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Abstract-

Many intricate and highly conserved mechanisms have evolved to safeguard

organisms against errors in gene expression. The nonsense-mediated mRA decay

pathway (N) exemplifies one such mechanism, specifically by eliminating mRAs

containing premature translation termnation codons within their protein coding regions,

thereby limiting the synthesis of potentially deleterious trncated polypeptides. Studies

in Saccharomyces Cerevisiae have found that the activity of at least three trans-acting

factors, known as UPFl, UPF2/NMD2, and UPF3 is necessary for the proper function of

the NM pathway. Further research conducted in yeast indicates that the degradation of

substrates of the NM pathway is dependent on their translation, and that the sub-cellular

site of their degradation in the cytoplasm.

Although most evidence in yeast suggests that substrates of the NM pathway are

degraded in the cytoplasm while in association with the translation apparatus, some

mammalian studies have found several mRAs whose decay appear to occur within the

nucleus or before their transport to the cytoplasm has been completed. In addition, study

of the mammalian TPI mRA found that this transcript was unavailable as a substrate for

the NM pathway once it had been successfully exported to the cytoplasm, further

supporting the notion that the degradation of mamalian substrates of the NM pathway

occurs in association with the nucleus, or during export from the nucleus to the

cytoplasm.



To determne if yeast cytoplasmic nonsense-containing mRA can become

immune to the NM pathway we examned the decay kinetics of two NMS substrte

mRAs in response to repressing or activating the NM pathway. Both the ade2- and

pgkl-UAG- nonsense-containing mRAs were stabilzed by repressing this pathway,

while activation of NM resulted in the rapid and immediate degradation of each

transcripts. These findings demonstrate that nonsense-containing mRAs residing in the

nucleus are potentially susceptible to NM at each round of translation.

The remainder of this thesis utilzes protein overexpression studies to gain

understanding into the function of factors related to the processes of nonsense-mediated

mRA decay and translation in Saccharomyces cerevisiae. Overexpression of a C-

termnal truncated form of Nmd3p was found to be dominant-negative for cell viabilty,

translation and the normal course of rRNA biogenesis.

Overexpression studies conducted with mutant forms of the nonsense-mediated

mRA decay protein Upflp, found that overexpression of mutants in the ATP binding

and ATP hydrolysis region ofUpflp were dominant-negative for growth in an otherwise

wild-type yeast strain. Furthermore, overexpression of the ATP hydrolysis mutat of

Upfl P (DE572AA), resulted in the parial inhibition of NM and a general perturbation

of the translation apparatus. These results support previous studies suggesting a general

role for Upfl p function in translation.
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CHAPTER 1

Introduction

The regulation of gene expression has been a fundamental area of research for

many years. A great deal of effort has been directed toward understanding the

mechansims by which an organsim s genome is expressed to generate functional proteins.

The majority of research on gene expression has focused on the contribution of gene

transcription to cellular protein levels. Until recent years, a somewhat overlooked area of

gene expression has been the process of mRNA metabolism. The abundance of an

mRA, and its decay rates , playa significant role in establishing cellular protein levels

as well as the time required to reach new steady-state protein levels. In fact, several

studies have suggested that organsims may modulate mRA stability in response to

enviormental stimuli (Ross , 1995; Gonzalez and Martin , 1996; Jarzembowski and Malter

1997). The steady-state abundance of a given mRA transcript is not solely dependent

on gene transcription, but is determined by both the process of mRA synthesis and

mRNA degradation. Ultimately, it is the sum of these two processes that determines the

abundance of a given mRNA (Hargrove and Schmidt, 1989). Therefore , the elucidation

of the mechanism of mRNA turnover is critical to our understanding of gene expression.



Mechanisms ofmRNA decay

To date, four pathways of mRA decay have been identified in eukaryotes , with

the characterization of the majority of these pathways occuring using the brewer s yeast

Saccharomyces cerevisiae.

Most yeast mRAs , are degraded by pathways that require the prior

deadenylation of a given transcript (Figure 1A). This observation is supported by

transcriptional pulse-chase experiments studying the decay of both stable and unstable

transcripts in yeast. These studies found that both classes of mRAs were not degraded

until the poly(A) tail was shortened (Decker and Parker, 1993). Additional research has

found that this shortening event is mediated by the activity of the Ccr4 and Cafl proteins

(Tucker et aI. 200 I). This conclusion was supported by the observation that Ccr4 and

Cafl proteins localize to the cytoplasm, which is the expected subcellular location for

proteins involved in mRA turnover. More importantly, both ccr4LJ and cafl LJ strains

exhibit defects in the extent and rate of deadenylation for many mRNAs , indicating that

these proteins are major components of the cytoplasmic deadenylation pathway (Tucker

et aI. , 200 I).

The deadenylation event is followed by the removal of the 5' cap structure from

the mRA, through the enzymatic activity ofDcp1p. Dcplp was determined to be the

yeast decapping enyme due to the following observations: I) Dcp I P is able to remove the

5' cap structure from synthetic RNAs (Stevens 1988; Beelman et aI. , 1996 , LaGrandeur
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and Parker, 1998), and 2) Deletion of the gene encoding Dcp1p, resulted in the

accumulation of capped transcripts in yeast (Hatfield et aI. , 1996).

The deadenylated and decapped transcript is a substrate for degradation by Xr1p,

the major 5'-+3' exoribonuclease in yeast (Decker and Parker , 1993; Muhlrad et aI.

1994). The conclusion that degradation occurred primarily in a 5' -+3' manner was

derived from experiments using transcripts harboring poly(G) tracts. These poly(G)

tracts create secondary structures that are resistant to the activity of exonucleases.

Experiments using poly(G) containing transcripts found that the size of the decay

intermediates detected was consistent with exonucleolytic degradation primarily initiating

from the 5' end of the mRA (Decker and Parker, 1993; Muhlrad et aI. , 1994).

Characterization of a mutation in the XRNI gene found that strains harboring an XRNI

mutation had more full length transcripts than those of wild-type cells , and that these

transcripts lacked a detectable cap structure (Hsu and Stevens , 1993; Muhlrad et aI.

1994). Additional studies using poly(G) containingMFA2 mRAs , showed that aMFAZ

transcript with a poly(G) tract in its 5' UTR was degraded up to the poly(G) insert , and

then existed as a stable mRA. These observations , in conjunction with experiments that

showed MF A2 mRNA existed as a complete and uncapped transcript in xrnl L1 cells

demonstrated that mRA decapping is followed by exoribonucleoltyic digestion by

Xm1p (Muhlrad et aI. , 1994).

A less frequently utilized pathway for degradation of deadenylated transcripts

involves the degradation of the mRAs in a 3' -+5 fashion. In this pathway the

deadenylated transcript is subject to degradation by the nucleolytic activity of a complex



comprised of Ski2p, Ski3p, Ski6p/Rr41 p, Ski8p and Rr4p proteins that are components

or regulators of the exosome (Anderson and Parker 1998). This was demonstrated by

experiments showing that an mRA fragment previously known to degraded in a 3' -+5'

manner, accumulated in strains harboring mutations in exosome components (Anderson

and Parker, 1998). This observation was supported by an experiment that found that the

-+5' decay of some transcripts , which occurred in the decapping mutant dcpl- was

no longer observed when this mutant was combined with an exosome mutant (Anderson

and Parker, 1998)

The remaining well-characterized mechanisms ofmRA degradation do not

require prior deadenylation of their substrate transcripts. In the process of nonsense-

mediated mRA degradation (NMD), an mRA that is determined to be aberrant due to

the presense of a premature termination codon, is rapidly decapped and degraded without

prior poly(A) shortening (Mulhrad and Parker 1994;Figure IB). 
Another example of

deadenylation-independent decay, found in higher eukaryotes , is intitiated by site-specific

endonucleoltyic cleavage of a substrate mRA, followed by its exoribonucleolytic

degradation (Bernstein et aI. , 1992; Brown et aI. , 1993; Binder et aI. , 1994;Figure I B).

Although the detailed characterization of most of these degradation mechanisms

has occurred primarily in yeast, these pathways appear to be evolutionarily conserved.

Studies in mammalian cells have found that initial step in the degradation of some

mRNAs is deadenylation (Shyu et aI. , 1991). Mammalian NMD experiments examining

the metabolic fate of substrates of the this pathway, have detected the accumulation of 5'

shortened , polyadenylated decay intermediates , supporting the yeast observation that



decay initiates at the 5' end of the mRA without significant poly(A) shortening

(Belgrader et aI. , 1993).
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Figure 1. Pathways of mRNA degradation in eukaryotes. (A) Deadenylation

dependent mRNA degradation mechanism. Deadenylation occurs via the activity of the

Ccr4p and Cafl p, once the poly(A) tail has been shortened to a critical length

degradation proceeds primarily via the 5' ::3' mRNA turover pathway, or alternatively

by the 3' ::5' decay pathway. (B) Two deadenylation independent mechanisms that have

been identified in eukaryotes. In the NMD pathway (left), recognition of a prematue

termination codon stimulates decapping independent of poly(A) shortening via the

Dcplp, in yeast. The decapped message is then degraded in a 5' ::3' fashion by Xrnlp, in

yeast. In the exonucleolytic degradation (right), such as occurs in TRSI mRNA, a

cleavage site in the 3'UTR of the message , triggers endonucleolytic clevage. The

resulting products are then degraded by the activity of exonucleases.
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Additional the evidence supporting the conservation of these decay mechanisms

is provided by the identification of mammalian homologues to yeast proteins that are

essential for function ofmRA metabolism in Saccharomyces cerevisiae such as Xmlp,

Dcplp, the exosome , as well as Upflp,Upf2plNmd2p, and Upf3p (Bashkirov et aI. , 1997;

Dunckley and Parker 1999; Anderson and Parker 1998; Allmang et aI. , 1999; Perlick et

aI. , 1996; Applequist et aI. , 1997; Serin et aI. , 2001)

Nonsense-mediated mRNA decay pathway

Many cellular proofreading mechanisms exist to protect organsims from the

accumulation of aberrant transcripts and proteins (Yarus 1992; Friest et aI. , 1996;

Gottesman et aI. , 1997). In some cases these pathways exist not only to safeguard cells

from the production of deleterious products, but also to augment the regulation of cellular

processes (Welch and Jacobson, 1999; Lew et aI. , 1998; Morrison et aI. , 1997;Ross

1995). Nonsense-mediated mRA decay, or NMD , is an example of such a mechanism.

The process of nonsense-mediated mRA decay has evolved to aid in the removal of

mRNAs which lack complete open reading frames, typically transcripts whose defects

result from the presence of a premature termination codon within the open reading frame

of the transcript (Leeds et aI. , 1991 , 1992; Peltz et aI. , 1993a b).



A. NMD in yeast

Although the process of nonsense-mediated mRA decay has been shown to

function in a wide variety of eukaroytes, the mechanism ofNMD has been characterized

in detail in the yeast Saccharomyces cerevisiae (Losson and Lacroute , 1979; Leeds et aI.

1991 , 1992; Peltz et aI. , 1994; Caponigro and Parker, 1996; for reviews see Hilleren and

Parker 1999; Jacobson and Peltz, 2000)

Substrates of the NMD pathway

A primary function of the NMD pathway is the rapid removal of mRAs

containing premature termination codons. However, subsequent research has revealed

that NMD also assumes a physiological role in the cell , specifically, by modulating

cellular levels of other classes of transcripts. One class of substrates in yeast found to be

regulated by NMD are intron-containing pre-mRAs that are transported to the

cytoplasm prior to their splicing. These unspliced mRAs are targets ofNMD due to in-

frame premature termination co dons resulting from intron retention (He et aI. , 1993).

Some mRNAs with upstream open reading frames are also a class of transcripts subject to

NMD degradation (Cui et aI. , 1995). This class of mRAs is atypical , in that they harbor

no premature translation termination codon, but rather a single or multiple short uORFs

before the true mRA coding region. This class of mRNAs was identified in a screen for

mutations that would suppress a mutation in the CYCl mRA, which resulted in the

generation of an out of frame initiator codon upstream of the true initator (Cui et aI.

1995). This upstream initation codon effectively reduced the levels of translation



initiation at the true inititation codon. Several mutations known as sua (suppressor of

upstream aug) mutants , were found to suppress this upstream initatior (Cui et aI. , 1995).

Two of these sua mutants , known as sual and sua6 were later found to be UPF21NMD2

and UPF3 respectively, which are factors known to be essential for NMD (Cui et aI.

1995). A third class of mRAs , whose stability is regulated by NMD, includes some

transcripts that undergo leaky scanning (Welch and Jacobson, 1999). In these transcripts

initiation occurs at an out of frame intiator codon (AUG) that is downstream ofthe true

translation start site. lnitation at this out of frame AUG , results in rapid termination of

translation, mimicking the effect of a premature termination codon within the true

reading frame. This mechanism has been shown to have consequences for the expression

of both the leaky scanned transcipt, as well as genes regulated by its protein product

(Welch and Jacobson, 1999). An additional class of abbe rant mRNAs subject to

degradation via the NMD pathway, is comprised of transcripts with extended 3' UTRs

(Pulak and Anderson 1993; Muhlrad and Parker 1999; Das et aI. , 2000). In contrast with

the majority of the aformentioned NMD substrates , degradation of this mRA substrate

is not dependent upon the presence of a premature termination codon. These transcripts

were identified as substrates for NMD since they were stabilized when NMD was

inactivated (Pulak and Anderson, 1993; Muhlrad and Parker, 1999; Das et aI. , 2000).

The mechanism by which these transcripts are detected as aberrant has not been

determined, but possible modes of their detection wil be discussed later.



mRNA degradation via the yeast NMD pathway is independent of prior poly (A)

shortening, but requires translation and the activity of several trans-acting factors

As mentioned earlier, a distinguishing feature ofNMD is that degradation 

nonsense-containing mRAs does not begin with shortening of the 3' poly(A) tail.

Nonsense-containing transcripts are recognized as aberrant by the translation apparatus

decapped by Dcplp, independent of their poly (A) status , and subsequently degraded by

the 5' 3 exoribonucIease activity ofXmlp (Figure IB).

The fact that decapping occurs without prior poly(A) shortening is surprising, but

is supported by the following facts: I) both wild-type and nonsense-containing transcripts

are stabilized in strains harboring deletions ofXmlp, the major cytoplasmic

exoribonucIease (Mulhrad et aI. , 1994); 2) nonsense and wild-type transcripts stabilized

in xrnl L1 strains lack a 5' -cap structure , indicative of processing by Dcp I p, the yeast

decapping enzyme (Hatfield et aI. , 1996). These findings indicate that NMD is

independent of deadenylation, but utilizes downstream degradation mechanisms identical

to that of deadenylation depedent decay, once a mRA has been targeted for removal.

Although the mechanisms by which a nonsense-containing mRA is degraded are

well characterized , the events that target nonsense transcripts for degradation are not

completely understood. For example, a premature termination codon is essential for

NMD regulated degradation of most substrates characterized to date. However, the mere

presence of this premature termination codon is not suffcient to promote degradation.

An obvious , and convincing piece of evidence , that NMD activity requires more



than the presence of a premature termination codon, is the observation that expression of

a suppressor tRNA, which enhances the read through of a premature termnation codon

is able to stabilize nonsense substrates , indicating that recognition of a premature stop

codon is dependent on translation of the mRA (Losson and Lacroute , 1979; Gozalbo

and Hohmann, 1990). A similar experiment confirming this observation involved the use

of the translation elongation inhibiting drug, cycloheximide. Addition of cycloheximide

to levels that inhibit translation results in the' stabilization of nonsense-containing

mRAs (Herrick et aI. , 1990; Peltz et aI. , 1992). Further evidence that nonsense

transcript recognition is dependent on translation was shown in experiments involving

translation initiation. Mutation of the initiation codon of a nonsense-containing transcript

results in stabilization of the mRA (Peltz and Jacobson, 1996). Similar results were

obtaining studying the translation initiation mutant prt 1. The P RTf gene , encodes the

p90 subunit of translation initiation factor eIF3. A conditional allele ofthis gene, known

as prtl- has been shown to strongly inhibit translation initiation (Welch and Jacobson

1999; Naranda et aI. , 1994). Experiments conducted with this allele at non-permissive

temperatures , reveal that nonsense-containing transcripts are stabilized to levels

equivalent to those observed in well-characterized mutants of the NMD pathway (Welch

and Jacobson, 1999). Another significant contribution to the body of evidence

demonstrating that the processes ofNMD and translation are linked , is the observation

that factors involved in mRA decay are cytoplasmic , and that these factors

preferentially associate with the translation apparatus , as evidenced by their co-

localization with polyribosomes and 80S ribosomes on sucrose density gradients (Peltz et



aI. , 1993b; Atkin et aI. , 1995 1997; Mangus and Jacobson 1999). This observation is

further supported by experiments that have found nonsense-containing transcripts also

co-sediment with polyribosomes on sucrose density gradients. The sedimentation of

these nonsense-substrates correlates with a polyribosome whose size is consistent with

the position of the premature stop codon within the given ORF (He et aI. , 1991; Zhang at

aI. , 1997). Complementary experiments have shown that the cycloheximide-mediated

stabilization of nonsense-containing transcripts , is rapidly reversed upon the removal of

the drug (Zhang at aI. , 1997). While the body of evidence detailed above clearly

ilustrates the intimate link between mRA translation and decay, additional support for

this argument can be found in studies involving the characterization of the trans-acting

factors that regulate NMD. Identification and subsequent characterization of factors

involved in the NMD pathway have shown that deletion of any of the genes critical for

the function of this pathway, results in increased levels of nonsense codon readthrough

(Leeds et aI. , 1992; Cui et aI. , 1995; Weng et aI. , 1996a b; Maderazo et aI. , 2000). This

result is strengthened by biochemical data that indicates critical components of the NMD

pathway (i. UPFl , UPF2/NMD2 and UPF3) are able to interact with either one or

both of the polypeptide release factors eRFI and eRF3 (Czaplinski et aI. , 1998; Wang et

aI. , 2001).

The results presented above show a clear association between the processes of

mRNA translation and degradation. This is not a trivial observation, as this evidence

suggests that NMD in yeast is indeed a cytoplasmic event. The fact that NMD in yeast

appears to be a cytoplasmic event is significant because is contradicts some experiments



in mammalian cells which suggest a nuclear localization ofNMD. This discrepancy will

be examined in greater detail within the body of this thesis.

Characterization of transacting factors required for nonsense-mediated mRNA

decay

Several factors have been identified that mediate the function of the NMD

pathway, including several factors inti ally identified and best characterized in

Saccharomyces cerevisiae. Factors which mediate NMD in yeast were discovered by

genetic studies focusing on allosuppression, omnipotenet suppressors , regulation of

frameshifting and translation , suppressors ofuORFs as well analysis of two-hybrid

interactors with factors discovered by these traditional genetic screens (Culbertson et aI.

1980; Hamsey et aI. , 1991; Dinman and Wickner 1994; Cui et aI. , 1995; He and Jacobson

1995; Lee and Culbertson, 1995; He et aI. , I 997;Welch and Jacobson 1999). Subsequent

analysis of these genes verified their function in the NMD pathway, as mutations in

UPFl , UPF2/NMD2/SUAl , UPF3/SUA6, PRTl , HRPl , MOF2 , MOF5, MOF8 and

DBP2 preferentially stabilize NMD substrates without significantly altering the

abundance or stablity of mqst wild-type transcripts (Leeds et aI. , 1991 , 1992; He and

Jacobson 1995; Lee and Culbertson 1995; Cui et aI. , 1995 , 1999a b; He et aI. , 1997;

Gonzalez et aI. , 2000; Bond et aI. , 200 I).

The main thrust of research has focused on the characterization of the protein

products of UPFl , UPF2/NMD2 and UPF3. This is due in large part to the fact that
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although these genes are non-essential , they have been shown to be highly evolutionarily

conserved proteins that are critical components of the NMD pathway in yeast, as

disruption of any of these three genes leads to a dramatic stabilization of nonsense-

containing transcripts (Leeds et aI. , 1991 1992; He and Jacobson 1995; Cui et aI. , 1995;

Lee and Culbertson, 1995; He et aI. , 1997).

