Ciliary proteins Bbs8 and Ift20 promote planar cell polarity in the cochlea

Helen L. May-Simera
National Institutes of Health

Ronald S. Petralia
National Institutes of Health

Mireille Montcouquiol
Institut National de la Santé et de la Recherche Médicale

See next page for additional authors
Ciliary proteins Bbs8 and Ift20 promote planar cell polarity in the cochlea

Authors
Helen L. May-Simera, Ronald S. Petralia, Mireille Montcouquiol, Ya-Xian Wang, Katherine B. Szarama, Yun Liu, Weichun Lin, Michael R. Deans, Gregory J. Pazour, and Matthew W. Kelley

Keywords
Actin, Cilia, Cochlea, Microtubules, Mouse, Polarity

Comments
Publisher PDF posted after 12 months as allowed by the publisher’s author rights policy at http://dev.biologists.org/content/rights-permissions.

Rights and Permissions
Citation: Development. 2015 Feb 1;142(3):555-66. doi: 10.1242/dev.113696. Link to article on publisher’s site

This article is available at eScholarship@UMMS: http://escholarship.umassmed.edu/pmm_pp/65
Ciliary proteins Bbs8 and Ift20 promote planar cell polarity in the cochlea

Helen L. May-Simera1,*‡, Ronald S. Petralia2, Mireille Montcouquiol3, Ya-Xian Wang2, Katherine B. Szarama1,4, Yun Liu5, Weichun Lin5, Michael R. Deans6, Gregory J. Pazour7 and Matthew W. Kelley1

ABSTRACT

Primary cilia have been implicated in the generation of planar cell polarity (PCP). However, variations in the severity of polarity defects in different cilia mutants, coupled with recent demonstrations of non-cilia-related actions of some cilia genes, make it difficult to determine the basis of these polarity defects. To address this issue, we evaluated PCP defects in cochlea from a selection of mice with mutations in cilia-related genes. Results indicated notable PCP defects, including mis-oriented hair cell stereociliary bundles, in Bbs8 and Ift20 single mutants that are more severe than in other cilia gene knockouts. In addition, deletion of either Bbs8 or Ift20 results in disruptions in asymmetric accumulation of the core PCP molecule Vangl2 in cochlear cells, suggesting a role for Bbs8 and/or Ift20, possibly upstream of core PCP asymmetry. Consistent with this, co-immunoprecipitation experiments indicate direct interactions of Bbs8 and Ift20 with Vangl2. We observed localization of Bbs and Ift proteins to filamentous actin as well as microtubules. This could implicate these molecules in selective trafficking of membrane proteins upstream of cytoskeletal reorganization, and identifies new roles for cilia-related proteins in cochlear PCP.

KEY WORDS: Actin, Cilia, Cochlea, Microtubules, Polarity, Mouse

INTRODUCTION

Primary cilia were originally thought to be vestigial organelles without specific function. However, recent research has demonstrated that defects in primary cilia cause a range of developmental defects and human disorders collectively termed ‘ciliopathies’ (Lee and Gleeson, 2011; Waters and Beales, 2011), with Bardet-Biedl syndrome (BBS) considered to be an archetype for these disorders (Forsythe and Beales, 2013). Cilia are microtubule-based appendages continuous with the cell membrane but extending away from the cell surface (Fisch and Dupuis-Williams, 2011). At the core of each cilium is the ciliary axoneme, a microtubule-based structure containing either 9+2 or 9+0 microtubule doublets surrounded by soluble matrix and ciliary membrane. The proximal ends of these doublets are anchored to the basal body, a structure derived from the mother centriole following mitosis (Kobayashi and Dynlacht, 2011). The ciliary basal body is also a microtubule-organizing center that regulates ciliary and vesicular trafficking at the luminal surface (May-Simera and Kelley, 2012b; Moser et al., 2010). Finally, a transition zone located at the base of the ciliary axoneme and overlapping with the basal body plays a key regulatory role. All these components are considered to be part of the cilium, with disruption leading to ciliary defects. Many ciliary proteins have been identified based upon tight association with cilia; however, emerging evidence suggests that these proteins have additional, non-cilia-related functions. For example, intraflagellar transport (IFT) proteins have been reported at non-ciliary locations, including the membranous Golgi and dendrites of retinal neurons (Finetti et al., 2009; Sedmak and Wolfrum, 2010; Yuan and Sun, 2013). Similarly, Bbs proteins are implicated in actin cytoskeleton regulation (Hernandez-Hernandez et al., 2013; Tobin et al., 2008) and are localized at actin-rich structures in cultured cells and mouse cochleae (Hernandez-Hernandez et al., 2013; May-Simera et al., 2009).

