near the telomere, but its binding becomes clearly apparent as the binding of Sir3 decreases. On the basis of its transcriptional demarcation in euchromatin, Ino80C binding within heterochromatin suggested the possibility that it may function as a gatekeeper to prevent invasion of euchromatin into heterochromatin. Indeed, Figure 2C shows that, in the absence of Arp5, H3K79me3 increases throughout heterochromatin. Moreover, the greatest increase in H3K79me3 in an arp5Δ strain correlated with the average Arp5-binding peak observed in wild-type cells. Conversely, there was no measurable increase in subtelomeric levels of H3K4me3 (Supplemental Fig. S2).

Deletions of ARP5, IES6 [Fig. 2D], or INO80 [Fig. 2E] led to increased subtelomeric transcription similar to that observed in a strain bearing a deletion of SIR3 [Fig. 2D]. Conversely, simultaneous deletions of SIR3 and ARP5 increased subtelomeric transcription in an additive manner [Fig. 2D]. Interestingly, the enhanced transcription in the Ino80C mutants is greatest where the concentration of Sir3 decreases toward the euchromatic end of subtelomeric silent chromatin (Fig. 2F,G), and the effect of Sir3 deletion alone on transcription is greatest toward the telomeric end of subtelomeric silent chromatin. This point is illustrated clearly by plotting the increase in transcription in sir3Δ, arp5Δ, and ino80Δ strains on a browser track (Fig. 2G). These data suggest that Ino80C cooperates with the Sir complex to maintain heterochromatin gene silencing, especially in regions where the decreasing concentration of Sir3 may render it less effective in transcriptional silencing.

The Sir complex enhances Ino80C recruitment at heterochromatin in vivo and in vitro

The overlapping functions of Ino80C and Sir3 in silencing within heterochromatin raised the key question of whether they also enforce each other’s binding. To address this, we first asked whether Ino80C and Sir3 co-occupy genes within heterochromatin. Figure 3A shows that within 20 kb of the telomere, 80 genes bind significant levels of both Sir3 and Arp5, including HMLα located in the subtelomeric region at the left end of chromosome III. To determine whether Sir3 affects Ino80C-mediated chromatin silencing, we performed locus-specific ChIP of Ino80C at HMLα in wild-type and sir3Δ strains. Loss of Sir3 significantly affected binding of Ino80C at the E and I silencer elements of HML but not at ACT1, the control gene [Fig. 3B]. These observations raised the

Figure 2. Ino80C is enriched in subtelomeric regions near the boundary of heterochromatin and euchromatin and affects silencing. (A) Average distribution of the Ino80C subunit Arp5 alongside Sir3 at subtelomeric regions of wild-type yeast. The moving averages of log2 Arp5 enrichment versus input [step size = 100 base pairs (bp), window size = 40] and log2 Sir3 enrichment relative to input [step size = 100 bp, window size = 20] were plotted according to distance from the telomere, from 0 to 20 kb [X-axis]. [B] Distributions of Sir3 by ChIP array and of Ino80C subunit Arp5 by ChIP-seq at telomere region VIII of wild-type yeast. Log2 ratios of Arp5 and Sir3 enrichment versus input at all windows were used. (C) H3K79me3 in wild-type versus the arpΔ strain as a function of the distance from the telomere. The reads of wild type [WT] and the mutant versus input at all windows for the moving average of the log2 ratio [step size = 100 bp, window size = 40] were plotted according to distance from the telomere, from 0 to 40 kb [X-axis]. [D] mRNA-seq analysis of Sir3 and Ino80 mutants, Ino80C-mediated transcriptional silencing was plotted as a bar graph.
possibility that the Sir complex may promote Ino80C binding.

To address this question, we purified Ino80C to near homogeneity via tandem affinity purification (TAP) and titrated it onto immobilized, unmodified chromatin either containing or lacking a fixed amount of purified Sir2, Sir3, and Sir4 proteins in vitro (Fig. 3C). Conversely, the Sir2, Sir3, and Sir4 proteins were titrated onto chromatin in either the absence or presence of a fixed amount of Ino80C (Fig. 3D). In both experiments, Ino80C was recruited to chromatin at higher levels in the presence of the Sir proteins. Our in vivo and in vitro data lead us to conclude that the Sir proteins contribute to Ino80C recruitment at heterochromatin.

Ino80C blocks Dot1-mediated H3K79 methylation in vitro

To determine whether Ino80C in turn directly prevents Dot1-mediated H3K79 methylation, we employed purified Ino80C and recombinant Dot1 in nucleosome modification assays. Figure 3, E and F, shows that Dot1 efficiently trimethylated H3K79 in the context of nucleosomes and free histone octamers. However, increasing amounts of Ino80C led to a dose-dependent inhibition of Dot1-mediated H3K79me3 on nucleosomes [Fig. 3E] but not on histone octamers [Fig. 3F]. We conclude that Ino80C can directly block Dot1-mediated nucleosome methylation.

Restricting gene expression to gene units

Our data showing that Ino80C prevents H3K79 methylation outside of gene boundaries and silences transcription are consistent with the results on noncoding transcription in Ino80C mutants by the Buratowski and Tsukiyama laboratories [Alcid and Tsukiyama 2014; Marquardt et al. 2014]. Importantly, we show that Ino80C is directly responsible for suppressing noncoding transcription within and around its binding site by blocking Dot1 and the Pol II machinery [Supplemental Fig. S3]. The previously described cryptic unstable transcripts and stable unannotated transcripts [Xu et al. 2009] extensively overlapped with the Ino80C-binding sites and were up-regulated in the Ino80C mutants [data not shown]. This observation further supports the idea that Ino80C prevents noncoding transcription in silent extragenic regions.