The first of these factors to be identified UPFj (up-frameshift suppressor I), was

originally identified by Culbertson and colleagues as a suppressor of a specific frameshift

mutation at the his410cus in S. cerevisiae (Culberston et aI. , 1980), a result which

ultimately suggested a role for Upfl p in translational fidelity in yeast. Subsequent

studies of the UPFj gene showed that frameshift, or nonsense mutations , in the HIS4 

. LEU2 mRAs , which typically render these transcripts unstable, are stabilized in upfJ 

strains (Leeds et aI. , 1992). Sequence analysis found that the UPFj gene encodes a 109

kD protein with cysteine and histidine rich domains near its N-tenninus , suggestive of

two putative zinc fingers , as well as nucleotide binding sites and seven motifs which are

characteristic of members of RNA/DNA helicase superfamily I proteins (Altamura et aI.

1992; Koonin, 1992; Leeds et aI. , 1992). Biochemical analysis using wild- type UPFj

and alleles harboring mutations which correspond with highly conserved residues within

helicase superfamily have confinned the nucleic acid binding, ATPase and helicase

activities suggested by Upflp s high degree of homology to members of this helicase

family (Weng et aI. , 1996a b).

NMD2 was originally identified in a two-hybrid screen using UPFj as well as in

a separate genetic screen (He and Jacobson, 1995; Cui et aI. , 1995). Disruption of NMD2



resulted in a decay defect similar to that of a upf) L1 strain. Sequence analysis found that

Nmd2p is an acidic protein with a predicted molecular weight of 127 kD. Nmd2p is not

significantly homologous to any known proteins, but does appear to have a putative

nuclear localization sequence , three NIC motifs found in translation initiation factors

(Aravind et aI. , 2000), as well as a putative transmembrane region. Deletion of either of

these two regions resulted in a defect identical to an nmd2L1, indicating that these regions

are critical for the structure or function of wild-type Nmd2p (Maderazo 2000). Further

studies have shown that targeted overexpression of a carboxy-terminal fragment of

Nmd2p to the cytoplasm, but not the nucleus , results in dominant negative inhibition of

NMD (He and Jacoboson, 1995).

Genetic and molecular biological techniques identified a third protein responsible

for the regulation ofNMD in yeast. UPF3 is a 45 kD protein that contains three putative

nuclear localization signals , as well as two sequence elements which resemble nuclear

export signal domains (Lee and Culbertson, 1995; He et aI. , 1997; Shirley et aI. , 1998).

Work by Shirley and colleagues found that Upf3p is primarily a cytoplasmic protein that

shuttles between the nucleus and cytoplasm (Shirley et aI. , 1998). Mutations within the

putative nuclear localization and nuclear export sequence elements, disrupt Upf3p

localization and aborgate NMD function, suggesting that shuttling of this protein is

critical for the proper activity of the NMD pathway. However, it is important to note that

chimeric experiments , which replaced the Upf3p NES with that from HIV - I Rev were

able to restore Upf3p localization , but not wild-type NMD function (Shirley et aI. , 1998).



This suggested that the previously mutated residues may function as targeting sequences

or may simply serve a critical role in the proper function of this protein.

The UPF/NMD genes provide the link between translation and NMD

The observation that single or multiple deletions of the UPFINMD genes has

similar mRA decay and suppression phenotypes suggests that these proteins function in

a common pathway (He et aI. , 1997; Maderazo et aI. , 2000; Wang et aI. , 2001). This

hypothesis is supported by directed two-hybrid analysis , showing that Upfl p interacts

with Nmd2p, and Upf2plNmd2p is able to interact with UpDp, indicating that these

proteins may function as a complex to regulate NMD (He et aI. , 1997).

Despite these observations, current genetic and biochemical studies suggest that it

is unlikely that the UPFINMD factors function as a complex. The cellular concentrations.

of the UPFINMD factors were determined by comparing the levels of these factors in cell

extracts , to known levels of the purified protiens. These experiments found that Upfl p is

ten-fold more abundant than Upf2plNmd2p, which is in turn two-fold more abundant

than UpDp(Maderazo et aI. , 2000). These stoichometric data strongly argue against the

NMD factors functioning as a complex to mediate mRA decay.

Further evidence that the UPFINMD factors do not typically exist as a

heterologous complex comes from studies of the role of these factors in nonsense

suppression. Recently, a quantitative assay for translation suppression was devloped

using the naturally occurring nonsense substrate canl- lOO (Maderazo et aI. , 2000).



Readthrough of this nonsense allele of the CANl gene results in the production ofa

functional arginine permease. The level of nonsense suppression, or readthrough, was

experimentally determined by monitoring the sensitivity of yeast strains to the toxic

arginine analog, canavanine. The sensitivity of yeast strains to the drug canavanine

correlates to the level of arginine permease production and therefore , the relative level of

nonsense suppression (Maderazo et aI. , 2000). This assay allowed Maderazo and

colleagues to study the role of UPFINMD mutants in translational fidelity. Studies with

these mutant strains revealed that deletion of UPFl resulted in higher levels of

suppression (canavanine sensitivity) than deletion of UPF21NMD2 or UPF3 implying

that Upflp is the most critical of the decay factors in regulating translational fidelity, with

Upf2p/Nmd2p and Upf3p acting as factors which modulate the activity ofUpflp

(Maderazo et aI. , 2000).

This model is strongly supported by immunoprecipitation studies conducted with

the UPFINMD factors. Work by Czaplinski and colleagues , using immunoprecipiation

has shown that Upflp interacts with the release factors eRFI and eRF3 , suggesting that

Upfl p exerts its effects on translational fidelity through these termination factors

(Czaplinski et aI. , 1998 1999). Additional immunoprecipitation studies involving

Upf2p/Nmd2p and Upf3p have found that eRF3 co-immunoprecipitates with

Upf2pp/Nmd2p and Upf3p in a specific manner. Interestingly, Upf2p/Nmd2p and Upf3p

were unable to successfully co-immunoprecipitate eRFlp (Wang et aI. , 2001). GST-pull

down experiments were performed to confirm co-immunoprecipation of eRF3 by

Upf2/Nmd2p and Upf3p and showed that the observed results were due to a specific



interaction between eRF3 and these proteins. These studies found that Upf2p/Nmd2p

interacted with eRF3 at levels comparable to those ofUpflp, but that Upf2/Nmd2p and

Upf3p were unable to interact with eRF1p in conditions that detected an interaction

between Upflp and eRFl. Wang et al. hypothesized that Upflp forms a complex with

both eRF 1 and eRF3 to mediate peptide release. The authors suggest that Upf2p/Nmd2p

or Upf3p may bind to a Upflp-eRF3 complex, once eRFI has dissociated from the Upfl-

eRFl-eRF3 complex , and that this binding may induce the dissociation of eRF3 from

Upflp. This dissociation event would allow the formation of an Upflp-Upf2p/Nmd2p-

Upf3p complex that would then mediate NMD through the A TPase/helicase activity of

Upfl p.

Collectively, the present data in the field suggest the following: I) Upflp,

Upf2p/Nmd2p, Upf3p playa critical role in mediating NMD and nonsense suppression in

yeast, 2) Upfl P is the primary effector in these pathways and its function is mediated by

the activity of the Upf2/Nmd2 and Upf3 proteins , and 3) The UPFINMD factors function

in nonsense suppression by modulating the recognition of the premature termination

codon.

NMD is modulated by the presence of cis-acting sequences

Downstream elements

As mentioned earlier, the mere presence of a premature termination codon is

insuffcient to trigger the NMD pathway. Since recognition of the premature termination



codon is dependent on translation of the NMD substrate, the question arises , how does

the ribosome distinguish between a premature and normal termination codon? An

obvious difference between the two termination codons is their position within the

reading frame of an mRA. A number of studies have been conducted to address this

particular question. In these studies premature nonsense codons were introduced at

regular intervals within the ORF of several genes. These studies found that a nonsense

codon inserted within the first three-quarters of the ORF were able to activate NMD

while mutations introduced beyond this region appeared to be recognized as normal

termination codons, since they had no significant effect on mRNA stability (Losson and

Lacroute , 1979; Peltz et aI. , 1993; Hagan et aI. , 1995; Yun and Sherman, 1995; Zhang et

aI. , 1995; Hennigan and Jacobson, 1996). These experiments suggest that the spatial

positioning of a termination codon is a key discriminating factor in determining its

recognition as either a normal or premature termination codon.

Additional studies characterizing PGKI nonsense alleles, have found that NMD

requires a downstream sequence in addition to the presence of a premature termination

codon. Characterization of various PGKI nonsense alleles found that deletion of a large

portion of the region 3' of the early nonsense codon resulted in the inactivation ofNMD

(Peltz et aI. , 1993a b). Portions of this deleted sequence were then reinserted downstream

of the termination codon to determine if there was a specific element which aided in

mediating NMD. These experiments identified a 106 segment of PGKI (referred to as a

DSE or downstream sequence element), which was able to activate NMD when

positioned within roughly 150 nuc1eotides downstream of a premature termination codon



(Peltz et aI. , 1993a b; Ruiz-Echevarria et aI. , 1996 1998). It is hypothesized that these

elements are masked in wild-type mRAs , presumably because the DSE is inactivated by

the traversal of translating ribosomes through its coding region. Similar experiments

have been conducted to locate DSE-like elements in other transcripts. These studies were

able to identify similar cis-elements in other mRAs. A very loosely conserved DSE

consensus sequence was found (5' YGCUGAUGYYYYY- ) by comparing these new

cis-elements to the PGKI DSE (Peltz et aI. , 1993a b; Hagan et aI. , 1995; Zhang et aI.

1997). Database analysis using this consensus sequence found the presence ofDSE-like

elements in the coding regions of upwards of75% of yeast mRAs. This raises the

possiblity that these elements are incorporated into the mRA as a way to aid in

determining the quality of the transcript.

Studies using the GCN4 mRA have demonstrated that the DSE can also function

in the regulation of another class ofNMD substrates, specifically mRAs containing

short uORFS. The 5' UTR of the GCN4 mRA contains four uORFs , which mediate its

expression (Hinnebusch, 1997 1994). Although this transcript contains several uORFs it

is normally stable , and not a substrate of the NMD pathway. However, if the PGKI DSE

is inserted 3' of the initiation codon of the GCN4 uORFl , the mRA is destabilized

indicating this sequence is able to target a message for degradation (Ruiz-Eschevarria and

Peltz 1996).

,--



Stabilizer elements

Research on cis-acting elements which mediate NMD have also identified regions

within mRAs which can protect a given transcript from degradation when positioned

downstream of a termination codon. As mentioned earlier, only premature termination

codons residing with in the 5' proximal two- thirds to three-quarters of an mRA are able

to trigger NMD , while mutations beyond this spatial barrier have little effect on mRA

stability (Losson and Lacroute , 1979; Peltz et aI. 1993a b; Hagan et aI. , 1995). The

hypothesis that stablization beyond the first three-quarters of the mRA was due to the

lack of a functional DSE was investigated by Peltz and colleagues using the well-

characterized PGKI mRA. To test this hypothesis the PGKI DSE was inserted 3'

proximal to late nonsense mutations in PGKI mRAs , which had previously been shown

to be stable transcripts. Insertion of the DSE downstream of "late" nonsense codons in

stable PGKI transcripts did not significantly alter the stability of these mRAs (Peltz et

aI. , 1993a). This suggested that lack of a functional DSE was not the root cause of the

inherent stability of these PGKI late" nonsense-containing transcripts (Peltz et aI.

1993a b). Peltz and co-workers suggested that sequences , termed stabilizer elements

might exist within given mRAs and that the transition of a translating ribosome though

these sequences inactiviated its ability to respond to DSEs. Although these stability

regions appear in many mRNAs examined, the detailed examination of several mRAs

suggested to harbor such stabilizing sequences has been unsuccessful in detecting any

significant sequence or structural homology between these regions.



Evidence for stabilizing elements has also been found studying the translational

regulation of the GCN4 transcript. The 5' UTR of the GCN4 mRA appears to harbor a

sequence element that is capable of inactiving NMD. A 68 nucledotide region 3' of

uORF4 called a STE (Stabilizer element) appears to confer immunity to NMD to the

GCN4 transcript, since deletion of this region from the mRA triggers its degradation by

the NMD pathway (Ruiz-Eschevarria et aI. , 1998). The STE appears to be a bona-fide

stabilizing element, since it can function to stabilize other known nonsense-containing

mRAs , provided it is inserted downstream of the premature termination codon, but

upstream of a functional DSE (Ruiz-Echevarra et aI. , 1998). Further study of stabilizer

elements has detected a similar element within the uORF of the YAP I mRA, which is

also capable of rendering a mRA immune to NMD (Ruiz-Echevarria and Peltz, 2000).

These elements appear to promote the binding ofPublp to the uORFs of their given

transcripts. Publp binding to the stabilizer region appears to confer immunity to NMD

since these STEs fail to inhbit NMD in pub I L1 strains (Ruiz-Echevarria and Peltz, 2000).

These results were further confirmed by stability experiments conducted with the CPAI

transcript. Experiments assaying this transcript found the abundance of CP Al mRA

was unaltered in both wild-type and pub I L1 strains (Ruiz-Echevarria and Peltz , 2000).

Since this mRA also contains a uORF , but does not appear to habor a STE, one possible

interpretation of these results is that Publp is only capable of mediating mRNA stability

in conjunction with a cis-acting STE.



B. Mammalian NMD

Substrates of NMD

As previously mentioned, NMD is a highly conserved mechanism that allows

cells the ability to target and remove potentially deleterious transcripts derived from

errors in gene expression. A number ofNMD substrates have been clearly detailed in the

preceding text dealing with NMD in Saccharomyces cerevisiae. At this point I would

like to catalog the major substrates ofNMD that have been identified in mammalian

systems.

Like yeast , a fair number of nonsense substrates arise from mutation events , such

as insertions , deletions , and translocations within the genome. A second class ofNMD

substrates in mammals , result from inaccurate or incomplete pre-mRA splicing.

Improper splicing can result in the production of transcripts that retain introns. Typically,

the retention of such an intron results in the introduction of a premature termination

codon within the ORF of a given transcript, thus making it a substrate of the NMD

pathway (Maquat 1995 1996; Lozano et aI. , 1994). Additional cellular processes

specific to higher eukaryotes , which generate substrates for the NMD pathway, are

somatic rearrangements and hypermutations that result from cellular events necessary for

the production of fuctional immunoglobins and T-cell receptors (Li and Wilkinson 1998).

These rearrangements are essential to generate the diversity needed to recognize a large

range of protein targets. Unfortunately the majority of these rearrangements result in the

production of non- functional transcripts, primarily through the generation of frameshift



and premature nonsense containing transcripts. Another interesting class of mammalian

transcripts that are regulated by the NMD pathway are selenoprotein mRAs. In these

substrates , a premature UGA codon may be recognized as an NMD substrate, or

alternatively as a signal to incorporate a rare selenocysteine amino acid at this codon

position. The presence of a premature termination codon results in these selenocysteine

mRNAs being recognized by the NMD pathway at an appreciable rate, suggesting their

expression may be regulated by NMD (Moriarty et aI. , 1998; Sun et aI. , 2000).

NMD requires translation and the activity of trans-acting factors

Despite some controversy as to the cellular compartmentalization ofNMD in

mammals (see below), a fair amount of evidence suggests that translation is necessary for

the recognition of many mammalian NMD substrates. In fact, mammalian NMD appears

indistinguishable from yeast in its sensitivity to pertrbance of normal translation.

Structures or mutations that interfere with translation intiation appear to affect nonsense

recognition, suggesting that translation is a critical element of substrate recognition in

mammalian systems (Belgrader et aI. , 1993; Thermann et aI. , 1998). Furthermore,

treatment of mammalian cells lines with translation elongation or fidelity altering drugs

such as anisomycin, cycloheximide , and puromycin appear to effectively inhibit NMD

function (Carter et aI. , 1995).

Research in yeast has determined that NMD requires the activity of at least three

trans-acting factors known as UPFl , UPF2/NMD2 and UPF3. Since mammalian NMD

appeared to harbor many similarities to the yeast process , experiments were conducted to

L ..



determine if UPFINMD factor homologues existed , and if these factors played a pivotal

role in NMD in mammals. Human homologues of these UPFINMD factors , termed

hUpflp, hUpf2p, hUpf3p, and hUpf3-X were cloned based on their sequence similarity to

their S. cerevisae and C. elegans homologues (Perlick et aI. , 1996; Applequist et aI.

1997; Lykke-Andersen et aI. , 2000; Serin et aI. , 2001).

Further genetic and biochemical characterization ofhUpflp has demonstrated that

it is a functional homologue of the yeast protein. Biochemical studies have shown that

like S. cerevisiae Upflp, human Upflp demonstrates RNA-dependent ATPase and 5' 0+

3' helicase activities , as well as an RNA-binding activity that is modulated by ATP

(Bhattacharya et aI. , 2000). Separate studies have found that expression of a chimeric

allele ofhUpflp, which contained the central portion ofhUpflp, flanked by the amino

and carboxy terminal regions of S. cerevisiae Upfl p, was able to complement a yeast

upfl L1 (Perlick et aI. , 1997). Additional studies by Sun and collegues have shown that a

mutant form ofhUpflp, harboring an arginine-cysteine mutation corresponding to a well

characterized yeast mutation known to be dominant negative for NMD was able to inhibit

NMD in cas cells in a dominant-negative manner (Sun et aI. , 1998). These genetic and

biochemical studies , in conjunction with the observation that Upfl p is known to interact

with in vitro synthesized forms of release factors RFI and RF3 , suggests that hUpflp

functions in NMD in a similar manner to its yeast counterpart (Czaplinki et aI. , 1998).

Human Upf2p, Upf3p, Upf3p-X were more recently identified, and therefore are

less completely characterized. However, several interesting results have come out of

their limited characterization of these proteins. Indirect immunofluorescence has found



that hUpflp, hUpf2 , hUpf3p are localized primarily to the cytoplasm, while hUpf3p-

appears to shuttle to the cytoplasm, but is primarily a nuclear localized protein (Serin et

aI. , 2001). Subsequent co-immunoprecipitation studies with the human UPF factors

confirmed previous two-hybid interactions detected with their yeast counterparts , i.

hUpflp interacted with hUpf2p as well as hUpf3p, and that hUpf2p is able to interact

with hUpflp and hUpf3p (Serin et aI. , 2001). Furthermore , amino acid residues in

hUpf2p found to be necessary for interaction with hUpfi p, were similar to those that

were predicted by yeast two-hybrid mapping with their S. cerevisiae counterparts , further

reinforcing the highly conserved nature of this cellular pathway (Serin et aI. , 2001).

Additional evidence suggesting that the hUPF factors playa critical role in

regulating mammalian NMD , comes from a series of complementary experiments from

several research groups. Work by Lykke-Andersen and colleagues has found that

tethering of any of the hUPFs to the 3' UTR of beta- globin mRA elicits NMD and that

multiple isofonns ofhUpf3p, appear to selectively associate with spliced beta-globin

mRNA in vivo suggesting a link between the nucleus and NMD (Lykke-Andersen et aI.