Cilia also contribute to intercellular signaling pathways, including the planar cell polarity (PCP) branch of the Wnt signaling pathway, but the current understanding of how cilia are associated with PCP signaling is unclear (Wallingford and Mitchell, 2011). Although intricately linked, the phenomenon of PCP is not completely synonymous with PCP signaling. PCP refers to the uniform orientation of cells within an epithelium (Simons and Mlodzik, 2008; Vladar et al., 2009). PCP signaling is the information flow that is required to achieve this orientation; it is also more narrowly defined as the system of signaling that produces asymmetric subcellular localization of core PCP proteins. Cilia were first implicated in PCP signaling after PCP-like phenotypes were identified in Bbs mutants (Ross et al., 2005). One theory is that cilia regulate a switch between PCP and canonical Wnt signaling via sequestration of signaling molecules near the basal body (Lienkamp et al., 2012; Simons et al., 2005; Veland et al., 2013). However, the causal relationship between the cilium and PCP signaling has not been elucidated (Wallingford and Mitchell, 2011). One complication is that the morphological response to PCP signaling is usually the localization of the primary cilium; therefore, mutations in ciliary proteins that affect ciliary location will affect PCP but not necessarily PCP signaling.

In vertebrates, a striking example of PCP is the uniform orientation of stereociliary bundles on mechanosensory hair cells of the inner ear (Ezan and Montcouquiol, 2013). Stereociliary bundles are composed of a specialized cilium, called the kinocilium, positioned adjacent to elongated actin-rich microvilli called stereocilia, based on historical convention. The stereociliary bundles are polarized and the appropriate positioning of kinocilia...
relative to stereocilia is required for normal hair cell function. Although the precise cellular processes that mediate bundle orientation are still being elucidated, a key step is thought to be the directed migration of the kinocilium to a lateral position on the apical hair cell surface (Cotanche and Corwin, 1991; Denman-Johnson and Forge, 1999). Six ‘core’ PCP proteins are essential regulators of bundle orientation that, when mutated, lead to varying degrees of mis-orientation owing to disrupted intercellular signaling (Montcouquiol et al., 2003; Wang et al., 2006). Cilia-related proteins, including Ift88 and Kif3a, have also been shown to be required for appropriate bundle orientation (Jones et al., 2008; Sipe and Lu, 2011). Interestingly, many of these mutants also demonstrate defects in outgrowth of the cochlear duct, a process that is believed to require convergent extension, a conserved morphogenetic process that is also regulated by the PCP pathway.

These studies implicate cilia and cilia-related genes in two PCP-dependent processes: stereociliary bundle orientation and cochlear outgrowth. However, whether the phenotypes observed are a result of disruptions in the PCP process, the formation of cilia or both is unclear. To address these issues, we determined changes in stereociliary bundle orientation and cochlear outgrowth in mice with mutations in several, different classes of cilia-related genes. Our results suggest that a subset of cilia-related genes is required for trafficking of PCP molecules to the cell membrane in a cilia-independent manner and, as such, might play a more global role in protein trafficking within the cell.

RESULTS

Analysis of cilia-related mutants

Cochlear outgrowth (Fig. 1A) and stereociliary bundle orientation (Fig. 1B), two aspects of inner ear development known to be mediated through the PCP pathway, were analyzed using mouse lines with mutations in cilia-related genes. We obtained early postnatal or late embryonic cochlear tissue from Ift20, Ift25 (Hspb11 – Mouse Genome Informatics), Ift27, Gmap210 (Trip11Gt(AJ0490)Wtsi – Mouse Genome Informatics) and Bbs8 (Ttc8 – Mouse Genome Informatics) mutant mice. Ift20, Ift25 and Ift27 are IFT complex B proteins required for both anterograde and retrograde IFT (Fig. 1C) (Follit et al., 2009; Lucker et al., 2005). Ift20 has additional roles related to Golgi-based sorting and vesicle trafficking of ciliary cargo (Follit et al., 2006), whereas Gmap210 anchors Ift20 to the Golgi complex (Follit et al., 2008). Bbs8 is thought to function as an adaptor protein for cargo undergoing IFT (Blacque et al., 2004; Tadenev et al., 2011). Despite a high degree of functional conservation between these molecules in other contexts, phenotypic variation in cochlear extension and bundle morphology was observed (Table 1). Cochlear from Ift27−/− mutants were significantly shorter than in controls but displayed only mild bundle disruption. By contrast, Ift25−/− and Gmap210−/− cochleae were comparable to control littermates (supplementary material Fig. S1). Bbs8+/− and Ift20+/− mice displayed more extreme PCP phenotypes and are described below.