Previous studies have shown that Ino80C is important for removal of H2AZ incorporated either spuriously or as a dynamic process linked with gene activity [Papamichos-Chronakis et al. 2011; Yen et al. 2013]. Thus, it is plausible that H2AZ insertion is among the processes blocked by Ino80C. Mutants in other chromatin remodeling complexes such as ISW1 and RSC activate divergent noncoding transcription [Marquardt et al. 2014]. These complexes, however, do not typically colocalize with Ino80C, suggesting that they may operate independently by promoting regulated transcription and nucleosome stability within a gene [Yen et al. 2012]. We do not know how Ino80C localizes to the flanks of genes. The localization of H3K4me3 and H3K79me3 is directly linked with transcription, so perhaps such processes demarcate Ino80C outside of gene boundaries, where it serves to confine transcription to the gene-coding regions. It is plausible that ino80 also provides a crude insulator function to genes similar to that seen in higher eukaryotic genomes.
methylation and any of its causative influences or consequences.

Materials and methods

Chromatin assembly and modification

The 601-containing nucleosomal template was prepared as described (Kuryan et al. 2012). His-Dot1 was purified using Talon beads and quantitated via Coomassie blue staining. Increasing molar ratios of His-Dot1 and Ino80C were incubated for 1 h at 30°C (Kuryan et al. 2012), diluted into methylation reaction buffer [10 mM Tris-Cl at pH 8, 5 mM MgCl2, 50 mM NaCl, 0.1 mg/mL BSA, 1 mM DTT, 80 μM S-adenosylmethionine], incubated for 1 h, and immunoblotted for H3K79me3 (antibody from the Grunstein laboratory), total Histone H3 [ab1791], and TAP-tagged Arp5 and Dot1 [Sigma, H1029].

ChIP-PCR

ChIP of Ino80-13myc was performed as described (Kitada et al. 2012) using anti-myc 9E10 from Millipore. Immunoprecipitated DNA was decross-linked overnight at 65°C. Each ChIP experiment was performed on a minimum of three biological replicates. Real-time quantitative PCR (qPCR) was conducted using a Stratagene MX3000P thermal cycler and a SYBR Green qPCR mix with ROX using Roche quantitative PCR (qPCR) was conducted using a Stratagene MX3000P thermal cycler and a SYBR Green qPCR mix with ROX using Roche FastStart DNA polymerase.

ChIP-seq

Cells were synchronized in G2/M with nocodazole, released into α factor, and harvested at an OD of 0.6. Samples were cross-linked with formaldehyde, digested with micrococcal nuclease (Watanabe et al. 2013), and subjected to ChIP using an Arp5 antibody from Abcam (ab12099). ChIP was performed as described using antibodies against H3K79me3 [Kitada et al. 2012] and H3K4me3 [Active Motif, 39159]. Libraries were prepared with a KAPA LTP kit and sequenced using the Illumina HiSeq 2000 platform. All sequenced reads were mapped to yeast genome version sacCer3 [SacCer_Apr2011] using bowtie 0.12.9 and default settings.

DNA-seq

Libraries of mRNA were prepared with Illumina TruSeq RNA sample preparation kit version 2 or stranded RNA sample preparation kit. Libraries were sequenced, and reads aligned as above, excluding an identical region between HML and HMR, using TopHat 2.0.8 with option -g 1 and -N 0 [Trapnell et al. 2009]. Gene transcription levels were normalized to FPKM (fragments per kilobase of exon per million fragments mapped) using Cuffdiff 2.0.2 [Trapnell et al. 2010]. For log2 ratio and log FPKM calculations, all transcripts with zero FPKM were replaced with 0.1. Mapped reads in the mutants were also normalized to reads in the wild type using a custom script. Because we were mapping changes in gene expression, windows without any overlapping reads in the wild-type cells were replaced with 0.1 for further treatment of the mutant expression patterns. The log2 ratios of mutants versus wild type at all windows were plotted against the distance from telomere ends or metagenes with a custom script. The data of ratios of mutants versus wild type at all windows were plotted against the distance from telomere ends or metagenes with a custom script. The data of ratios of mutants versus wild type at all windows were plotted against the distance from telomere ends or metagenes with a custom script. The data of ratios of mutants versus wild type at all windows were plotted against the distance from telomere ends or metagenes with a custom script. The data of ratios of mutants versus wild type at all windows were plotted against the distance from telomere ends or metagenes with a custom script.

Acknowledgments

This work was supported by National Institutes of Heath grants R01 GM074701 and GM085002 to M.F.C., GM54096 to C.L.P., and CA178415 to S.K.K.
Ino80 transcriptional silencing

The Ino80 complex prevents invasion of euchromatin into silent chromatin

Yong Xue, Christopher Van, Suman K. Pradhan, et al.

Genes Dev. 2015 29: 350-355
Access the most recent version at doi:10.1101/gad.256255.114

Supplemental Material
http://genesdev.cshlp.org/content/suppl/2015/02/17/29.4.350.DC1.html

References
This article cites 41 articles, 18 of which can be accessed free at:
http://genesdev.cshlp.org/content/29/4/350.full.html#ref-list-1

Creative Commons License
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.