2000). Additional experiments suggesting a role for nuclear splicing in NMD come from

a series ofimmunoprecipitation and tethering experiments. Collectively, recent research

has shown that multiple forms ofhUpf3 and possibly hUpf2 , interact with a series of

proteins (SRmI60 , DEK, RNPSl , Y14 , and REF), all of which appear to be deposited at

exon-exon junctions after completion of splicing (Lykke-Andersen et aI. , 2001; Kim et

aI. , 2001; Le Hir et aI. , 2001). Suprisingly, the tethering ofRNPS1 to the 3' UTR of an

mRA appears to trigger its degradation via the NMD pathway, suggesting that RNPS 
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provides a portion ofthe framework to which factors such as hUpf3p and hUpf2p may

bind to mediate NMD. However, an alternative interpretation of these results , is that

tethering of the protein to the 3' UTR , creates an artificial substrate for the NMD

pathway, and is thus not reflective of the true process ofNMD.

cis-acting sequences and mammalian NMD

As is the case in yeast, an initial question of interest in the study ofNMD in

higher eukaryotes was determining what factor or factors allowed the cell to discriminate

an aberrant translation termination codon from a normal termination codon. Nonsense-

mediated mR A decay in mammals also appears to be dependent upon cis-acting

sequences that mediate NMD in a spatially dependent manner. Unlike yeast, there does

not appear to be a conserved DSE sequence which is unmasked by a premature

termination codon, aiding the ribosome in recognizing this aberrant stop codon. Rather

nonsense recognition appears to involve events surrounding the proper processing of

introns from pre-mRA transcripts. This was a somewhat surprising observation, as

yeast and mammalian NMD seem to be regulated by identical factors and to target similar

cellular substrates. Upon deeper reflection, the relationship between the two systems is

stil very strong. One major difference between yeast and mammalian cells is the

prevalence of introns , as these intervening sequences are quite commonplace in mammals

and comprise a component of most mammalian pre-mRAs. In contrast, there are a very

limited number of yeast mRAs that harbor even a single intron. One of the first

observations suggesting that NMD in mammals might be regulated by intron processing



was that a nonsense containing transcript derived from an intronless mRA was stable

(Cheng et aI. , 1994). Recent studies have found that the naturally occurring intronless

mammalian transcripts of the heat shock p70 and histone H4 genes are also immune to

NMD (Maquat and Li 2001). Further research has found that mammalian NMD requires

the presence of a premature termination codon as well as the presence of at least one

intron downstream of the aberrant stop to initiate NMD. A series of detailed mapping

experiments have found that the premature termination codon typically must be

positioned greater than 50-55 nuc1eotides upstream of the 3' most exon-exonjunction

(Cheng et aI. , 1994; Nagy and Maquat, 1998; Thermann et aI. , 1998; Zhang et aI.

1998a b; Sun et aI. , 2000a b). The spatial rule defined by these experiments is strongly

supported by analysis of a pool of wildtye genes that have one or two 3' untranslated

exons downstream of their normal termination codon. This study found that the

terminator in 98% ofthese genes , was less than 50-55 nuc1eotides upstream of the 3'

most exon junction. Since the mRAs analyzed were wild-type transcripts which do not

respond to NMD , these results strongly support the observation that the distance between

a premature termination codon and the exon-exon junction is critical for activation 

NMD (Nagy and Maquat. , 1998).

Controversy over the cellular site of NMD in mammalian systems

As previously mentioned, a large body of evidence in yeast suggests that NMD

occurs in association with the cytoplasm and that this pathway is dependent on mRA



translation for the identification ofNMD substrates. Complementary work in

mammalian systems has found a similar dependence on the proper function of translation

for nonsense substrate recognition. For example , the addition of drugs that alter

translational elongation such as anisomycin, cycloheximide , emetine , puromycin and

pactamycin, have been shown to inhibit NMD (Qian et aI. , 1993; Menon and Neufeld

1994; Carter et aI. , 1995). The introduction of structures that block translation initiation

also have been demonstrated to interfere with NMD function (Belgrader et aI. , 1993;

Thermann et aI. , 1998). In addition, introduction of a suppressor tRNA to a mammalian

cell line has been shown to inactivate the NMD of specific nonsense-containing

substrates (Belgrader et aI. , 1993; Li et aI. , 1997).

While these observations strongly suggest that translation is necessary for NMD

consequently implying that NMD occurs in the cytoplasm, several observations suggest

that NMD may take place in the nucleus , or before mRA transport from the nucleus to

the cytoplasm has been completed. Analysis of mRA fractions from the nucleus and

cytoplasm obtained by subcellular fractionation has found that the degradation of some

mRAs appears to occur in both the nuclear and cytoplasmic fractions (Cheng and

Maquat, 1993; Lozano et aI. , 1994; Kessler and Chasin , 1996). Furthermore , additional

studies have found mRNAs that appear to degrade specifically in association with the

nucleus , as the cytoplasmic abundance and stability of these transcripts appears unaltered

by NMD activity (Cheng and Maquat, 1993; Lozano et aI. , 1994; Carter etaI. , 1996).

The best-characterized example of these transcripts is the mammalian TPI mRNA.

Several studies have shown that premature termination codons within the coding region



of the TPI mRA are capable of reducing the abundance and half-life of this mRA in

several cell lines. Further research has shown that TPI mRA is only found at a reduced

abundance and half-life in subcellular fractions that correspond to the nucleus, but not in

fractions that represent the cytoplasm, suggesting that decay of this transcript occurs in

association with the nucleus (Cheng and Maquat 1993; Belgrader et aI. , I 994a b). One

explanation of the immunity of the TPI mRA to degradation in the cytoplasm is that the

mRNA fraction observed in the cytoplasm may be unable to be translated. To test this

hypothesis , wild-type and nonsense alleles of the TPI mRA were transfected into

mammalian cell lines and tested for the ability to associate with polyribosomes. These

experiments found that TPI mRA was indeed able to associate with polyribosomes at a

size that is consistent with that of its open reading frame (Stephenson and Maquat 1996).

These experiments demonstrated that TPI mRA is able to associate with the translation

apparatus , and that its failure to undergo NMD is not a consequence of an inability to

initiate translation. However, these experiments come with the following caveat. 

necessity the constructs used in this study were selected post-transfection with the

antibiotic hygromycin B. This aminoglycocide has been shown to interfere with

translation elongation and fidelity (Velazquez book). Presumably, the activity of this

potent translational inhibitor has been deactivated by the activity of the resistance gene

carried by the plasmids used in this study. However, one cannot rule out the possibility

that the resistance gene allows translation to occur at acceptable levels for cell growth

but may not inactivate the drug to a level sufficient to allow for normal NMD function. 

is conceivable that most alterations in codon recognition could dramatically alter the



ability of the translation apparatus to recognize a premature termination codon, and

subsequently to trigger NMD.

I '



Figure 2. Models of NMD function. (A) The surveilance complex model for NMD

fuction in yeast. (B) The faux UTR model for NMD function in yeast.
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Models of NMD function

Two popular models ofNMD function have evolved from the extensive studies of

NMD in yeast (Figure 2). In one model NMD occurs as an active response to recognition

of a cis-acting sequence and it complementary factors that reside downstream of a

premature termination codon (Czaplinski et aI. , 1998 1999; Jacobson and Peltz 2000;

Gonzalez et aI. , 2001). The second model suggests that NMD is the result of not

terminating in close proximity to a properly formed 3' UTR (Hileren and Parker 1999;

Jacobson and Peltz 2000). In the first model, an NMD substrate is recognized as aberrant

due to its inability to form a normal RNP structure. In this model a surveilance complex

that includes the UPFINMD factors , forms as the result of a translation termination event

(Figure 2). This complex is believed to recognize the presence of the DSE, and its

associated binding factors, and that this recognition stimulates NMD. Upon translocation

to the cytoplasm, the mRA begins to be translated as the ribosome begins translation at

the intiator codon and transitions into translation elongation. Eventually, the elongating

ribosome reaches a termination codon. Once the ribosome is paused at a termination

codon , it is bound by the termination factors eRF1 and eRF3 , as well as by the

termination regulator Upfl p. Upon completion of the termination event, Upfl p is

hypothesized to interact with Upf2plNmd2p and Upf3p, forming the "surveillance

complex." This complex is proposed to advance downstream of the termination codon

looking for mRP abnormalaties by virte ofUpflp ATPasel helicase activities.

Recognition of an abnormal mRP structure by this complex is proposed to trigger rapid



decapping of the target transcript, and thereby stimulate its subsequent 5' 3 '

degradation (Czaplinski et aI. , 1999; Gonzalez et aI. , 2000; Jacobson and Peltz 2000;

Gonzalez et aI. , 2001).

Although this model is attractive , several lines of experimental evidence suggest

that it might not be a plausible mechanism of action for the NMD pathway. One

potential flaw of this model is how the "surveilance complex" would be able to

recognize a well-characterized class ofNMD substrates , specifically transcripts with

unusually long 3' UTRs. Studies of these transcripts have not been successful in

identifying sequences that resemble the loosely conserved DSE consensus sequence.

Presumably, lack of the DSE would preclude binding by the DSE associated factor

Hrp I p, thereby preventing these mRAs from being NMD substrates. Although it is

conceivable that DSE-like sequences may reside in the abnormally long 3' UTRs of these

mRAs allowing decay to occur, additional lines of experimental evidence suggest that

NMD does not occur via the model detailed above. Characterization of the UPFINMD

factors has found that these proteins are not present at similar levels (Atkins et aI. , 1997;

Maderazo et aI. , 2000), contradicting previous reports suggesting that these factors form a

complex to mediate NMD (He et aI. , 1997). In fact, recent studies directed at

understanding the role of the UPFIINMD factors in regulating nonsense supression have

found that the UPFlis a central regulator of translational fidelity, whose activity is

modulated by the activities ofUpf2p/Nmd2p, and Upf3p (Maderazo et aI. , 2000).

The second model also considers the influence of RNP structure in the function of

the NMD pathway. In this model , sequences downstream of certain premature



termination codons are hypothesized to function as a defective or "faux" UTR (Figure

2). This model implies that proper termination is a result of specific interaction between

the translation apparatus and components of the 3' UTR of a transcript (Bonetti et aI.

1995; Hileren and Parker 1999; Jacobson and Peltz 2000). Proper completion of the

termination cycle is hypothesized to stabilize the mRA by stimulating translation by

allowing proper interaction between the 3 ' UTR and the 5' cap structure and their

associated factors to occur at a high effciency. Improper termination at a "faux" UTR

could result in ineffcient ribosome release and improper release could negatively affect

these interactions , thereby triggering decapping. In this model, Upfl p would function in

concert with eRFl and eRF3 to mediate all termination events , possibly using its helicase

and RNA binding activities to promote ribosome release. By extension, this model

would suggest that Upfl p has a general role in translation termination in the cell that is

not limited to the process ofNMD. Such a role is supported by recent experiments by He

and Jacobson (200 I) demonstrating that Upfl p regulates the decapping and

exonucleoltyic degradation of wild-type and NMD substrates , suggesting that Upfl p

functions in the metabolism of all mRAs.

Despite the fact that both models provide solid hypotheses detailing the role of the

UPFINMD factors in NMD , I prefer the latter model. One strength of the "faux" UTR

model is its ability to account for the degradation of all classes ofNMD substrates known

to date. Additionally, this model is able to plausibly explain how the UPFINMD factors

function not only in NMD , but also in nonsense suppression and translation termination.

I"" ,



Future research possiblities

Before one can completely rule out the surveillance complex model outlined

above, several questions must be addressed. Further experiments must be performed to

better characterize the potential role ofHrplp in NMD. In their research on Hrplp,

Gonzalez and colleagues failed to convincingly prove the increased mRA abundance

that they observed in various temperature sensitive mutants of HRP 1 was a direct

consequence of impaired NMD function (Gonzalez et aI. , 2000). The researchers also

failed to demonstrate that the mini-PGKI and GCN4-PGKl nonsense substrates tested

were exported to the cytoplasm and therefore available for degradation by the NMD

pathway. As a consequence , one is not able to conclusively confirm that the increased

mRNA abundance seen post temperature shift is due to mRA stability effects. This

problem could be remedied by in situ hybridzation experiments demonstrating that the

nonsense-containing substrates of interest are available for decay in the cytoplasm after

shift to the non-permissive temperature in these mutants.

Although I favor the "faux" UTR model outlined earlier, I also feel that additional

experiments are necessary to validate this model ofNMD. Specifically, experiments

should be conducted to determine what cis and trans-acting factors discriminate a "faux

UTR from a normal UTR. If indeed there are differences between the host of factors

associated with a "faux" and normal UTR, it must be determined if it is the presence or

absence of specific factors at the "faux" UTR which mediates NMD. If a "faux" UTR is

indeed able to trigger NMD future experiments need to be directed at determining how



termination regulates decapping. One hypothesis for how this regulation occurs is that

Upflp regulates ribosome release. In prokaryotes ribosome release factors (RRs) are

necessary for ribosome release , but to date there have been no characterized eukaryotic

release factors (Bertram efaI. , 2001and references therein). After peptide release is

mediated by the activity of eRF I and eRF3 , Upfl p may function to regulate the

effciency of ribosome release. Ineffcient ribosome release at a nonsense-containing

mRA may result in decreased levels of translation initiation. Decreased levels 

translation may then allow the cap structure to be exposed and be susceptible to the

activity of the decapping enzyme.

Another intriguing possibility for how decapping may be regulated by the

UPFINMD factors comes from protein structure analysis of translation initiation factors.

Recent research has identified an alpha-helical structure called a NIC domain, which is

conserved in eIF4G NMD2/UPF2 and CBP80 (Aravind et aI. , 2001). It is conceivable

that Upfl p is able to trigger nonsense-mediated decay of a substrate mRA by localizing

Nmd2p to the cap structure. Once Nmd2p is localized to the cap structure it may be able

to effectively compete for cap binding with eIF4G via its NIC domain. Since Nmd2p

does not harbor other protein domains necessary to initiate translation, binding ofNmd2p

to the cap structure would reduce translation initiation, thereby disrupting the synergistic

interaction between the 5' cap and 3' end structures. The disruption of this interaction

may allow the cap to be removed by the activity of the decapping enzyme.

..Lk



CHAPTER 2

MATERIALS AND METHODS

A. Strains, plasmids , and general methods

Yeast strains and plasmids used in this study are listed in Tables I and 2

respectively. Preparation of standard yeast media and methods of cell culture were as

described previously (Sherman et aI. , 1986). Transformation of yeast was done by the

high-effciency method ofSchiestI and Gietz (1989). DNA manipulations were

performed according to standard techniques (Sambrook et aI. , 1989). All PCR

amplifications were performed with Taq DNA polymerase (White et aI. , 1989) and

confirmed , where appropriate, with DNA sequencing. DNA sequences were determined

by the method of Sanger et aI. (1977). Overlapping fragments 
ofthe NMD 3 gene were

sub cloned in Bluescript and sequenced by annealing of oligonucleotide primers specific

to the T3 or T7 promoter regions of the plasmid or by use of oligonucleotide primers that

annealed within the subcloned inserts. Plasmid DNAs were propagated in 
E. coli strain

DH5 . All designations of ribosomal protein names followed the recently revised

nomenclature of Mager et aI. (1997). Computer searches for protein:protein homologies

utilized the NCBI BLAST program (Altschul et aI. , 1997). Sequence alignment was

generated using the pileup feature of the Wisconsin Package Version 9. 1 of the GCG

sequence analysis program.



B. Construction of galactose-inducible NMD plasmids

Galactose- inducible NMD3 constrcts were made using standard molecular

biology techniques , and are described in detail in Table 2. All galactose- inducible UPFI

constructs were made by ligating a 3. 6kb EcoRI-SalI fragment from pMA424 vectors

containing wild- type UPFl or mutated alleles of UPFl depicted in Figure 3 , to pRS426

(Christianson et aI. , 1992) containing the GALl promoter (664 bp fragment immediately

upstream of the initiation codon, generated by PCR) cut with the same enzymes. The

galactose- inducible NMD2 plasmid was constructed by ligating a 3. 7kb Xbal-Sall

fragment cut from the pRS3l5-NMD2 plasmid (He et aI. , 1997) to pMW29 (Zieler et aI.

1995) cut with the same enzymes. The galactose- inducible UPF3 plasmid was

constructed by ligating a 1.7kb NcoI-SalI fragment cut from the pRS316-HA- UPF3

plasmid (He et aI. , 1997) to pRS314 (Sikorski and Hieter, 1989) containing the GALl

promoter, cut with the same enzymes. The latter plasmid was obtained by restriction

digest of the pRS314-GALp-HA-NMD3 plasmid (Belk et aI. , 1999).

C. RNA extraction and northern blot analysis

RNA used for analysis of cytoplasmic mRAs was isolated by the hot phenol

method as described previously (Herrick et aI. , 1990). Aliquots (20 Ilg) of each RNA

sample were analyzed by northern blotting, using radiolabeled probes prepared by

random priming as described above. For isolation ofRNA from polysome fractions , the

method as described by Benard et al. (1998) was used. Total RNA used for analysis of



nuclear pre-rRNAs was isolated by the glass bead/phenol method (Ulery et aI. , 1991) and

then analyzed by northern blotting, using the oligonucleotide hybridization conditions of

Peltz et aI. (1993a). mRA decay rates , expressed as half-lives (tl/2), were determined

by counting the blots with a BioRad Molecular Imager, normalization of the data such

that time zero after a 10 h shift to galactose equaled 100%, and plotting the data with

respect to time on semi-log axes. Probes for the CYH2, RP5la , TCMl and STE2

transcripts have been described previously (He et aI. , 1993; Herrick et aI. , 1990).

Additional probes used in these studies included CANl mRA was detected with a

probe made from a 1.0 kbp EcoRI- Sall fragment of YEp lac 195- CANl (Maderazo et aI.

2000 , ADE2 (a 2 kb BglI fragment from anxrnl::ADE2 disruption plasmid generously

provided by Feng He), PGKI (oligonucleotide I from Peltz et aI. , 1993), and SCRI 

400-bp fragment amplified from yeast genomic DNA using oligonucleotides SCR1- 1 (5'

AGGCTGTAATGGCTTTCTG GTGGGATGGGA- J and SCRl-2 (5'

GAT A TGTGCT A TCCCGGCCGCCTCCA TCA C-3 '

D. Protein gels , western blots, and antibodies

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was performed as

described by Sambrook et al (1989). Gels were electroblotted to Immobilon-

membranes (Milipore) under conditions recommended by the manufacturer. The binding

conditions used for antibodies were as described by Harlow and Lane (1988). Detection

was enhanced by chemiluminescence with either the ECL or ECL( +) kits from

Amersham Corp. Antibodies used included: , polyclonal affinity purified anti-Upflp and

Nmd2p antibodies (Belk et aI., 1999; Maderazo et aI., 2000) and the monoclonal



antihemagglutinin (HA) antibody, 12CA5 , (from Boehringer Mannheim Biochemicals)

for detection ofUpflp, Nmd2p, and HA-epitope tagged Upf3p, respectively.

E. Galactose induction

Yeast strains containing galactose inducible UPFINMD gene constructs were grown

in SC -uracil +raffinose media to mid-log phase (OD6oo=0.5). Strains containing the

inducible UPFINMD gene constructs and either of the pgkl nonsense alleles were grown

in SC -uracil -leucine +raffnose media (to maintain selection for the GAL- UPFINMD

plasmid and the plasmid harboring the pgkl allele, respectively) to mid log phase

(OD6oo=0.5). Galactose was then added to a final concentration of 2%. Culture aliquots

for RNA and protein isolations were taken at 10 min. intervals for 40 min.

F. Polyribosome analysis

Cytoplasmic extracts were prepared as described previously (Mangus and

Jacobson, 1999). The extracts were fractionated at 4 C on 15-50% or 7-47% sucrose

gradients buffered with 50 mM Tris-acetate , pH 7.4 50 mM NH , 12 mM MgClz, and

I mM dithiothreitol (DTT). A Beckman SW41 rotor, centfifuged at 45 000 r.p.m. for 150

min, was used for the 15-50% gradients and an SW27 rotor, centrifuged at 27 000 r.

for 300 min , was used for the 7-47% gradients. All gradients were harvested from the

bottom and the distribution ofRNA was analyzed by continuous monitoring of A254

Polyribosome fractions were analyzed as described previously (Mangus and Jacobson



1999). Relative stoichiometry of ribosomal subunits was determined by comparisons of

the areas under the respective peaks.

G. Measurement of amino acid incorporation

Cells were grown in 200 ml of SC -ura -met +raffnose medium at 30 C to an

OD600 of 0. , harvested by centrifugation, resuspended in 20 ml of fresh medium, and

shaken for 10 min at 30 C. Galactose (4 ml of 20% solution) was then added to a final

concentration of 2% galactose per culture. Triplicate I ml aliquots were removed at the

indicated times and incubated with a mixture of 5 jlCi of translabel (ICN; 70%

methionine and -15% cysteine) and 5 jll of 50 mM unlabeled methionine for 10 min at

30 C. Incorporation of the radio labeled amino acids was monitored by trichloroacetic

acid (TCA) precipitation. TCA (5 ml of a 5% solution) was added to each aliquot

followed by heating at 90 C for 20 min and subsequent incubation on ice. The

precipitates were collected on GF/C fiters , which were washed with 2x25 ml of 5% TCA

and 25 ml of ethanol , dried under a heat lamp, and counted by scintilation spectrometry.