Disruption of stereociliary polarity in Bbs8−/− cochleae

Analysis of cochleae from P0 Bbs8−/− mice revealed stereociliary bundle-orientation defects and flattened or misshapen bundles (Fig. 2A,B), but cochlear length was unchanged (supplementary material Fig. S2A). Consistent with other PCP mutants, stereociliary bundles were rotated and kinocilia were misplaced or occasionally absent. Kinocilia were often separated from stereociliary bundles, suggesting a loss of coupling between the structures. To confirm these changes, samples were examined by scanning electron microscopy (SEM) (Fig. 2C-I). At higher magnification, detached kinocilia and flattened bundle morphologies were visible (compare Fig. 2E with Fig. 2F,G). To quantify overall changes in kinocilia position and bundle orientation, both features were charted in wild-type (WT) and Bbs8−/− cochleae (Fig. 2J,K). Both were mildly disrupted in Bbs8−/− inner hair cells (IHCs), with most kinocilia and bundles still restricted to the lateral quadrant of the luminal surface of hair cells. A more severe disruption was seen in outer hair cells (OHCs), where kinocilia and bundles were observed throughout the luminal surface (Fig. 2J,K). Previous analyses of cochlear phenotypes in PCP mutants demonstrated variations in severity of bundle defects between each of the three rows of OHCs (Montcouquiol et al., 2003). However, a similar analysis in Bbs8−/− cochleae indicated similar levels of defects in each row of OHCs. The flattened bundle morphology was further characterized by measuring the area between the vertex and ends of the two arms of

Table 1. Cochlea phenotype of cilia mutants

<table>
<thead>
<tr>
<th>Protein</th>
<th>Mouse</th>
<th>Cochlea</th>
<th>Rotated</th>
<th>Disrupted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mutant</td>
<td>extension</td>
<td>SCB</td>
<td>SCB</td>
</tr>
<tr>
<td>IFT20</td>
<td>CKO</td>
<td>Severely shortened</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IFT25</td>
<td>KO</td>
<td>Unaffected</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>IFT27</td>
<td>KO</td>
<td>Shortened</td>
<td>No</td>
<td>Mild</td>
</tr>
<tr>
<td>Gmap210</td>
<td>KO</td>
<td>Unaffected</td>
<td>No</td>
<td>Mild</td>
</tr>
<tr>
<td>Bbs8</td>
<td>MO</td>
<td>Unaffected</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

KO, knockout; CKO, conditional KO; SCB, stereocilia bundles.
each bundle, and the extent of bundle convexity (supplementary material Fig. S2B,C). Although the mean values for these metrics were unchanged, significantly greater variation in bundle convexity was observed in the absence of Bbs8. This is consistent with a role for Bbs8 in the specification of the shape, but not the overall size, of the stereociliary bundle.

As uniform orientation of stereociliary bundles is thought to be required for normal hearing, we sought to determine whether the bundle and kinociliary defects observed in Bbs8−/− mice lead to deficits in auditory function. Hearing was assessed by measuring auditory brainstem response (ABR) thresholds between 4 and 24 kHz in 2- to 3-month-old mice. Surprisingly, no significant threshold