Each experiment was repeated at least three times.

H. Toeprinting Protocol

Buffer A: 30 mM HEPES (pH 7.6 with KOH), 100 mM KOAc (pH 7.0), 2mM
MgOAc (pH 7.0 with KOH). Stored at 4

PMSF stock (O. lM, lOOx): 5g PMSF in 287 ml 100% 2-propanol , stored at room
temperature. Add to buffers immediately prior to use.

Common buffer (40X): 400 mM HEPES pH 7. , 40 mM DTT (added fresh),
stored at room temperature



Variable buffer (lOX): 34 mM MgOAc , 2.3 M KOAc , stored at room temperature

Translation reaction components: 10 mM ATP, 2.5 mM GTP , 250mM Creatine
Phosphate , stored at - C or below

Reaction buffer (5x): 250 mM Tris-HCl (pH 8.3 at room temperature), 375 mM
KCl , 50 mM MgClz

Cycloheximide: 10 mg/ml in water, stored at -20 o

Loading buffer: 05% Bromophenol blue, 0.05% Xylene cyanol FF, 20 mM
EDTA (pH 8.0), 91 % Formamide

Annealing Solution: 1.25 III water, 2.0 III 5X reaction buffer, 1.0 III 0. 1 M DTT
0 III 2.5 mM dNTPs , 0.25 III RNasin (40U/IlI)

Growth of S. cerevisiae cells

Yeast cells , e. , strain Y AS 1874 (MATa MAKIO::URA3 PEP4::HIS3 prbl prc1

ade2 leu2 trpl his3 ura3) are streaked onto a YPD plate and incubated at 30 C for 36-

48h. One colony is selected and re-streaked on a YPD plate and incubated at 30 C for 36-

48h. A single colony from the second plate is used to inoculate a 100 ml YPD culture.

The starter culture is grown for 17 hours at 30 C (200 rpm, gyrating shaker). A 1.21 YPD

culture is grown using 3X 400 ml YPD in 21 Erlenmeyer flasks at an initial OD6oo=0.03-

06 and grown at 30 C (200 rpm, gyratory shaker) until the cultures reach OD6oo=1.5

(approximately 8 hours).

Cells are collected by centrifugation in 6 GSA bottles. For the first wash, cell

pellets are resuspended in 15 ml buffer A + 8.5% mannitol and added to a single

preweighed GSA bottle. The suspension is centrifuged for 5 min. at 3 000 rpm, and the

resulting supernatant discarded. The cell pellet is resuspended in 10 ml buffer A+8.

mannitol and centrifuged for 5 min at 3,000 rpm, and the supernatant discarded. The

remaining cell pellet is then washed with 10 ml buffer A+8.5% mannitol and centrifuged



for 5 min at 3 000 rpm. Following centrifugation, the supernatant is discarded and the cell

pellet resuspended in 10 ml buffer A+8.5% mannitol , and centrifuged for 5 min at 4 000

rpm. The supernatant resulting from this spin is discarded, and the wet weight of the cell

pellet determined. The cells are resuspended in 1.5 rnl of buffer A+8.5% mannitol +

5mM PMSF per gram of wet cell weight.

Resuspended cells (5-6 g) are combined with 6X wet cell weight of cold glass

beads in a 50 ml Coming screw-cap polypropylene centrifuge tube. The cells are lysed in

a cold room by manual shaking for five I-min periods with I min cooling on ice between

shaking-periods. Shaking is performed at a rate of 2 cycles per sec over a 50 cm hand

path. The resulting cell lysate is centrifuged at 4 C for 2 min at 2 000 rpm (the GSA rotor

used above is satisfactory for this relatively low speed spin). The supernatant is then

transferred to a 50 ml centrifuge tube using a Pasteur pipette (Nalgene tube; compatible

with SS-34 rotor), and centrifuged for 6 min at 18 000 rpm. The supernatant is removed

and transferred to a 15-ml Coming tube , taking care to avoid the lipids at the top and cell

debris at the bottom of the tube.

Liquid N grinding protocol for s. cerevisiae lysis (based on the protocol of Otero

et al (1998)

A 1.5-1 YPD culture is grown at 30 C overnight to a final OD6oo=3. 5. Cultures

are harvested in 0. 1 bottles and centrifuged for 15 min. at 5 000 rpm. The resulting

supernatant is discarded and the cell pellets resuspended using 100-ml of buffer A. After

all pellets are resuspended, the volume of the suspension is brought up to 175-ml. The



resulting suspension is then centrifuged for 5 min. at 5 000 rpm and the supernatant

discarded. The resulting cell pellet is resuspended in 25-ml of buffer A, brought to a total

volume of 50-ml , transferred to pre-weighed centrifuge tubes , and centrifuged at 5 000

rpm for 5 min. The supernatant is discarded and the wet weight of the resulting cell

pellet determined. The cell pellet is resuspended in 1/10 the volume of the wet weight of

the pellet using buffer A, and 50 III of PMSF is added to the suspension. The resulting

cell suspension is dripped into liquid N to generate frozen cell pellets. The frozen cell

pellets are transferred to plastic tubes for storage at - C until the time of cell breakage.

To lyse cells , a ceramic mortar and pestle are first pre-chilled at - C. A small

amount of liquid N is then added to the mortar. The frozen yeast pellets are added to the

liquid N and the remaining volume of the mortar is filled with liquid N , The pellets are

crushed using slight pressure and a circular motion. Once most of the liquid N has

evaporated, the mortar is refilled with liquid N and the grinding process repeated using a

greater amount of pressure , crushing the pellets into a fine powder. The resulting powder

is transferred into an ultracentrifuge tube and allowed to thaw on ice , typically for 2-

hours. The thawed broken cells are centrifuged at 10 000 rpm for 10 min., and the

resulting supernatant transferred to pre-chiled Nalgene 16x75 mm ultracentrifuge tubes

and centrifuged at 18 000 rpm for 15 min. in a Beckman Ti50 ultracentrifuge rotor. The

supernatant is transferred to a fresh l6x75 mm tube and spun for an additional 15 min. at

000 rpm. The resulting supernatant is removed with a Pasteur pipette, taking care to

avoid both the lipid layer at the top and any pellet that had formed at the bottom of the

centrifuge tube.



Column Chromatography (in a cold room or a cold box)

Sephadex G-25 superfine (Sigma; 50ml of suspension) is poured into a 2.5cm X

20cm column and equilibrated with 50 ml buffer A+0.5 mM PMSF. After equilibration

the sample (4-5 ml) is loaded onto the column that is then washed with buffer A+0.5 mM

PMSF. Column fractions (0.5 ml) are collected in microfuge tubes. Peak fractions (which

appear slightly opaque) typically elute approximately 25 min. after loading the sample.

The A 60 of each fraction is determined after diluting 10 !Jl of sample into 990 !Jl of

water. All fractions with a diluted Az60 of 0. or higher are pooled, aliquoted into

microcentrifuge tubes , and quick frozen in liquid N for storage at -

Columns can be reused after washing with buffer A.

Nuclease treatment

Immediately prior to assembling the translation reaction mixtures, combine 200 /.1

extract, 2. 0 /.1100 mM CaCh, and 0.4 /.1 Micrococcal nuclease (25U//.1). Incubate at 21-

C for 10 min. Add 3.0 /.1 of 170 mM EGTA to stop nuclease reaction, and place on

ice. Alternatively, nuclease-treatment can be accomplished immediately after pooling the

peak fractions obtained by chromatography and prior to aliquoting and freezing the

extracts by appropriately scaling-up the nuclease-treatment procedure.



Translation reaction mix

For a 20X S. cerevisiae reaction mix, combine: 33.6 III Translation reaction

components , 2.4 III Creatine phosphokinase (7. 5U/lll), 10. III Common Buffer (40x),

40.0 III Variable Buffer (lOx), 4.0 III I mM Amino Acids , 2. 0 III RNasin (40ullll), (5 III

40 mM Arg. --only if studying the CPAI transcript; otherwise substitute 20.0 III of water),

68.0 III water. If all reactions are to contain the same mRA, then 40.0 III mRA (60

ng/Ill) is added at this point. Combine 10 III of this mix with 10 III of nuclease-treated cell

extract, and incubate at 25 oC for 10 , or 30 min. We routinely proceed immediately to

the toeprint procedure. Alternatively, the translation reactions can be terminated by

transferring tubes to liquid N2. We recommend that, if freezing the reactions is desired

the suitability for the specific application be assessed by comparing fresh- and frozen

translation reactions. Note: Premature termination toeprint reactions are pre-incubated for

, 20 , or 30 min. prior to addition of cycloheximide (at least 100Ilg/ml).

Toeprint Reaction Protocol

Prepare Annealing Solution and aliquot 5. III to 0.6 ml Eppendorf tubes for

toeprint reactions. Leave on ice.

Prepare translation reactions as outlined above.

Add 3 III of Translation Reaction to the 5.5 III annealing solution on ice.



Incubate the Translation Reaction-Annealing Solution mixture at 55 C for 2

min. For reasons that remain to be understood completely, this step is critical for

the visualization of ribosomes by toeprinting.

Add 1.0 III ofO.lllM labeled primer and incubate at 37 C for 5 min.

Add 0.5 III reverse transcriptase (50 units) and incubate at 37 C for 30 min.

Stop the reaction by adding an equal volume of phenol: chloroform. Flick tube

gently to mix. Centrifuge to separate phases. Add extracted aqueous phase to an

equal volume of loading buffer.

Heat samples at 80- C for 5 min. and load on a 6% urea-polyacrylamide

gel (Pre-run gel at 110 W for 45 min.

Electrophorese samples at 65 W until the bromophenol blue dye runs off the

gel. If using shark' tooth combs to load samples , load toeprint reactions into every

other lane, putting loading buffer in the blank lanes. It may be desirable to adjust

acrylamide concentrations and/or running-times to optimize the resolution of products

in different size-ranges.
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Table 2. Plasmids

Plasmid Releventveast seCluences Source

pRS3163XHA-NMD3 kb NotI-NcoI PCR fragment This Study
containing the NMD3 promoter region

NcoI-EcoRI fragment containing a triple
hemaglutinin epitope tag, - kb EcoRI-

Sail fragment containing the NMD3
coding region , 3' UTR and a small
portion of the pBSKS+ polylinker

pRS316 GALI-NMD3FL Contains a 0. kb XbaI-HindIlI GALl This study

promoter fragment and an -

HindIlI-HindIlI fragment of NMD3
containing the complete coding region (5'
HindIII site introduced by PCR at the -

position)

pRS316 GALl-nmd3L1100 pRS316 GAL-NMD3FL containing a 0.4- This study

kb BamH-MluI fragment containing a
stop codon at the 3' end , replaces the

80-kb NMD3 3' coding sequence
(unique Mlu I site engineered

immediately upstream of the true
termnation codon)

pRS316 GALl-nmd3L1200 pRS316 GALl-NMD3FL containing a This study

unique MluI site immediately upstream of
the true termination codon. Replaces the

kb 3' coding sequence , resulting in
the removal of the C-terminal 600bp of

the NMD3 coding sequence



CHAPTER 3

NONSENSE-CONTAINING mRNAs THAT ACCUMULATE IN THE
ABSENCE OF A FUNCTIONAL NMD PATHWAY ARE RAPIDLY

DESTABILIZED UPON ITS RESTITUTION

Introduction

Intricate mechanisms that safeguard against errors in gene expression exist in all

eukaryotes (Chin and Pyle , 1995; Freist et aI. , 1996; Gottesman et aI. , 1997; He et aI.

1993; Jeon et aI. , 1996; Yarus 1992). The phenomenon of nonsense-mediated mRA

decay (NMD) exemplifies one such mechanism, eliminating mRAs containing

premature nonsense co dons within their protein coding regions and thus minimizing the

synthesis of truncated polypeptides (He et aI. , 1993; Jacobson and Peltz, 1996; Maquat

1995; Peltz et aI. , 1993a b; Pulak and Anderson, 1993). The process of NMD has been

studied extensively in Saccharomyces cerevisiae where rapid degradation of nonsense-

containing mRAs involves recognition of a premature translation termination codon

deadenylation-independent decapping, and subsequent 5' /3' exonucleolytic digestion

of the remainder of the mRA (Beelman et aI., 1996, Hagan et aI., 1995; Hsu and

Stevens , 1993; LaGrandeur and Parker, 1998; Muhlrad et aI., 1994). In addition to the

decapping enzyme Dcplp, and the exonuclease Xmlp, three additional trans-acting

factors are essential for NMD in yeast: Upfl p, Nmd2plUpf2p, and UpDp (Cui et aI.

1995; He and Jacobson, 1995; He et aI. , 1997; Lee and Culbertson, 1995; Leeds et aI.

1991 1992). Consistent with their roles in the response to aberrant translation , all three of

the latter UPFINMD proteins have been shown to localize predominantly to the



cytoplasm and to associate with polyribosomes (Atkin et aI., 1995 1997; Mangus and

Jacobson, 1999; Peltz et aI. , 1993; Shirley et aI. , 1998). These observations indicated that

yeast NMD occurred in the cytoplasm and was linked to translation, conclusions

consistent with other results showing that: a) drugs or mutations that inhibit translation

also abrogate NMD (Losson and Lacroute, 1979; Welch and Jacobson, 1999; Zhang et

aI. , 1997); b) nonsense-containing polysomal mRAs stabilized in cycloheximide-treated

cells reinitiate NMD as soon as the drug is withdrawn (Zhang et aI., 1997); and c) a

dominant-negative form of Nmd2p/Upf2p inhibits decay only when localized to the

cytoplasm (He and Jacobson, 1995).

In mammalian cells it is stil controversial as to whether NMD is limited to the

cytoplasm. Nonsense-containing derivatives of mammalian globin, HEXA mRA and

adenine phosphoribosyltransferase (APRT) mRAs, as well as glutathione peroxidase I

(GPxl) mRNA , have been shown to decay in the cytoplasm ( Maquat et al1981; Rajavel

and Neufeld, 2001; Kessler and Chasin, 1996; Moriarty et aI., 1997, 1998 ). APRT

mRNA, however, can also be degraded in the nucleus, as are globin mRAs expressed

in non-eryhroid cells ( Kessler and Chasin 1996; Kugler et aI., 1995; Zhang et aI.

1998a b).

In contrast to these examples of cytoplasmic NMD, an increasing amount of

evidence in mammalian cells supports a nonsense decay mechanism that does not occur

in the cytoplasm, and which does not appear to affect all mRAs that contain a

premature nonsense codon. For example, reductions in the abundance of nonsense-

containing human triosephosphate isomerase (TPI) mRA are found in both the nuclear

and cytoplasmic fractions , suggesting that the decay process occurs in association with



the nucleus (Cheng et aI., 1990, 1993; Daar and Maquat, 1988). Additionally, those

nonsense-containing TPI mRAs that are exported into the cytoplasm appear to escape

degradation since they are found to be as stable as wild-type TPI mRA (Cheng et aI.

1993). These findings suggest that recognition of premature nonsense co dons in at least

some mammalian mRAs occurs solely in the nucleus, or during export from the

nucleus, and that those mRAs that escape to the cytoplasm become immune to

degradation by the NMD pathway.

To determine if yeast cytoplasmic nonsense-containing mRAs can become

immune to rapid turnover, we examined the decay kinetics of two NMD substrate

mRAs in response to repressing or activating the NMD pathway. Both the ade2- and

the pgkl-UAG- mRA nonsense-containing mRAs were stabilized by repressing the

pathway, and activation of NMD caused rapid and immediate degradation of each

transcript. These findings demonstrate that nonsense-containing mRAs residing in the

cytoplasm of yeast cells are potentially susceptible to NMD at each round of translation.



Results

The ade2- Transcript is a Substrate For Nonsense-mediated mRNA Decay.

To address the stability of cytoplasmic nonsense-containing mRAs, we first

took advantage of an allele of the ADE2 gene ade2- 1. Earlier studies showed that the

ade2- mutation could be suppressed in yeast strains containing an ochre tRNA

suppressor (Stotz and Linder, 1990; Sasnauskas et aI. , 1987), suggesting that the ade2-

allele was attributable to a nonsense (UAA) mutation and that the ade2- mRA was

likely to be a substrate for NMD. To test the latter possibility, single deletions of UPF 1

NMD2 or UPF3 were constructed in yeast strains that harbored the ade2- allele and the

effects of these mutations on the abundance of the ade2- transcript were examined.

Northern analyses of mRA steady-state levels demonstrated that mutations in genes

regulating stability of nonsense-containing transcripts affected the ade2- transcript in

precisely the same manner that they affected a well characterized NMD substrate, the

CYH2 pre-mRA (He et aI., 1993; Figure 3). The ade2- mRA was approximately

seven-fold more abundant in upf/nmd mutant cells as compared to the isogenic

UPFINMD (WI) strain (Figure 3). Likewise , deletion of genes encoding general factors

involved in mRA decay (i. DCP 1 and XRNl) also promoted a seven-fold increase in

ade2- transcript abundance (Figure 3). These differences in mRNA abundance were

consistent with the respective differences in the decay rates of the ade2- mRA in



Figure 3. The ade2- transcript is a substrate for NMD. Total RNA isolated from

yeast strains with the indicated UP F/NMD geneotypes was analyzed by northern blotting

with DNA probes that detected the ade2- and CYH2 transcripts. WT, wildtype. yeast

strains used in this experiment were: HFY 1200 , HFY870 , HFY1300 , HFY861

HFY1067 and HFYI081
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UPFINMD and upftnmd mutant cells. The half-life of the ade2- mRA was

found to be less than 5 min. in the UPFINMD strain and approximately 35 min. in

upftnmd cells, suggesting that the wild-type gene ADE2 encodes a relatively stable

mRA (data not shown). These results indicate that the ade2- mRA requires Upflp,

Nmd2p, Upf3p, Dcplp, and Xrnlp for its degradation and is , therefore , a typical substrate

for NMD.

Galactose-Inducible Expression of UPFl , NMD2 and UPF3.

To assess the stability of ade2- transcripts that had avoided degradation by the

NMD pathway, we sought a mechanism to regulate the activity of the pathway. To

accomplish this , the UPFl , NMD2 and UPF3 genes were cloned into either single- or

high-copy plasmids containing the inducible GALl promoter and the resulting plasmids

were transformed into the respective UPFINMD deletion strains. Each of the resulting

strains contained a galactose-regulated UPFINMD gene. As shown in Figure 4, Upflp,

Nmd2p, and Upf3p are not detectable in the respective regulated strains prior to galactose

induction, but these proteins accumulate substantially post-induction. Quantitation of

each of the western blots shown in Figure 4 , and others , indicated that: a) Upfl p, Nmd2p,

and Upf3p all begin to accumulate approximately 12- 14 min. after galactose addition and

b) by 20 min. after galactose addition, the cellular levels of each of the induced proteins

are comparable to those present in the isogenic UPFINMD strains (data not shown). From

these data, we conclude that use of these constructs allows for inducible expression of

UPFl , NMD2 and UPF3.



Figure 4. Galactose inducible expression of UPFl, NMD2 and UPF3. The upfL1,

nmd2.1, and upf3.1 strains harboring the appropriate galactose-inducible NMD gene

constructs were grown in SC -uracil , raffinose liquid media to mid log phase

(OD6oo=0.5). Galactose was then added to a final concentration of 2% and aliquots were

taken at 10 minute intervals for protein isolation. Isolated protein samples were then

analyzed by western blotting. Yeast strains used in this experiment were: HFY870

HFY1300 , andHFY861
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The ade2- Transcript is Rapidly Degraded Upon Activation ofNMD.

The availability of the strains described above makes it possible to determine the

stability of ade2- transcripts before and after activation of the NMD pathway. Under

conditions where NMD is inactive , these nonsense-containing mRAs accumulate in the

cytoplasm and are relatively stable (t1l=35 min. ; data not shown). Upon activation of the

NMD pathway, the fate of these mRAs can be monitored by simply measuring their

relative abundance over time, leading to a determination of the decay kinetics of the

steady-state ade2- mRA population. If the accumulated ade2- transcripts are

susceptible to NMD , then activation of this decay pathway should result in their rapid

degradation. If the ade2- transcripts are immune to NMD , then activation of the decay

pathway should have no effect on the stability of these mRAs. The overall ade2-

mRNA population would then consist of newly synthesized mRAs that are rapidly

degraded and the stable cytoplasmic transcripts that had accumulated prior to activation

of NMD. Under these circumstances , the expected decay rate of the steady-state mRA

population would initially be slow (approximating that of the stabilized ade2-

transcripts), and then would approach a half-life approximating the average of the two

populations (t1l=20 min.). Only after substantial dilution with newly synthesized mRNA

would the population begin to reflect a more rapid decay rate.

These possibilities were evaluated by northern blot analyses of yeast strains

expressing regulatable UPFI , NMD2 or UPF3. These experiments demonstrate that, as

expression of UPFI , NMD2 or UPF3 increases (Figure 4), the abundance of the ade2-

mRNA decreases (Figure 5A). Subsequent to the time at which the UPFINMD proteins



Figure 5. The ade2- transcript is rapidly degraded upon activation ofNMD. (A)

Activation ofNMD causes rapid degradation of the ade2- mRNA. Total RNA isolated

from yeast strains with the indicated UP F/NMD genotypes, harboring the appropriate

galactose-inducible NMD gene constrct (GAL-UPFl , GAL-NMD2, GAL- UPF3) was

analyzed by nortern blotting with DNA probes that detected the ade2- 1 transcript. (B)

The addition of galactose does not destabilize ade2- 1 mRNA. Total RNA isolated from

yeast strains with the indicated UP F/NMD genotypes harboring only the vector plasimd

was analyzed by nortern blotting with DNA probes that detected the ade2- transcript.

Yeast strains used in this experiment were: HFY871 , HFY1300, and HFY861
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begin to accumulate (12- 14 min. post- induction; see above), the ade2- mRA

disappears with a half-life of approximately 7 min. in all three strains. By 30 min. after

galactose induction of any of the three UPFINMD genes , approximately 20% of the ade2-

mRA population remains and, by 40 min. , the abundance of the ade2- mRA

returns to the low levels characteristic of a UPFINMD (wild-type) strain. These

experiments show that induction of Upfl p, Nmd2p, or Upf3p restores NMD and results

in immediate destabilization of the entire ade2- mRA population, i. , the ade2-

mRNA molecules present in the cell prior to galactose induction are not immune to

degradation by NMD.

To ensure that addition of galactose , by itself, does not result in destabilization of

the ade2- mRA, the galactose induction experiment was repeated in upfliJ, nmd2L1

and upj3L1 strains transformed with an empty GALl vector. Northern analyses of RNA

isolated from these strains demonstrate that the ade2- transcript remains stable

throughout the course of this control experiment (Figure 5B).

Degradation of the adel- mRNA Population Occurs on Polyribosomes.

To confirm that the ade2- mRA accumulated in upf/nmd cells is cytoplasmic

and that its eventual decay occurs on polyribosomes (Zhang et aI. , 1997), the association

of the ade2- mRA population with ribosomes was investigated under conditions where

NMD was either inactive or active. Cytoplasmic extracts were prepared from a strain

containing galactose- inducible UPF l both prior to galactose-induction and 30 min. post



Figure 6. Degradation of the ade2- mRNA population occurs on polyribosomes. (A)

The ade2- mRA is detected in the polysome fractions before galactose induction.

Total RNA isolated from polyribosome fractions collected before the addition of

galactose was analyzed by northern blotting with DNA probes that detected the 
ade2-

mRA and the SCRI RNA (the latter to serve as a control to ensure that RNA was

isolated from the polyribosome fractions). (B) The ade2- mRA is no longer detected in

the polyribosome fractions upon activation of NM. Total RNA isolated from

polyribosome fractions collected 30 minutes after the addition of galactose was analyzed

by northern blotting as described above. The results depicted in this figure were obtained

from the upfll1 strain (HFY870), harboring the galactose- inducible UPFI construct.
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induction, and then resolved on sucrose gradients. Fractions collected from these

gradients were analyzed by northern blotting. Under circumstances when NMD is

inactive , the ade2- mRA was found to cosediment predominantly with the

polyribosome fractions (Fig. 6A, fractions 1-7), suggesting that these transcripts are

associated with actively translating ribosomes. The association of these transcripts with

an average of 4-5 ribosomes is consistent with premature translational termination within

a large mRA (2.2 kB; 51 , 52). Upon restoration ofNMD , the ade2- mRA is rapidly

degraded (Figure 5) and is no longer detected in the polyribosome fractions (Fig. 6B). As

a control for these experiments , the northern blots of Figure 6A and B were also probed

for the SCRl RNA. The latter blots demonstrate that the quality and quantity of RNA

isolated from the two sets of gradients (0' and 30' post- galactose induction) was similar

(Figure 6A and B).

Results virtually identical to those of Figs. 6A and B were obtained using

the galactose-regulated NMD2 and UPF3 constructs (data not shown). Taken together

these findings indicate that the ade2- mRA that accumulates when NMD is inactive

associates with cytoplasmic ribosomes and that this mRA disappears from the

polyribosomal fraction when its degradation by the NMD pathway is activated.

Activation of NMD Triggers Rapid Decay of PGKI Transcripts With Early But Not

Late Nonsense Codons .

To substantiate our findings with the ade2- mRA, we investigated the effect

that restoration ofNMD had on the decay kinetics of another nonsense-containing



Figure 7. Early nonsense pgkl mRNA degrades rapidly upon activation of NMD. (A)

Activation of NMD results in degradation of the early nonsense-containing pgkl

transcript , but does not destabilize the late nonsense-containing pgkl mRA. Total RNA

isolated from yeast strains with the indicated UPFINMD genotypes, harboring the

corresponding galactose-inducible NM gene constructs was analyzed by northern

blotting with DNA probes that detected the pgkl transcript. (B) The addition of galactose

does not destabilize the early nonsense-containing pgkl mRA. Total RNA isolated

from yeast strains with the indicated UPFIINMD genotypes harboring only a vector

control plasmid, was analzed by northern blotting as described above. Yeast strains used

in this experiment were: HFY870 , HFY1300, and HFY861
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Figure 8. Activation of NMD results in the rapid decay of substrate transcripts.

Graphical depiction of the relative levels of ade2- (0), early nonsense pgkl (D), and

late nonsense pgkl 

(.) 

mRNAs with the relative level of induced protein, Nmd2p (8),

upon activation of NM (by addition of galactose). The data for construction of this

graph was quantitated from the northern blots of Figure 5A (ade2- l) and Figure 7 A (early

and late pgkl) and from the western blot of Figure 4.
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transcript. The PGKI mRA is normally very stable , having a half-life of approximately

60 min. (Peltz et aI. , 1993), but a derivative with a nonsense mutation at codon 22 (pgkl-

UAG-2) is extremely unstable (tl/2=6 min. ; Peltz et aI. , 1993a b). Inactivation of the

NMD pathway (by mutations in UPFl , NMD2 or UPF3) restore the stability of this

nonsense-containing mRA (t1/=60 min), confirming that it is a substrate for NMD

(Peltz et aI., 1993a b). The large differences in the half-lives of this transcript in the

active and inactive states of NMD make it ideal for an investigation of the possible

existence of mRA immunity to rapid decay. Fig. 7A demonstrates that induction of

UPFl, NMD2 or UPF3 (in the respective deletion strains) resulted in rapid

disappearance of the pgkl-UAG- mRA (see " early pgk1"

). 

The decay kinetics for the

steady-state population of this mRA were comparable to those of the ade2- mRA

such that: a) it disappeared with a half-life of approximately 7 min. , after a lag for

induction of the pathway, and b) by 30 min. post-induction, most (85%) of the mRA

was degraded (Figure 7 A and 8). These results support previous findings that this

transcript is a substrate for NMD and indicate that restoration of the NMD pathway

causes its rapid and immediate degradation.

Destabilization of mRAs by premature nonsense codons is a position-dependent

phenomenon wherein mRNAs with nonsense codons occurring in the last 20-30% of the

coding region retain their wild-type decay rates (Jacobson and Peltz, 1996; Peltz et aI.

1993; Hagan et aI., 1995; Mangus and Jacobson, 1999). As an additional means to

determine whether the post- induction disappearance of the pgkl-UAG- and ade2-

mRNAs was a direct consequence of restoration of NMD , we repeated the NMD

induction experiments in cells harboring a pgkl allele with a nonsense mutation at codon



385 (pgkl-UAG-7). This mutation does not affect the stability of the encoded mRA

(t1l?60 min.) and does not render it a substrate for NMD (Peltz et aI. , 1993). As such, the

pgkl-UAG- transcript serves as an ideal control to test whether galactose induction of

the UPFINMD genes results in selective degradation of bona fide NMD substrates.

Figure 7A shows that galactose induction of UPFl , NMD2 or UPF3 does not affect the

abundance of the pgkl-UAG- mRA (see " late pgkl"

). 

This result demonstrates that the

decay pathway activated by induction of the UPFINMD genes remains specific for proper

substrate mRAs and reiterates the finding that the pgkl-UAG- mRA is not a

substrate for NMD.

Control experiments were also conducted to ensure that destabilization of the

pgkl-UAG- mRA subsequent to restoration of NMD was not due to an effect of

galactose addition. Fig. 7B shows that up/IL1, nmd2 L1 and upj3 L1 strains containing

either the early or late pgki nonsense alleles and an empty GALl-vector do not alter the

stability of either the early or late pgki nonsense mRAs in response to galactose

addition to the growth media. Therefore, it is activation of the NMD pathway and not

simply the addition of galactose, which causes destabilization of the pgkl-UAG-

mRA.



DISCUSSION

What comprises a substrate for nonsense-mediated decay of yeast mRNAs?

Yeast mRAs containing premature translation termination codons are rapidly

degraded via the NMD pathway when several criteria are met. The termination codon in

question must occur within the first two-thirds to three quarters of the mRA coding

region and be 5' proximal to an essential sequence element (the downstream element , or

DSE; Peltz et aI., 1993a b; Zhang et aI., 1995). Moreover, the nonsense-containing

mRNA needs to be translated (Losson and Lacroute, 1979; Gozalbo and Hohmann

1990), and several factors essential to the NMD process need to be present and

functional. (Leeds et aI. , 1992; He and Jacobson, 1995; Cui et aI., 1995; Lee and

Culbertson, 1995). The nonsense codon that promotes mRA destabilization can occur

within a conventional coding region or be derived from an upstream open reading frame

(Cui et aI. , 1995), present within an unprocessed intron (He et aI. , 1993), recognized only

during out-of- frame translation that occurs as a consequence of leaky scanning (Welch

and Jacobson , 1999), or be the normal termination codon in an mRA with an extended

UTR (Muhlrad and Parker, 1999). Since NMD has been shown to occur without prior

shortening of the mRA poly(A) tail (Muhlrad and Parker, 1994), it has been suggested

that the decay-initiating event can occur very early in the functional lifetime of the



mRA (Jacobson and Peltz, 1996). At issue , however, is whether an mRA qualifies as

an NMD substrate at any time during its cellular "life cycle.

One model, derived from data in mammalian cells, suggests that spatial

relationships reflect temporal relationships, i. , that the apparent nuclear proximity of

NMD and the deposition of factors essential for NMD during pre-mRA splicing must

reflect a decay process that occurs during an early round of translation , or not at all (Nagy

and Maquat, 1998). Recent experiments studying yeast NMD carried out by Gonzalez et

al (2000) led them to suggest that NMD in yeast may also occur during the initial or early

rounds of translation. Gonzalez et al (2000) found that the RNA binding protein Hrp I 

is able to associate with the PGKI DSE, and that this association appears to promote

NMD , as disruption of HRP 1 or mutation of the region responsible for DSE binding

stabilized two artificial NMD substrates assayed (Gonzalez et aI. , 2000). Given previous

studies which demonstrated a role for Hrp I P in RNA end formation and mRA transport

(Henry et aI. , 1996; Kessler et aI. , 1997; Minvielle-Sebastia et aI. , 1998), Gonzalez et al

(2000) proposed a model that suggests NMD occurs during the initial rounds of

translation. In this model Hrp I P is proposed to bind the PGKI DSE during 3' end

formation, or export. The mRAlHrp I P complex is then exported to the cytoplasm.

Once the mRAlHrp I P complex reaches the cytoplasm it would then be actively

translated. In a wild-type message any bound Hrp1p would be liberated as a consequence

of translation, while Hrp 1 p bound to a nonsense-containing message would not be

removed, as premature termination would occur upstream Hrplp s binding site (the

DSE). Gonzalez et al (2000) suggest that retention of Hrp I P by the nonsense containing

mRNA results in the generation of an abnormal mRP structure that targets the mRA



for degradation.

In the models described above, mRAs are thus capable of being degraded only

during their initial rounds of translation, after which they acquire immunity to NMD. The

data presented here demonstrate that, at least in yeast, NMD is not limited to early rounds

ofmRA translation, but rather, can occur at any time during an mRA' s life cycle. This

implies that either there are no NMD-essential factors that are shed during translation, or

that factors that are shed can reassociate with an mRA while it remains in the

cytoplasm.

The continual availabilty of substrates for the yeast NMD apparatus implies that

decay occurs in the cytoplasm

The processes that mediate normal and nonsense-mediated mRA decay have

been characterized in various eukaryotic systems. While study of NMD in numerous

systems has provided insight into the mechanism and function of this degradation

pathway, NMD has been most extensively characterized in the yeast Saccharomyces

cerevisiae. In yeast, a large body of evidence indicates that NMD occurs in the

cytoplasm. A primary piece of evidence supporting cytoplasmic decay, is the fact that

destabilization of nonsense-containing mRAs requires their translation, indicating that

the mere presence of a premature nonsense codon within an mRA is not sufficient to

promote its degradation by the NMD pathway. Normal decay can be restored to a

nonsense-containing mRA if a nonsense suppressing tRNA is co-expressed in the same

cells CLosson and Lacroute , 1979; Gozalbo and Hohmann, 1990) or if the initiator AUG



is deleted from the transcript. NMD is also sensitive to drugs that alter cellular translation

levels. This is supported by the observation that substrates of the NMD pathway are

stabilized in cells that have been treated with drugs that interfere with translation

initiation and elongation, but rapidly destabilized upon removal of these drugs (Herrick et

aI. , 1990; Peltz et aI. , 1992; Zhang et aI. , 1997). Another piece of evidence indicating that

decay in yeast occurs in the cytoplasm, is the observation that the NMD factors are pre-

dominantly cytoplasmic. In addition, sucrose density gradient analysis has found that the

NMD factors co-sediment with polyribosomes, confirming their association with the

translation apparatus (Atkin et aI., 1995 1997; Mangus and Jacobson, 1999). Further

evidence that NMD in yeast is a cytoplasmic event stems from experiments that found

mutation of the UPFINMD genes lead to the stabilization of nonsense-containing

mRAs , but also resulted in a nonsense suppression phenotype (Leeds et aI. , 1992; Weng

et aI. , 1996a b; Maderazo et aI. , 2000). An important role for the UPFINMD factors in the

modulation of translation termination is also indicated by experiments showing that yeast

(and human) Upflp interact with the polypeptide release factors Sup35p (eRF3) and

Sup45p (eRFl) (Czaplinski et aI., 1999). Collectively these results imply that

recognition and degradation of yeast substrates of the NMD pathway occur in the

cytoplasm. Many of these observations have been confirmed by experimental analysis in

higher eukaryotes, including mammalian systems, suggesting that the NMD pathway is a

highly conserved degradation pathway.

To address the observation that some mammalian nonsense-containing mRAs

appear to evade mRA degradation after nuclear export, we devised a series of

experiments to determine if yeast nonsense containing substrates were also capable of



evading NMD. To this end, we created a series of inducible NMD strains. Specifically, a

collection of plasmids harboring one of the UPFINMD genes under the control of the

inducible GALl promoter, were transformed into their respective deletion strains. In

effect these manipulations allowed us to modulate the activity of the NMD system

simply by altering media composition.

In separate experiments, we analyzed the decay kinetics of ADE2 and PGKl

nonsense-containing mRAs when expression of UPFl , NMD2 or UPF3 was repressed

or subsequently induced with galactose. Use of these particular mRAs was important

because , when stabilized, they have relatively long half-lives (::30 min). This was critical

since a lag time of 12- 14 minutes occurred before the measurable quantities of the NMD

factors were detected. If less stable transcripts were utilized (i. , transcripts with half-

lives ::15 min), we would be unable to discern if the effects measured were a result of

degradation via the NMD pathway, or the result of degradation by the deadenylation

dependent pathway. By using the PGKl and ADE2 nonsense alleles , we were able to

measure how quickly these mRAs disappeared as the NMD pathway was induced

taking into account the rate of UPFINMD factor accumulation and that of new mRA

synthesis. Induction of any of the UPFINMD proteins , in their respective deletion strains

resulted in the rapid and immediate degradation of the ade2- and pgkl substrate

transcripts. By the 40 min. time point, the steady state levels of both substrate mRAs

were decreased to levels observed in a wild- type UPFINMD strain (Fig. 5 & 7). It is

therefore unlikely that a stable mRA population exists , since the half-life of this

population would be greater that 30 min. Additionally, induction of the UPFINMD

proteins actually occurs -12- 14 min. after galactose addition (as determined from Figure



4 and Figure 8). Therefore , the abundance of the ade2- and pgkl substrate transcripts

was actually reduced to wild-type levels in less than 30 min. Moreover, the half-lives of

both the ade2- and pgkl substrates at steady state were calculated to be approximately 7

min. (as determined by the slopes in Fig. 8). Therefore, if two populations of the same

mRA, degrading at different rates were present, (newly synthesized, nuclear associated

mRAs, t1/=5min, and cytoplasmic mRAs, tI/2=35-60 min.) in order for the total

mRA population to show a 7 min. half life, the newly synthesized population would

have to comprise at least 85% of the total mRA. The observation, that yeast NMD

substrates are unable to escape degradation by NMD, is also supported by sucrose

sedimentation analysis we conducted with varioius PGKI alleles. In strains where NMD

was inactivated, both a PGKl-late (subject to normal decay) and PGKl-early (subject to

NMD) were found to co-sediment with polyribosomes , indicating that these mRAs are

actively translated and stable. However, sucrose density gradient analysis , conducted 30

minutes after induction of NMD, found that only the PGKl-late nonsense allele was

detected on polysomes. This suggests that induction of the NMD pathway leads to the

rapid degradation of the PGKl-early transcript, degradation can occur in association with

the translation apparatus , and that NMD pathway can recognize and degrade a substrate

mRNA at any point in its lifespan. In addition, if the half-lives determined in our

experiments were due to the contribution of two separate subpopulations of mRA (i.

stable pre-induction mRA and unstable post- induction mRNA), we should have

detected the presence of ade2- mRA on northern blots performed on mRA isolated

sucrose density gradients after 30 minutes of galactose induction.

Interestingly, our findings appear to correlate well with recent studies of the



mammalian GPxl mRNA. It has been found that cytoplasmic nonsense-mediated decay

of GPxl mRA is not restricted to newly synthesized transcripts , demonstrating that

NMD is able to act on the steady state mRA population. This observation suggests that

there is not a strict requirement for recognition of a nonsense-substrate during nuclear

export, and that decay may occur after a mRA has been completely exported to the

cytoplasm (Sun et aI. , 2000).

The faux UTR model

The two predominant (and related) models for the mechanism of NMD recognize that no

direct link between Dcplp and the UPFINMD factors has been found and thus postulate

that decay is a consequence of events occurring during or after translation termination. In

one model , decay occurs in response to recognition of a sequence element by a scanning

complex of UPFINMD factors (Ruiz-Eschevarria et aI., 1996; Czaplinski et aI.

1998 1999) and, in the other, decay is triggered by the failure to terminate adjacent to a

properly configured 3' UTR (Bonnetti et aI. , 1994; Hilleren and Parker, 1999) regarding

the degradation of NMD substrates, as disruption of the NMD pathway results in

disruption of translational fidelity. Readthrough of the premature translation termination

codon would allow the ribosome to translate through the DSE, allowing it to displace any

Hrp I P bound at the DSE. However, our results could be explained by the surveillance

complex model if one assumes that nuclear marking factors such as Hrp I P are able to

rebind cytoplasmic mRAs once they have been displaced by the translation apparatus.

Like the surveillance complex model , the faux UTR model also considers the



influence of RNP structure on the proper function of the NMD pathway. In this model

sequences downstream of a premature termination codon are hypothesized to function as

a defective or "faux" UTR. This model implies that proper termination is a result of a

specific interaction between the translation apparatus and components of the 3' UTR of a

transcript (Bonetti et aI., 1995; Hilleren and Parker, 1999; Jacobson and Peltz, 2000).

Proper completion of the termination cycle is believed to stabilize the message by

stimulating translation by allowing proper interaction between the 3' UTR and the 5' cap

structure and their associated factors to occur at a high effciency. Improper termination

at a "faux" UTR could result in inefficient ribosome release, and improper release could

negatively affect these interactions , thereby triggering decapping. In this model, Upfl p

would function in conjunction with eRF I and eRF3 to mediate all termination events

possibly using its helicase and RNA binding activities to promote ribosome release. The

faux UTR model is also able account for our observation that yeast mRAs may be

degraded by the NMD pathway at any point during their lifecycle. Since the faux UTR

model does not depend on the nuclear marking of an mRA as a requirement for

degradation. The faux UTR model can also readily accommodate the results of studies

that show that Upfl p has a more general role in translation termination that is not limited

to NMD. Experiments conducted by He and Jacobson (2001) found that Upflp regulates

the decapping and exonucleolytic degradation of both wild-type and NMD substrates

suggesting that Upfl p functions in the metabolism of all mRAs.



CHAPTER 4

OVEREXPRESSION OF SELECTED UPFl ALLELES ALTERS CELL

VIABILITY, NONSENSE-MEDIATED mRNA DECAY, AND TRANSLATION

INTRODUCTION

Several studies indicate that, in yeast, there is an intimate link between mRA

translation and recognition ofNMD substrates , including experiments showing that: 1)

recognition of a premature nonsense codon requires translation, since drugs or mutations

that inhibit translation stabilize NMD substrates (Herrick et aI. , 1990; Peltz et aI. , 1992;

Zhang et aI. , 1997), 2) NMD factors co-fractionate with polyribosomes on sucrose

gradients , suggesting that decay occurs in association with the translation apparatus (He

et aI. , 1993; Atkin et aI. , 1995 , 1997; Mangus and Jacobson 1999), 3) nonsense-

containing mRAs degrade in association with polyribosomes (Zhang et aI. , 1997),

NMD factors interact with translation termination factors eRFI and eRF3 (Czaplinski et

aI. , 1999; Weng et aI. , 2001), and 5) Deletion of UPFl UPF2/NMD2 or UPF3 results in

increased levels of nonsense suppression (Leeds et aI. , 1992; Weng et aI. , 1996a

Maderazo et aI. , 2000).

Despite the large body of evidence suggesting that the processes ofNMD and

translation are tightly linked, little evidence has been found to suggest that disruption of

NMD function in yeast can alter cell viability. Deletion of UPFl , UPF2/NMD2



UPF3 abrogates NMD , but does not alter cell growth (Leeds et aI. , 1992; He and

Jacobson 1995; Lee and Culbertson 1995). This observation is surprising, since the

UPFINMD factors have been shown to interact with components of the translation

apparatus , as well as serve a regulatory role in the decapping and exonucleoltyic

degradation of both wild-type and nonsense-containing transcripts (Atkin et aI. , 1995

1997; Mangus and Jacobson , 1999; Czaplinski et aI. , 1999; He and Jacobson 2001).

Since the UPFINMD factors playa critical role in several cellular processes , I

decided to investigate whether overexpression of dominant-negative mutants ofUpflp,

would be capable of inhibiting cell viability. The production of dominant alleles of

UPFI is not without precedent, as the initial characterizations of UPFI yielded several

dominant UPFI mutants. Experients conducted by Leeds and colleagues resulted in the

production of multiple UPFI mutations (Leeds et aI. , 1992), including seven independent

mutants of UPFI in which a single amino acid change was able to confer a dominant-

negative phenotype. Several of these mutants were shown to influce both the effciency

of nonsense suppression and NMD in a dosage dependent mannner (Leeds et aI. , 1992).

Although these dominant UPFI mutants were able to influence both nonsense

suppression and NMD, none of the mutants analyzed appreciably altered cell viability.

Additional mutational studies of UPFI have been conducted by Weng et aI.

(1 996a b), who took advantage of previous studies, indicating that UPFI is a member of

RNAiDNA helicase superfamily I (Altamura et aI. , 1992; Koonin 1992; Leeds et aI.

1991; Leeds et aI. , 1992). Since members of this family of helicases share a series of

highly conserved motifs, Weng and colleagues generated amino acid substitutions within



these conserved regions , and assayed their effects on nonsense suppression and NMD.

These studies found that a point mutation within the UPFj ATP binding domain was able

to affect both nonsense suppression and NMD activity, but a mutation in the A 

hydrolysis domain was only able to alter NMD activity, suggesting that Upfl p s function

in these two processes can be seperated (Weng et aI. , 1996a b). However, these

experiments did not detect an effect on cell viability with any of the mutants tested

(Weng et aI. , 1996b).

Although these studies were unable to detect effects on viability, several key

observations were made in these studies. It was established that the region between

amino acid residues 533 and 842 is critical for Upfl p function, since mutations within

this region were able to alter nonsense suppression and/or NMD (Leeds et aI. , 1992;

Weng et aI. , 1996b). Furthermore , Weng et al were also able to confirm Upflp

NTPase , RNA binding, and helicase activities using biochemical techniques (Weng et aI.

1996a b). An additional interesting observation was that the effects of various mutants of

Upflp were enhanced in a dosage dependent manner, such that an increase in the ratio of

mutant Upfl p to wild-type Upfl p resulted in stronger nonsense suppression and

inhibition ofNMD (Leeds et aI. , 1992; Weng et aI. , 1996b).

Careful analysis of these results, led me to believe that UPFj mutants capable of

affecting cell viability may already exist. Indeed, it seemed likely that the reason effects

on viability had not been observed were a result of insuffcient production of the mutant

proteins. Therefore , I set out to test this hypothesis by studying the consequences of

overexpressing previously characterized point mutants , using high copy vectors with



UPFl gene expression driven by the GALl promoter. The GALl promoter was selected

because it is a tightly regulated inducible promoter that is able to cause high- level

expression of genes under its control.



RESULTS

To detemline if overexpression of point mutants 
in UPFl would exert dominant-

negative effects on NMD or other cellular processes, I sub-cloned various alleles of

UPFladjacent to the GALl promoter in a high-copy vector. The constructs utilized are

depicted in Figure 9A. The resulting plasmids were analyzed and their structures

confimled by restriction mapping and they were then transfomled into the yeast strain

HFYI14. Strains harboring these high-copy plasmids were grown in SC -
ura raffinose

media and the expression of the constructs was induced by the addition of galactose.

SDS-polyacrylamide gel electrophoresis and subsequent western blotting perfomled with

Upfl p polyclonal antibody revealed that all constructs were inducible by galactose
, and

expressed at similar levels (see Figure 9B).

Given dominant-negative proteins are known to be potent inhibitors of the

macromolecular complexes in which they function (Eisenger et aI. , 1997; Belk et aI.

1999), and Upfl p has been shown to interact with cellular translation factors (Czaplinski

et aI. , 1999). I sought to determine ifoverexpression 
of any UPFl alleles would exert a

dominant-negative effect on the viability of yeast cells. Strains harboring the various

overexpressed UPF 1 alleles , as well as an empty vector control , were assayed for their

ability to grow on glucose or galactose. All cells assayed grew to similar levels on



Figure 9. Overexpression of UPFI alleles in wild-type cells (A) Schematic of the

UPFI coding region. Mutations studied and functional domains are indicated. (B) UPFI

alleles are overexpressed upon galactose induction. The constructs shown in A and the

empty vector pRS426 were transformed into HFY114, which contains a wild-type copy

of the UPFI gene. Individual transformants were selected, grown in SC -ura raffnose

liquid medium, and subsequently induced with galactose. The equivalent of Iml of cells

at an OD6oo 2 was collected at Oh and 4h for protein analysis. Aliquots of whole cell

extracts were loaded onto SDS-P AGE gels , immunoblotted, and probed with polycIonal

Upfl P antibody.
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glucose(Figure 10). However cells plated on galactose exhibited differences in growth

phenotypes. Cells over-expressing wild- type UPF1 or upf1-RRAA grew at slightly

reduced rates in galactose when compared to the strain harboring the empty vector

control. However, the growth of strains over-expressing the upf1-DE572AA and upfJ-

K436E alleles was dramatically reduced (Figure 10) relative to the control strains. These

results suggested that over-expression of UPF1 alleles interfered with the function of an

essential cellular process.

Growth curves were performed to confirm the results observed in the plate assay.

Cells were grown in SC -ura raffnose media to early log phase , diluted to standardized

cell density with SC -ura raffinose media, and then induced by addition of galactose.

Cell growth , analyzed at various time points after addition of galactose, closely paralleled

the results obtained in the plate assay. Strains overexpressing the UP F 1- WT or upf1-

RR AA constructs doubled at slightly slower rates than the empty vector control (3.

compared to 3 h; see Figure 11), while strains overexpressing the upf1-DE5762AA 

upf1-K436E constructs exhibited a stronger inhibition of growth when compared to the

empty vector control strain (4h compared to 3h; see Figure 11).

Since Upflp is an essential factor of the NMD pathway, I then determined

whether overexpression of the various UPF1 alleles in a wild-type background might

affect NMD function. Cells harboring the different alleles , as well as a upf1 strain with

an empty vector, were grown to early log phase in SC -ura raffnose and cell samples

were collected for RNA isolation. Expression of the UPF1 alleles was then induced by



Figure 10. Alleles of UPFI exert dominant-negative growth phenotypes when

overexpressed. The constructs shown in Figure lOA cloned into the vector pRS426 and

the empty vector pRS426 were transformed into HFY114 , which contains a wild-type

copy of the UPFI gene. Individual transformants were selected and then diluted serially

onto SC -ura plates with either glucose or galactose as the sole carbon source.



WT pRS426

WT pRS426-GALl-UPFl

WT pRS426-GALl-UPFl-DE572AA

WT pRS426-GALl-UPFl-K436E

WT pRS426-GALl-UPFI-RRJAA

Glucose

.e$ :l'

~~~

1.'

1 .

fk", 

--;

Galactose



Figure 11. Overexpression of UPFI alleles results in dominant-negative growth

phenotypes. The constructs shown in Figure lOA cloned into pRS426, and the empty

vector pRS426 were transformed into HFY114, which contains a wild-type copy of the

UPFI gene. Individual transformants were selected, grown in SC -ura raffinose medium

to an OD6oo of 0. 15 and subsequently induced with galactose. Cell density, as OD60 ,was

measured at varous time points after galactose induction.

II,;'
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addition of galactose and additional cell samples for RNA isolation were taken after 4h of

galactose induction. The 4h time point was selected since growth rate experiments had

shown that mutant alleles of Upfl p were able to exert cellular effects by this time point.

Cytoplasmic RNA , isolated from the cell samples , was subsequently analyzed by

northern blotting to determine the relative levels of the CYH2 mRA and pre-mRA.

These transcripts were chosen for analysis because the CYH2 pre-mRA is an

endogenous substrate of the NMD pathway, and the abundance of the CYH2 pre-mRA

is a direct indicator of the degree of inhibition of the pathway (He et aI. , 1993; He and

Jacobson 1995). Northern analysis of samples taken prior to galactose induction showed

that the presence of the constructs in non-inducing conditions had no detectable effect on

the NMD pathway (Figure 12 , see lanes labeled Oh galactose). However overexpression

of some forms of UPFI did interfere with the function of the NMD pathway.

Overexpression of wild- type UPFI had no effect on otherwise wild-type cells , but

overexpression of upfl-DE572AA , upfl-K436E or upfl-RRAA resulted in a 4-fold

stabilization of CYH2 pre-mRA when compared to the wild-type empty vector control

(Figure 12 , see lanes labeled galactose). The mutant UPFI alleles were able to interfere

with NMD function, but were not able to completely inactivate NMD since they were not

able to inhibit its function to the levels detected in the upfl control strain (Figure 12).

Given the well-established links between translation and the nonsense-mediated

mRNA decay pathway, I conducted experiments to determine if the inhibition of growth

observed upon over-expression of alleles of UPFI resulted from perturbation of the

translation apparatus. Since the experiments of Figures 9- 12 had shown that the upfl-



Figure 12. Overexpression of UPFI alleles results in dominant-negative inhibition of

NMD. The constructs shown in Figure lOA, cloned into pRS426, and the empty vector

pRS426 were transformed into HFY114, which contains a wild-type copy of the UPFI

gene. Individual transformants were selected, grown in SC -ura raffinose medium,

subsequently induced with galactose. Samples were collected for RNA isolation and

northern blot analysis at Oh and 4 h post galactose induction. The blots were hybridized

with a radiolabeled CYH2 probe.
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DE572AA and upfl-K436E displayed identical phenotyes , I focused on the

characterization ofthe DE572AA mutant for the remainder of my studies. Sucrose-

gradient analysis was used to determine whether overexpression of the DE572AA allele

caused any specific alterations in cellular polyribosome profiles. Cells containing the

upfl-DE572AA allele were grown in SC -ura raffnose and subsequently induced for 4 h

in galactose-containing medium. Figure 13 shows that cells harboring the empty vector

contol displayed a wild-type polyribosome profie after 4 h of galactose induction

whereas cells over-expressing the upfl-DE572AA allele exhibited an aberrant

polyribosome profile. These analyses also indicated irregularities in the polyribosome

peaks profile of the upfl-DE572AA strain, i. , the peaks were not sharp and discrete like

those observed with the control strain (Figure 13). These irregularities are reminiscent of

half-mer polyribosme peaks, with the exception that the discontinuities detected with the

upfl-DE572AA mutant are found on the opposite side of the polyribosome peak from

that of ahalf-mer polyribosome profies (Hesler et aI. , 1981).

Knowing that half-mer polyribosome profiles are often indicative of ribosome-

joining defects (Hesler et aI. , 1981; Fried et aI. , 1985; Rotenberg et aI. , 1988; Moritz et

aI. , 1991), and that Upflp has been shown to interact with translation termination factors

(Czaplinksi et aI. , 1999), I hypothesized that this aberrant peak might be the result ofa

defect in termination , and that the discontinuities I detected might be due to the presence

of a 60S ribosomal subunit being present on a transcript without a 40S partner. This

situation might result if expression of the DE572AA mutant interfered with the ability of

termination factors to effciently uncouple the 80S subunit. To determine if this might 
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Figure 13. Overexpression of the UPFI-DE572 allele results in abnormal

polyribosome profies. Cytoplasmic extracts were prepared from cells after 4 h of

galactose induction. Extracts were fractionated on 7-47% sucrose gradients. The A254

traces of the ribosome profiles are shown, with the peaks of the 40S subunits , 60S

subunits , and 80S monosomes labeled as such.
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the case , RNA was isolated from the polyribosome fractions , and subjected to agarose gel

electrophoresis. The resulting gel was stained with ethidium bromide to detect the

presence of the ribosomal mRA. If the irregularities detected in the polyribosome

profie were due to the retention of the 60S without its 40S partner, a change in the

change in the abundance of25S ribosomal mRNA would be expected. Ethidium staining

of the DE572AA and wild-type control revealed no significant differences in the

abundance of this ribosomal subunit RNA (Figure 14).

Since wild-type Upfl p interacts with the peptidyl release factors (Czaplinski et

aI. , 1999), and this interaction is hypothesized to mediate events at translation

termination , I performed a series of co-overexpression experiments , aimed at determining

if overexpression of the peptidly release factors could relieve the dominant-negative

phenotype observed when the DE572AA mutant is overexpressed. To accomplish this, I

co- transformed GALl regulated wild-type or upfl-DE572AA contructs with a high-copy

plasmid that both overexpressed eRFI and eRF3 (Bidou et aI. , 2000). Overexpression of

the peptidyl release factors was unable to alleviate the dominant negative growth

phenotype observed with overexpression of the DE572AA mutant in three independent

experiments (data not shown).

As a further test of the hypothesis that overexpression of the DE572AA mutant

results in a defect in ribosome release, I attempted to perform primer extension inhibition

(toeprint) assays on wild-type and DE572AA strains that were induced with galactose for

4 h. To perform a toeprint assay, it is necessary to create in vitro translation extracts

from the cells of interest. Exogenous mRA is then added to the extracts, translation of
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Figure 14. Overexpression of the UPFI-DE572 allele does not alter ribosomal RNA

profies signifcantly. RNA was isolated from the fractions collected from the sucrose

gradients in Figure 14. Samples were then loaded onto a 1 % denaturing agarose gel and

assayed for rRNA abundance by ethidium bromide staining.
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this mRA is allowed to proceed for a given time period, and the reaction is then

terminated by addition of cycloheximide (Wang et aI. , 1999). The addition of the

elongation inhibitor cycloheximide (Vazquez, 1979) is used to stop the progression of

translating ribosomes. Primer extension is then performed on the mRA in the

translation reactions , i. , without additional purification. The cDNA products of these

reactionis are visualized by polyacrylamide gel electrophoresis. Extension by reverse

transcriptases can be blocked by secondary structures within an RNA, and by ribosomes

and their associated factors that are trapped on the mRA by the assay conditions. This

allows the monitoring of the position, and relative frequency, of a ribosome at a specific

region on a given transcript. Using this assay, I sought to determine whether

overexpression of the DE572AA mutant altered ribosome position or frequency at

termination codons.

I attempted to generate functional translation reactions by growing cells in such a

way that post-galactose induction, the optical density of the cultures was at the optimum

recommended for preparation of toe print-competent extracts , i. , OD6oo 0 (Wang

et aI. , 1999). Unfortnately, I was unable to obtain functional translation extracts when

growing the mutant and wild-type cells to the recommended cell density in SC -ura

raffnose media. Knowing that the growth rate of the cell has significant effects on the

abundance of translation factors , I generated translation extracts from cells that were in a

more active growth stage (OD6oo ). This resulted in the generation of highly active

translation extracts , as determined by their ability to translate the yeast CANl mRA

fused in frame to a luciferase reporter. Toeprint reactions with these extracts were able to
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recognize ribosomes localized to the initiator codon of a CAN-LUC-UAA mRA

containing a pre-mature termination codon, but were unable to detect a toeprint at the

premature termination codon in this mRA (Figure 15A).

To test whether I could detect a CAN-LUC-UAA toeprint, I performed toeprint

experiments using a wild-type strain, grown in rich media to the recommended OD6oo

0. Toeprinting reactions performed with extract generated from these cells were

able to detect both initiation and termination toeprints (Figure 15B). These experiments

indicated that the assay was functional and that the growth rate of the cells had a

significant effect on the ability to detect translation termination toeprints.

In an attempt to circumvent the need to grow cells in SC -ura raffinose medium

and thereby allow me to grow the cells in rich medium, I constructed a series of

integration constructs in which expression of wild- type UPFl and its DE572AA mutant

allele was driven by the GALl promoter. These constructs were integrated into yeast

strains and assayed for their ability to alter cellular growth rate when grown on galactose.

Induction of either of these constructs was insuffcient to alter the cell growth on glucose

or galactose containing media. These experiments demonstrated the integration

constructs were unable to induce the dominant-negative phenotype that I had previously

observed. Collectively, these experiments , as well as those outlined above , indicated that

performing successful toeprinting experiments with these strains was unlikely to occur.
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Figure 15. Toeprint analyses of initiation and termination. Equal amounts (120 ng)

of synthetic RNA transcripts were used to program 20-lll translation mixtures derived

from S. cerevisiae. (A) CAN-LUC- UAA mRNA was incubated at 25 oC for 10 min in

micrococcal nuclease-treated S. cerevisiae translation extracts from the yeast strain MBS-

WT harboring either GAL- UPFI- WT or GAL-UPFI-DE572AA in SC -ura raffinose

media that had subsequently induced with galactose for 4h. Reaction mixtures were

supplemented with CHX after 10 min of incubation at 25 oC. AUG toeprints are

indicated by a (* ). (B) CAN-LUC- UAA mRNA was incubated at 25 oc for 10 min in

micrococcal nuclease-treated S. cerevisiae translation extracts from the yeast strain MBS-

WT or MBS-upfl L1 grown to and O. 6oo 2.0 in YPD. AUG toeprints are indicated by the

presence ofthe (*), termination toeprints are indicated by a (::).
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DISCUSSION

Overexpression of mutated alleles of UPFl result in cellular growth defects

To examine the consequences of over expression of mutations in UPF1

constructed galactose-inducible, high-copy plasmids that carried various mutations in

UP F 1. Overexpression of particular alleles of UP F 1 resulted in significant alterations in

cellular growth in both plate and liquid culture assays. Specifically, overexpression of

UPF1 mutants harboring mutations in the ATP binding and ATP hyrdroylis motifs were

able alter cellular growth rates (see Figure 11), with long-term expression resulting in

significant effects on cell viability (see Figure 10). The specific phenotye observed

from overexpression of these alleles was not directly attributable to differences in the

cellular abundance of the various mutant proteins , as all the mutants analyzed expressed

Upfl P to comparable levels , as determined by western blotting (Figure 9B).

Overexpression of mutant forms ofUpflp that are deficient in ATP binding, ATP

hydrolysis, or RNA binding affect NMD
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Since wild-tye Upflp is known to function in the process of nonsense-mediated

mRA decay, I examined the consequences of overexpressing alleles of Upfl p in an

otherwise wild-type cell background (Leeds et aI. , 1991 1992). Overexpression of alleles

harboring mutations in the A TP binding, A TP hydrolysis , or RNA binding domains all

altered the efficiency ofNMD , as detected by a 4-fold change in CYH2 pre-mRA

abundance (Figure 12). These results have interesting repercussions when viewed in the

light of the cell growth experiments. The fact that all three mutants alter NMD function

to a similar degree , but only the A TP binding and hydrolysis mutants affect cell viability

indicates that the observed effects on viablity are not exerted via the NMD pathway.

Overexpression of upfl-DE572AA may affect translation

Given the well-documented link between NMD and translation (Jacobson and

Peltz , 1996 2000), I analyzed sucrose density gradients of cell extracts generated from

cells overexpressing wild- type UPFI and cells overexpressing upfl-DE572AA

determine if the growth defects previously detected were a result of a upfl-DE572AA

effect on translation. Overexpression of the A TP hydrolysis mutant in galactose caused

irregularities its polyribosome profies , when compared to cells overexpressing wild-type

UPFI (Figure 13). These changes in the polyribosome profiles suggest that

overexpression of the ATP hydrolysis mutant, directly or indirectly, alters the proper

function of translation.

Further analysis of this apparent affect on translation by biochemical and genetic

techniques was not fruitful. Analysis of ribosomal rRNA, isolated from fractions
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obtained from sucrose gradient analysis of strains overexpressing wild-type or mutant

UPFl did not detect any significant change in the abundance or character ofrRNAs (see

Figure 14). Attempts at characterizing this defect by primer extension inhibition were

also unsuccessful , given technical contraints of the assay. Furthermore overexpression

of the peptidly release factors eRFl and eRF3 , which are known Upflp interactors , was

unsuccessfull in relieving the dominant-negative growth defect observed in strains

overexpressing the DE572AA allele.

Impact of UPFI overexpression analysis on current theories of its function

Previous studies characterizing the biological and biochemical activity of

mutations in UPFI yielded many interesting results. These studies found that mutations

within highly conserved motifs of UP F 1 allowed one to separate Upfl p ' s function 

NMD and termination codon recognition. Specifically, mRA stability and suppression

analysis found that mutation of the ATP hydrolysis region ofUpflp (ie. upfl-DE572AA),

resulted in a protein that was able to properly recognize premature terminations , but was

unable to function in NMD. These results suggested that A TP binding was a critical

event in nonsense-codon recognition , but A TP hydrolysis is functionally dispensible for

this event (Weng et aI. , 1996b).

The conclusions of Weng et ai. (1996a b), are called into question by my

overexpression studies with their UPFI mutants. As mentioned earlier, overexpression

of the A TP binding/hydrolysis mutants , or the RNA binding mutant, results in similar

.c;.
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effects on NMD. This observation correlates well with the previous studies conducted by

Weng and colleagues (1996a b). The cellular growth defects , and nonsense-mRA

stability levels observed upon overexpression ofupjl-K436E and upfl-DE572AA were

identical. These results suggested that it might be prudent to revisit Weng and co-

workers ' interpretations of their nonsense-suppression data. Specifically, nonsense-

suppression was measured by the ability of strains harboring nonsense mutations in LEU2

and TYR7 to grow on plates lacking these essential amino acids. Theoretically, 

nonsense-suppression were occurring in these strains, cells would be able to read-through

the premature tennination codon and produce some functional full-length protein which

would allow the synthesis of the critical amino acid. The studies of Weng et al (1 996a b )

found that the DE572AA mutant expressed on a low-copy centromeric vector resulted in

suppression of nonsense mutations in leu2 and tyr7 when grown on plates lacking these

amino acids , but not when expressed on a high-copy episomal plasmid (Weng et aI.

1996a). The authors suggest that the DE572AA mutant is only a modestly defective

version of the wild-type protein and that high-level expression must result in translational

fidelity identical to that of wild-type Upflp. This observation is challenged by my

overexpression studies with the DE572AA mutant. As previously mentioned, galactose-

induced overexpression of the DE572AA mutant resulted in severe growth defect in an

otherwise wild-type strain. Since Weng and co-workers assayed translational fidelity by

the inability of a strain to grow, they could not distinguish proper function in translation

fidelity from a growth defect caused by overexpression of a dominant allele of Upfl p.

To clarify this discrepancy, it will be necessary to perfonn these translational fidelity

.0'
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assays in a manner that determines nonsense suppression by a loss of function similar to

that developed by Maderazo et al (2000). Unfortnately, this assay is not readily

adaptable to the analysis of the overexpression mutants that I have characterized since

overexpression of the DE572AA allele results in significant growth effects , therefore it

would be diffcult to determine whether growth effects observed by this assay are due to

overexpression of the DE572AA allele or due to alteration of translational fidelity.

Further characterization of the function of these mutants in translational fidelity wil

require an assay that does not utilize cell viablity as an indictor for tranaslational fidelity.

An additional area of future research should involve further characterization of

the overexpression phenotypes of the upfl-K436E and upfl-DE572AA mutants. Since

the translational defects detected were subtle , but the growth defects measured in these

strains were significant, a high-copy suppressor screen for genes capable of restoring

wild-type growth to these strains seems a likely course of action. Analysis of genes

obtained in such studies could provide insight into the mechanism of dominant-negative

growth inhibition, and shed further light on the cellular role of wild-type Upfl p.

Although the upfl-K436 and upfl-DE572AA mutants have been phenotypically similar

to this point, such a screen in tandem may reveal subtle differences in their defects.
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and Jacobson, 1995; Eisinger et aI. , 1997), we examined the consequences of

overexpression of NMD3 constructs that lacked the C-terminal Upfl p-interacting domain.

A unique restriction site was inserted immediately downstream of the NMD3 stop codon

and used to generate C-terminal truncations , which resulted in the deletion of 100 or 200

amino acids from Nmd3p. The resulting constructs , as well as full- length (FL) NMD3

were cloned into pRS316 under the control of the inducible GALl promoter (Figure 16A)

and transformed into W303 haploid cells , and assayed for the ability to grow on media

containing glucose or galactose. On galactose-containing medium, cells harboring the

pRS316- GAL-nmd3L1l00 plasmid were unable to grow, whereas strains harboring the

pRS316-GAL-NMD3FL the pRS3l6-GAL-nmd3L1200 or the pRS316 control plasmid

were viable (Figure 16B). Since all four strains grew with comparable effciency on

glucose-containing medium, and since all strains contain an intact endogenous NMD3

gene , high level expression of the nmd3 allele lacking 100 C-terminal codons must inhibit

cell growth in a dominant-negative manner. The absence of a dominant-negative

phenotype in cells expressing the pRS316- GAL-nmd3L1200 construct suggests that the

Nmd3p domain responsible for growth inhibition resides within amino acids 318-418 or

that the presence of this segment of the protein allows the formation of a specific

inhbitory structure.

The dominant-negative effect of Nmd3p 100 expression is targeted to mRNA

translation

Given the well-documented links between nonsense-mediated mRA decay and

translation (Jacobson and Peltz, 1996 2000), we investigated whether the lethal
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Figure 16. A truncation allele of the NMD3 gene exhibits a dominant-negative

growth phenotype. (A) Schematic of NMD3 coding region segments placed under the

control of the GALl promoter and cloned into pRS316. The hatched area indicates the

Upflp interacting region of Nmd3p, defined by its recovery in a two-hybrid screen. (B)

Induction of the nmd3L1100 allele inhibits cell growth. The constructs shown in A and

the empty vector pRS316 were transformed into HFY121 , which contains a wild-type

copy of the NMD3 gene. Individual transformants were selected and then serially diluted

onto SC -ura plates with either glucose or galactose as the sole carbon source.
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phenotype exhibited by cells expressing the pRS316- GAL-nmd3L1l 00 plasmid was a

consequence of the inhibition of protein synthesis. First, sucrose gradient analysis was

used to determine whether expression of truncated Nmd3p caused any specific alterations

in cellular polyribosome profies. Cells containing pRS316-GAL-NMD3FL and pRS316-

GAL-nmd3L1l00 were grown in medium containing raffnose as a carbon source and

subsequently induced for two hours in galactose-containing medium. Cytoplasmic

extracts were prepared and fractionated on sucrose gradients. Figures 17 A and B show

that cells harboring the plasmid expressing full-length Nmd3p displayed a wild-type

polyribosome profie after two hours of galactose induction, while cells expressing the

truncated protein exhibited a profie indicative of a translation defect. More specifically,

polyribosome peaks from the latter cells all showed discontinuities characteristic of half-

mer formation, i. , polyribosomes which lacked stoichiometric amounts of both

ribosomal subunits (Helser et aI. , 1981; Moritz et aI. , 1991; Rotenberg et aI. , 1988). This

effect was a specific consequence of overexpression ofNmd3p 1 00 since galactose-

grown cells that harbored the plasmids pRS316- GAL-NMD3FL or pRS316-GAL-

nmd3L1200 and glucose grown cells that harbored the plasmids pRS316- GAL-NMD3FL

pRS316-GAL-nmd3L1l00 or pRS316-GAL-nmd L1200 all displayed wild-type

polyribosome profiles (data not shown). The inhibitory activity ofNmd3p 100 was: a)

not due to preferential stability of this form of the protein since western blotting

experiments showed that the L1l 00, L1200 and FL forms all reached comparable levels in

the same amount of time (data not shown) and b) a direct consequence of the extent of

induction ofNmd3p I 00 since polyribosome analysis of cells in which galactose
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Figure 17. Induction ofpRS316-GAL-nmd3LVOO promotes the formation of

polyribosome half-mers. Cytoplasmic extracts were prepared from cells after 2 h of

galactose induction. Extracts were fractionated on 7-47% sucrose gradients lacking (A

and B) or containing (C and D) 0.7 M NaCl. The OD traces of the ribosome profiles are

shown , with half-mer polyribosome peaks indicated by arows and the peaks of the 40S

subunits , 60S subunits , and 80S monosomes labeled as such. A and C: Cells harboring

pRS316-GAL-NMD3FL. Band D: Cells harboring pRS316-GAL-nmd3L1l00.
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induction of pRS316- GAL-nmd3 100 was continued to 4 or 6 h exhibited higher levels of

half-mers (data not shown).

To confinn the lack of ribosome subunit stoichiomtery detected when

Nmd3p 1 00 was overexpressed, we used high salt sucrose gradients to evaluate the

relative levels of 60S and 40S subunits. Wild-type and truncated Nmd3p were induced as

in Figures 17 A and B , but extracts and sucrose gradients contained 0.7M NaCl to disrupt

polyribosomes and mono somes into individual ribosomal subunits. Analysis of the

relative amounts of 60S to 40S ribosomal subunits revealed a shift from a ratio of2. 15 

the strain expressing pRS316-GAL-NMD3FL to a ratio of 1.59 in the strain expressing

pRS316- GAL-nmd3L1100 (Figs. 17C and D). This analysis thus confinned the disruption

ofnonnal 60S/40S stoichiometry suggested by the fonnation ofhalf-mers in Figure 17B.

To investigate the apparent translation defect in a more quantitative manner, we

measured the ability of cells to incorporate 1abeled amino acids after galactose

induction of the full-length and nmd3L1100 alleles. Figure 18 shows that, for the first two

hours after induction, cells expressing either construct had comparable abilities to

incorporate labeled amino acids. Pulse-labeling of cells at later times indicated that the

truncated Nmd3p inhibited protein synthesis, i. , by 6 h post-induction, cells expressing

pRS316- GAL-nmd3L1100 had only 50% of the incorporation activity of cells expressing

pRS3I GAL-NMD3FL.
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Figure 18. Amino acid incoporation in cells harboring pRS316-GAL-NMD3FL 

pRS316- GAL-nmd3L1 00. Cells were subjected to galactose induction for different

lengths of time , and incorporation of 1abeled amino acids was measured as described

in Chapter 2. Data are expressed as the percentage of incorporation at to, and are

averages of three separate experiments. (8) depict cells containing pRS316-GAL-

NMD3FL and (.) depict cells with pRS316-GAL-nmd3L1l00.
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Nmd3p co-fractionates with the 60S ribosomal subunit

The experiments of Figures 17 and 18 indicated that the dominant-negative effect

of truncated Nmd3p was targeted to the translation apparatus , thus suggesting that wild-

type Nmd3p had a role in protein synthesis. To test this possibility further, we sought to

determine whether Nmd3p was normally associated with ribosomes. We constructed a

plasmid-borne , HA-epitope-tagged allele of NMD3 (pRS316-3xHA-NMD3; see Table 2)

that was deemed functional by virte of its ability to restore viability to an nmd3::his3

disruption strain (data not shown). Cytoplasmic extracts from cells harboring this allele

were fractionated on sucrose gradients and western blotting was used to identify the

fractions containing HA-Nmd3p. These experiments indicated that HA-Nmd3p co-

fractionated with polyribosomes and with either 60S or 40S ribosomal subunits (Fig.

19A). To localize HA-Nmd3p more specifically, higher resolution sucrose gradients were

utilized. These experiments demonstrated that the majority ofHA-Nmd3p co-sedimented

with the 60S ribosomal subunit (Fig. 19B). Confirmation that the peak designated 60S

was indeed the large ribosomal subunit was obtained by simultaneously monitoring the

sedimentation ofTcmlp, the large ribosomal subunit protein L3. The majority ofTcmlp

was shown to co-sediment with the 80s and 60s peaks of the sucrose gradient (Fig. 19B),

thus validating the 60S assignment ofNmd3p. Interestingly, the principal ribosomal peak

with which Upflp was associated in this gradient was that of the 80S monosome. This
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Figure 19. Nmd3p cofractionates with the 60S ribosomal subunit. Extracts from strain

JBY001 , a haploid nmd3:HIS3 disruption strain containing a plasmid-borne 3XH-

NMD3 allele , were fractionated on sucrose gradients that were subsequently analyzed by

western blotting. In each panel , the top depicts the OD profile , with sedimentation

proceeding form right to left and the 80S , 60S , and 405 peaks indicated. The bottom of

each panel presents the results of western blotting analyses of the gradient fractions.

Panels were serially stripped and rebound with the antibodies indicated to the right of the

blot. (A) 15-50% sucrose gradient. (B) 7-47% sucrose gradient.
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suggests that UpfI p interaction with Nmd3p bound to the 60S subunit may be dependent

on 40S/60S joining.

Overexpression of Nmd3p 100 increases the abundance and decreases the stabilty

of a subset of ribosomal protein mRNAs

Since Nmd3p was identified as a two-hybrid interactor with UpfI p, we sought to

determine whether cells expressing pRS316- GAL-nmd3L11 00 would stabilize nonsense-

containing mRAs. RNA was isolated from cells harboring pRS316 pRS3l6-GAL-

nmd3L1100, pRS3l6-GAL-nmd3L1200 or pRS316-GAL-NMD3FL at different times after

galactose induction and analyzed by northern blotting for the relative levels of the 
CYH2

mRA and pre-mRA. These transcripts were chosen for analysis because the CYH2

pre-mRA is an endogenous substrate of the nonsense-mediated mRA decay pathway

and its abundance is a direct indicator of the degree of inhibition of the pathway (He et

aI. , 1993; He and Jacobson, 1995; He et aI. , 1996 , 1997). The results of these experiments

paralleled those analyzing translational inhibition
, i. , the abundance of the CYH2

transcripts was altered only in those cells in which pRS316- GAL-nmd3L11 00 had been

induced for 2-6 h (Figure 20). In galactose-induced cells containing the other plasmids

the levels of the CYH2 transcripts diminished versus time of induction, such that by 6 h

post-induction the abundance of the CYH2 mRA and pre-mRA had decreased 10- 15-

fold and 2- fo1d, respectively (Figure 20 and Table 3). In contrast , cells expressing

pRS316- GAL-nmd3L1100 maintained to levels of the CYH2 mRA and increased the level

of the pre-mRA approximately 3-fold (Figure 20 and Table 3). Analyses of STE2
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Figure 20. Overexpression of pRS316-GAL-nmd3L1 increases the abundance of

CYH2 transcripts. Cells harboring pRS316 with no insert or with the indicated inserts

were grown in SC raffinose media lacking uracil to an OD6oo of 0.4 and then shifted to

media containing 2% galactose. Samples were taken at 2 h intervals for RNA isolation

and northern blot analysis (using 20 g ofRNA per lane). The blots were hybridized to a

radiolabeled CYH2 probe , exposed, and then sequentially stripped and reprobed with

STE2 and SCRI DNAs , the latter as a loading control.
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mRA abundance in the same set of cells indicated that these effects did not apply to all

classes of mRA (Figure 20 and Table 3). To better understand the effect of expressing

Nmd3p 100, additional mRNAs were also analyzed, with the results of these analysis

found in Table 3. To test whether the increased abundance of the CYH2 pre-mRA was

an effect on the nonsense-mediated mRA decay pathway, or a general stabilization of a

subset of normal mRAs , we measured the abundance of the can1- 100 mRA in cells

expressing either pRS316-GAL-NMD3FL or pRS3l6- GAL-nmd3L11 00. The can1-100

mRA contains a premature UAA codon and is normally a substrate for the nonsense-

mediated mRA decay pathway; therefore , it should be stabilized if the dominant-

negative effect was specifically targeted to nonsense-containing substrates (Maderazo et

aI. , 2000). However, steady-state levels of can1- 100 mRA were not increased in cells

expressing the truncated form of NMD3 indicating that the increased abundance detected

for CYH2 pre-mRA was not due to inhibition of nonsense-mediated mRA decay

(Table 3). Given that overexpression ofNmd3p 100 resulted in impaired translation

increased abundance of CYH2 pre-mRA and mRA, and the fact Nmd3p co-

sedimented with the 60S fractions on sucrose gradients, we reasoned that Nmd3p 100

might be affecting the stability of other ribosomal protein mRAs. To test this

possibility, we analyzed the steady-state levels of the TCM 1 and RP 51 ribosomal

protein mRNAs. In cells expressing Nmd3p 100 RP51a mRA decreased steadily as a

function of time after galactose induction such that, by 6h post-galactose induction, cells

contained only 48% of their to amount of the mRA (Table 3). In contrast, cells

expressing Nmd3p 100 maintained almost identical levels of RP51a mRNA at all time

points after galactose induction (Table 3). Unlike the RP51 a mRA, the levels of the
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TCMl mRNA were similar in cells expressing either Nmd3p or Nmd3pL\100 (Table 3),

indicating that the increased abundance conferred by expression ofNmd3pL\100 is

specific only to a subset of ribosomal protein mRAs.

The differences in CYH2 andRP51a mRA levels brought on by expression of

Nmd3pL\100 could reflect increases in the synthesis or stability of these RNAs. To

distinguish between these possibilities , half- lives of the CYH2 mRA and pre-mRA

were determined in cells expressing either pRS316- GAL-nmd3iJ 1 00 or pRS316-GAL-

NMD3FL. These plasmids were transformed into yRP582 , a yeast strain harboring a

temperature-sensitive allele of RNA polymerase II. Control experiments indicated that it

was necessary to induce these cells with galactose for 10 h to obtain changes in mRA

abundance comparable to those obtained in the experiments of Figure 20 (data not

shown). Cells treated in this way were then shifted to 37 C and mRA decay rates

determined by northern blot analysis of RNA samples isolated at different times after the

temperature-shift. These experiments demonstrated that expression of pRS316-GAL-

nmd3iJ 1 00 reduced the half-lives ofthe CYH2 pre-mRA and mRA approximately 2-

fold (Figure 21), but had no effect on the half-life of the STE2 mRA (data not shown).

These results indicate that the elevated levels of CYH2 transcripts were caused by

changes in RNA synthesis and suggest that such increased synthesis may trigger feed-

back mechanisms that regulate stability of the respective RNAs (see Discussion).
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Figure 21. Overexpression ofpRS316-GAL-nmd3L100 decreases CYH2 transcript

stabilty. YRP582 cells harboring pRS316-GAL-NMD3FL or pRS316-GAL-nmd3L!lOO

were grown in SC galactose media lacking uracil to an 
OD60o of 0.6, shifted to 37 , and

aliquots of the cultures were removed at the indicated times. 
RNA was isolated from

each sample and analyzed by Northern blotting using a radiolabeled 

CYH2 probe.



Q. 
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Overexpression of Nmd3p 100 disrupts normal rRNA processing

Since expression of pRS316- GAL-nmd3L11 00 inhibited protein synthesis and

altered the abundance of some ribosomal protein mRAs, we hypothesized that these

effects might be indirect conseqences of an Nmd3p 100 effect on rRNA processing. To

determine whether overexpression of Nmd3p 100 affected rRNA processing, total RNA

was isolated from cells harboring pRS316-GAL-NMD3FL or pRS316- GAL-nmd3L1l 00 

different times after galactose induction and analyzed by northern blotting.

The yeast 35S pre-rRNA is shown in Figure 22A, together with its principal

processing sites and the location of sequences complementary to the oligonucleotide

probes used in our analysis. Figure 22B ilustrates the effects of pRS316-GAL-nmd3L11 00

expression on the accumulation of mature 25S and 18S rRNA. At 6h post-galactose

induction, a significant decrease in the abundance of mature 18S rRNA was detected in

the nmd3L1100 strain, indicating that overexpression ofNmd3p 100 was indeed

inhibiting normal rRNA processing. To better determine the point in the processing

pathway at which Nmd3p 100 was acting, the membrane used in Figure 22B was

stripped and then re-hybridized with a probe complementary to ITS 1 (inteRNAl

transcribed spacer region 1). Hybridization with the ITS I oligonucleotide revealed that

35S pre-rRNA , as well an aberrant 24S processing intermediate, accumulate in cells

expressing Nmd3p 100 (Fig. 22C). The 24S rRNA intermediate is known to accumulate

when intial cleavages at 35S rRNA sites Ao, A , and D are inhibited and cleavage then

occurs within ITS2 , followed by 3' ---)- 5' exonucleolytic digestion up to site E (Venema
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and Tollerey, 1996; Fig. 22A). To confirm that the processing intermediate detected in

Figure 23C was indeed the 24S pre-rRNA, the blot was stripped and re-hybridized with a

5' ETS (exteRNAl transcribed sequence) probe that is complementary to sequences 
5' to

the lAI region of the pre-rRNA (Fig. 22A). This 
blot showed that hybridization with

either the 5' ETS or the ITS1 probe detected intermediates of the same size (Figure 22C

and D), leading us to conclude that rRNA processing is altered in cells overexpressing

Nmd3p 100.
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Figure 22. Overexpression of pRS316-GAL-nmd3.1 00 alters normal rRNA

processing. (A) Schematic of the yeast35S pre-rRNA and its principal processing sites

and products (adapted from Venema & Tollervey, 1996). The locations of

oligonucleotide probes used in this study (numbered 1-4) are indicated by black bars

underneath the schematics. (B) Northern analysis of rRNAs. Total cellular RNA was

isolated from ffYOlO cells or ffY012 cells after 0-6 h of induction with galactose.

Oligonucleotide 3 (5' -CATGGCTTAATCTTGAGAC- ) and oligonucleotide 4 (5'

CTCCGCTTATTGATATGC- ), complementar to sites within the mature 18S and 25S

rRNA sequences , respectively, were used to probe the blot. (C) The blot analyzed in B

was stripped and reprobed with oligonucleotide 2 (5' TGTTACCTCTGGGCCC-

which hybridizes downstream of site A in ITS 1. (D) The blot analyzed in C was stripped

and reprobed with oligonucleotide 1 (5' - TCGGGTCTCTCTGCTGC- ), which is

complementar to a portion of the 5' ETS.
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Discussion

Nonsense-mediated mRA decay, the rapid turnover ofmRAs with premature

translational termination codons, requires the activity of the UPFI gene in yeast

roundworms, and humans (Pulak and Anderson, 1993; Cali and Anderson, 1998; Leeds et

aI. , 1991 , 1992; PeItz et aI. , 1993a; Sun et aI. , 1998; Weng et aI. , 1996). To identify

additional factors involved in yeast nonsense-mediated mRA decay, we conducted a

two-hybrid screen for Upfl p-interacting proteins (He and Jacobson , 1995). The screen

identified six potential interactors, two of which, Nmd2p and Dbp2p, have been analyzed

previously and shown to have important roles in the degradation of nonsense-containing

mRAs (He and Jacobson, 1995; He et aI. , 1996 , 1997; Bond et aI. , 2001). In this paper

we have characterizedNMD3 , another gene identified in the screen for UPFl-interactors.

NMD3 is essential for viability (Fig. 16), has sequence motifs characteristic of zinc-finger

proteins and ribosomal protein S 13 , and has well conserved homologs in Caenorhabditis

elegans, Drosophila melanogaster and Homo sapiens. The high degree of sequence

conservation and the essential nature of the yeast NMD3 gene , indicate that Nmd3p may

have a vital function in numerous organisms.

To gain insight into the role ofNmd3p, we characterized a conditional nmd3

allele. Overexpression of a truncated form ofNmd3p, lacking its C-terminallOO amino

acids and the majority of its Upfl p-interacting domain , was shown to have a dominant-

negative effect on cell growth. High level expression of the nmd3L11 00 allele also had
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consequences for the protein synthesis apparatus and its function, causing an

accumulation of half-mer polyribosomes (Figure 17), up to a 2-fold reduction in rates of

amino acid incorporation (Figure 18), and alterations in the normal course of ribosomal

RNA processing (Figure 23). These effects were not observed with overexpression of

full-length Nmd3p or Nmd3p 200 , suggesting that removal of amino acids 419-518 from

Nmd3p creates novel interaction capabilities for the protein, which are abrogated by

further removal of amino acids 319-418.

The detection of polyribosome half-mers , which are generally caused by the

binding to mRA of 40S subunits without concurrent binding of 60S subunits (Eisinger

et aI. , 1997; Hesler et aI. , 1981; Moritz et aI. , 1991; Ohtake et aI. , 1995; Nelson and

Winkler, 1987; van Venrooij et aI. , 1977), as well as the 60S subunit association of

epitope-tagged Nmd3p (Figure 19), suggests that the novel interactions of truncated

Nmd3p may occur with components of the 60S ribosomal subunit. Since the translation

phenotypes caused by overexpression ofNmd3p 100 require the cell to pass through

approximately two doublings before they are apparent, it is likely that newly synthesized

ribosomes are preferentially affected. If truncated Nmd3p had an effect on existing

ribosomal subunits, an earlier onset of the dominant-negative phenotypes would have

been expected.

Further evidence for the association ofNmd3p with the 60S subunit comes from

studies of the GRC5/QSRl gene. Eisinger et al. (1997) have shown that Grc5p/Qsrlp is

an integral 60S ribosomal protein necessary for the proper joining of the 40S and 60S

ribosomal subunits and that cells with a temperature-sensitive mutation in GRC5/QSRl

display an aberrant polyribosome sedimentation profie comparable to that detected in
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cells overexpressing the nmd3L11 00 allele. In another study, we identified a grc5/qsr 1

allele in a screen of 4 000 temperature-sensitive mutants for strains that stabilized the

CYH2 pre-mRA (Zuk and Jacobson, 1998; Zuk et aI. , 1999). The mutant strain

stabilized inherently unstable mRAs 2- fold, and both the temperature-sensitivity and

mRA decay phenotypes of this strain were suppressed by expression of a triple HA-

tagged version of NMD3 on a high copy plasmid.

The detection of NMD3 in a two-hybrid screen in which the UPFI gene was used

as bait raised the possibility that Nmd3p, like two other Upfl p-interactors , Nmd2p and

Dbp2p, would have a role in nonsense-mediated mRA decay. Although the level of the

CYH2 pre-mRA increased in cells overexpressing truncated Nmd3p (Figure 21), the

half-life of this transcript actually decreased in these cells (Figure 22). Moreover, the

abundance of the canl- IOO nonsense-containing mRA decreased in response to

overexpression of truncated Nmd3p. Since the CYH2 gene enodes ribosomal protein L28

these results suggested that the increased abundance of the CYH2 pre-mRA might be

attributable to stimulation of the synthesis of components of the ribosome , rather than to

an effect on a specific decay pathway.

The possibility that ribosome biogenesis might be altered in cells expressing

Nmd3pili00 is consistent with the observed increases in the levels of two ribosomal

protein mRAs (CYH2 mRA and RP5la mRA (encoding protein S17a); Table 3), the

increased accumulation of35S pre-rRNA (Figure 23), and the alterations in amounts of

rRNA processing intermediates (Figure 23). The increased abundance of the ribosomal

protein mRAs , as well as the decreased stability of the CYH2 transcripts (Figure 22),

suggests that the translation defect(s) brought on by overexpression of truncated Nmd3p
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leads to destabilization of at least some ribosomal protein mRAs. Work by Nam and

Fried (1986) has shown that defects in 60S ribosomal subunit assembly can cause such

destabilization. The enhanced abundance of some ribosomal protein mRAs and the 35S

pre-rRNA may indicate the existence of a feed-back loop that compensates for loss of

ribosomes by increasing the transcription of the respective genes. The failure of the

TCMl mRA , encoding ribosomal protein L3 , to also increase under these circumstances

may be attributable differences in the factors responsible for the respective transcriptional

regulatory events. In this regard, it is interesting to note that transcription of the CYH2

RP51a, and pre-rRNA genes is regulated by the positive acting factor Raplp, whereas

that of TCMl is regulated by Abflp (Hodges et aI. , 1999; Mizuta et aI. , 1998; Moehle and

Hinnebusch, 1991).

Collectively, the data presented here and elsewhere (Eisinger et aI. , 1997; Ho and

Johnson, 1999; Zuk et aI. , 1999) are consistent with a role for Nmd3p in the formation

function, or maintenance of the 60S ribosomal subunit and suggest that overexpression of

the nmd3L1100 allele may disrupt the formation of these subunits. Since Upflp appears to

be a regulator of translational termination (Czaplinski et aI. , 1998; Maderazo et aI. , 2000),

this interpretation also suggests that Nmd3p may provide a link for Upfl p to the

ribosome.

Addendum-

Recent advances in the study ofNmd3p cause me to re-evaluate my findings regarding

the function ofNmd3p. Ho et al (2000) have used an epitope-tagged allele ofNmd3p to
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immunoprecipiate free 60S ribosomal subunits, without the concurrent precipitation of

40S ribosomal subuints. This technique was then coupled with a pulse-chase labeling of

ribosomal proteins to show that Nmd3p preferentially associated with nascent 60S

ribosomal subunits. Additional immunoprecipation experiments in which the production

of nascent ribosomal subunits was disrupted via the use of transcriptional inhibitors, or

through a conditional translation initiation mutant (prtl), revealed that epitope-tagged

Nmd3p was still able to immunoprecipitate the 60S ribosomal subunit. This result

indicated that Nmd3p not only associates with nascent 60S ribosomal subunits but also

interacts with cytoplasmic subunits.

Nmd3p s association with the 60S ribosomal subunit was elucidated further in

independent studies performed by Ho et al.(2000) and Gadal et al. (2001). Both groups

made use of a 60S ribosome export assay developed by Hurt et al.(1999). In this assay

GFP is fused to a large ribosomal subunit protein (L25-GFP). Hurt and colleagues found

that this fusion is incorporated into functional ribosomal subunits , and is therefore an

effective tool for monitoring the location of the 60S subunit.

Ho and her collaborators generated a construct similar to that which I used in my

original studies on Nmd3p, in which a contruct harboring a 100aa C-terminal truncation

ofNmd3p was placed under the control of a galactose inducible promoter. This construct

or a construct containing a full-length Nmd3p (as a control), were co-transformed into

yeast. Expression of the Nmd3p constructs was then induced via the addition of

galactose , and the localization of the L25-GFP construct was monitored by flouresent

microscopy. Yeast harboring a galactose-induced wild-type copy ofNmd3p localized the

L25-GFP construct in the cyctoplasm , whereas induction of the Nmd3p 100 led to an
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accumualtion of the L25-GFP reporter in the nucleus (Ho et aI. , 2000). After surveying

recent literature, Ho and colleagues found a motif in the C-terminal 50aa ofNmd3p that

corresponded to a highly conerved leucine-rich NES. Export of proteins containing this

particular NES motif is mediated through the activity of Crml p/Xpo I p (Fomerod et aI.

1997; Stade et aI. , 1997). Given this information, Ho et al (2000) investigated the

consequences of inhibiting Crml p/Xpo I p function, using leptomycin B in a leptomycin-

sensitive yeast strain generated by Nevile and Roshbash (1999). Ho et al (2000) found

that export ofNmd3p is blocked after addition of leptomycin B. Since Ho et al (2000)

believed that Nmd3p mediates export of the 60S subunit they assayed the localization of

the L25-GFP reporter construct before and after leptomycin B addition. The L25-GFP

reporter construct was found to accumulate in the nucleus after leptomycin B additon.

This , coupled with the fact that the export defect of Nmd3pL1 I 00 can be alleviated by the

addition of a heterologous NES to the truncated protein, led the authors to conclude that

Nmd3p participates in the export of the 60S ribosomal subunit in a Crmlp/Xpolp

dependent manner.

Gadal et al (2001) identified a mutant allele of NMD3 in a screen for temperature

sensitive mutants of ribosomal export factors, which they termed rix mutants. In this

screen, a bank of 900 temperature-sensitive mutants was screened for the inability to

export a L25-GFP reporter. Interestingly, this screen also identified a gene which has a

genetic relationship with NMD3 GRC5/RPLIO as a rix mutant (Gadal et aI. , 2001;

Belk et aI. , 1999; Zuk et aI. , 1999; Karl et aI. , 1999). Temperature-sensitive mutations in

GRC5/RPLIO have been complemented by overexpression ofHA-NMD3 or via a

dominant allele of NMD3 (Zuk et aI. , 1999; Karl et aI. , 1999). Gadal et al (2001) found
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that His-tagged Nmd3p co-purified with RpllOp-GST on glutatione-sepharose beads, but

did not purify with glutatione-sepharose beads in the presence of GSTp alone. This

indicated a specific interaction between Rpll Op and Nmd3p, confirming the genetic

interaction shown by Zuk et al (1999), and Karl et al (1999). Gadal and colleagues also

identified two NES signals in the carboxy terminus ofNmd3p, and were also able to

determine that Nmd3p shuttled between the nucleus and cytoplasm by flourescent

microscopy ofa GFP-tagged version ofNmd3p. 
Gadal et al (2001) also tested the ability

ofNmd3p to shuttle as well as export the L25-GFP construct in anXpolp mutant. Gadal

and co-workers were also able to reproduce the observation ofHo et al (2000), that

export ofNmd3p, as well as that of the L25-GFP construct were dependent upon proper

function ofXpolp/Crmlp.

Taken together these recent advances in the study ofNmd3p, indicate a role for

Nmd3p in the export of the 60S ribosomal subunit. This view is well supported by our

earlier observations using Nmd3p 100. Overexpression ofNmd3p 100 led to a

decrease in free 60 ribosomal subunits , as well as a half-mer polyribosome phenotype

indicative of a lack functional 60S ribosomal subunits. Furthermore, the transciptional

increase in ribosmal RNA as well as ribosomal protein RNA which I detected suggests

that the cell has a mechanism in place to "sense" the availability, or level of free

ribosomal subunits and to upregulate the expression of these components when they are

in rate-limiting numbers. Further study of the cellular mechanism that mediates this

phenomenon is certainly warranted.

Curiously, studies by myself and others have been unable to determine Nmd3p

role, if any, in nonsense-mediated mRA decay. Although Nmd3p has been shown to
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interact with Upfl p via two-hybid assays(He et aI. , 1995), all mutant alleles tested have

had no detectable effect on the abundance of nonsense-containing transcripts. An

intriguing possibilitiy for the interaction between Nmd3p and Upfl p can be envisioned.

It is possible that Nmd3p is required for the association of Upfl p with the ribosome. I

initially tested this possibility by monitoring the sedimentation ofUpflp on sucrose

gradients in cells which had been induced with Nmd3p or Nmd3p I 00 for 2 hours. I was

unable to detect any discemable difference between the distribution ofUpflp on these

sucrose gradients. However, in light of the observation ofHo et al (2000), that GFP-

Nmd3p 100 is retained in the nucleus, I would not predict a change in Upflp s ability to

associate with the ribosome , as Upfl p is predominantly cytoplasmic protein (Atkin et aI.

1995 1997; Mangus and Jacobson , 1999) and the nuclear retention ofNmd3p 100 would

therefore preclude any interaction with Upfl p. Nmd3p may aid in the association of

Upfl p during export of the 60S from the nucleus. This role for Nmd3p in 
Upfl p function

would favor a yeast nonsense decay model , in which NMD occurs primarily during the

initial rounds of translation. A second possibility is that Nmd3p targets Upflp to the 60S

ribosomal subunit at termination. Work by Ho et al (2000) has shown that Nmd3p

preferentially associates with nascent 60S ribosomal subunits, but that a significant

portion ofNmd3p also is associated with free 60S subunits. The authors suggest that

Nmd3p might playa role in ribosome recycling. If this were the case , Nmd3p could

deliver Upfl p to a prematurely terminating ribosome so that Upfl p could help mediate

termination and thereby recycling of the ribosome. Either of these possibilities are

certainly plausible and merit further investigation.
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Unfortnately, future study of the Upflp/Nmd3p interaction does not promise 

be easy. The Nmd3pfUpflp interacting domain is comprised of the C-terminal120

amino acids ofNmd3p, which also harbors two nuclear export signals and one nuclear

localization signal. Therefore , any mutants that disrupt the Nmd3pfUpfl p interaction

would also have to be assayed for the ability to export the 60S ribosomal subunit. It is

also possible that the amino acids critical for nuclear import and export ofNmd3p are

required for Upfl p interaction, as dissertation research by Alan Maderazo (2000) has

shown that the residues of the putative NLS ofNmd2p are also critical for its role in

NMD.
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