Fig. 2. PCP defects in Bbs8−/− cochleae at P0. (A,B) Whole-mount images of basal cochlear turns from WT (A) and Bbs8−/− mutant (B). Filamentous actin (red), acetylated tubulin (green). In WT, chevron-shaped stereociliary bundles uniformly orient towards the lateral edge of each hair cell (upper edge of image). Hair cells have a single kinocilium located at the vertex of the bundle. Single cilia are also present on supporting cells (arrows in A). Stereociliary bundles in Bbs8−/− cochleae are variably rotated, flattened and/or mislocalized. Kinocilia are mislocalized or axonemes missing (arrows). (C-I) SEM of basal cochlear turns. Bbs8+/+ (C,E) or Bbs8−/− (D,F-I) at P0. Low magnification views (C,D) show overall disruption of bundle polarity in OHCs in Bbs8−/− compared with the uniform alignment in Bbs8+/+. (E-I) Higher magnification of stereociliary bundles and kinocilia in Bbs8+/+ and Bbs8−/− OHCs. Note separation between kinocilia and stereociliary bundles in F,G and I (arrows) and flattened appearance of many bundles. (J,K) Quantification of kinocilia and bundle positions in Bbs8+/+ and Bbs8−/− mutant cochleae (P0 basal turn). Blue panels show data from IHCs and from all three rows of OHCs combined. Turquoise panels divide bundle and kinocilia positions based on OHC row. (J) White circles depict lumenal surface of a hair cell, with frequency of kinocilia location in each section indicated as a percentage of total. Inset: actual kinocilium positions. Kinocilia on Bbs8−/− hair cells show minor deviations from control; kinocilia from OHC are broadly distributed around the OHC edge. All three rows of OHC in Bbs8−/− cochleae show similar levels of disruption. (K) Position of the bundle center in IHCs and OHCs (see Materials and Methods for details). Inset: actual positions of stereociliary bundle centers. The bias of bundle location towards the lateral side of each hair cell is lost in OHCs from Bbs8−/− cochleae but appears to be maintained in IHCs. Scale bars: 5 μm in A,B; 10 μm in C,D; 2.5 μm in E-G; 5 μm in H,I.
elevations were observed (supplementary material Fig. S2D). As high frequency hearing often shows a greater susceptibility to systemic perturbations, we also examined hearing thresholds up to 45 kHz on a subset of the Bbs8−/− mutants. Even at these higher frequencies, Bbs8−/− mice did not have significantly elevated threshold shifts compared with controls (Fig. 3A). Measurable distortion-product otoacoustic emissions, a measurement of OHC function, also did not differ between Bbs8−/− mutants and controls (Fig. 3B). The basis for the lack of an auditory phenotype is unclear. One possibility, corrective reorientation of bundles, as has been reported for Vangl2 CKOs mutants (Copley et al., 2013), was examined in 8-month-old mice. However, some bundle abnormalities were still present (data not shown).

Bbs8−/− mutants have PCP defects in other ciliated epithelia

These results are consistent with a role for Bbs8 in cochlear stereociliary bundle orientation, but not in the convergent extension movements that have been proposed to underlie cochlear extension. As bundle polarity and cochlear extension are often both disrupted in PCP mutants, we sought to determine whether Bbs8 similarly regulated PCP in two populations of polarized cells that do not undergo convergent extension: vestibular hair cells of the utricular maculae and ependymal cells lining the ventricular system of the brain.

The utricular sensory epithelium comprises a relatively uniform distribution of hair cells arranged in a fan-like shape with stereociliary bundles uniformly oriented along its radial axes (spines). In addition, a line of reversal is present near the mid-point along the medial-to-lateral axis such that bundles on either side of the line are oriented towards the center. At P0, the uniform orientation of bundles can be visualized based on labeling of stereocilia with phalloidin (Fig. 4A). By contrast, bundle orientation in Bbs8−/− utricles appears irregular, resulting in whorls and disheveled-looking patches (Fig. 4B, arrows). Although these whorls are frequently seen in Bbs8 mutants and rarely in the controls, the orientation of individual hair bundles was examined to rule out possible disruptions in bundle structure during dissection or tissue preparation. To quantify this finding, the orientation of stereociliary bundles relative to neighboring hair cells was measured based upon β2-spectrin expression (Fig. 4C). β2-spectrin is a component of the cuticular plate that anchors the stereocilia and is absent from the foniculus region at the base of
the kinocilium. As a result, β2-spectrin reveals the location of the kinocilium on each cell. To determine whether absence of Bbs8 leads to changes in polarization, the average difference in the angle of polarization between one hair cell and its neighbors was determined for both control and Bbs8−/− utricles (see Materials and Methods for details). Whereas the average angular difference was unchanged between mutants and controls, a statistically significant difference in standard deviation was measured between the two groups (Fig. 4D,E). The line of reversal was also more difficult to identify in Bbs8−/− mutant utricles. These results are consistent with a disruption in bundle polarization.

PCP signaling has also been shown to play a role in the development of ependymal cilia, with defects leading to hydrocephalus (Tissir et al., 2010). Polarization of ependymal cells is tightly correlated with maturation and differentiation of multi-ciliated cellular morphologies. Consistent with this, Bbs8−/− mice are born at Mendelian ratios yet are underrepresented at weaning and display hydrocephaly (data not shown). SEM of ependymal cells at P16 indicated severely stunted cilia in Bbs8−/− ventricles (Fig. 4F,G). This phenotype was reminiscent of other PCP mutants in which ependymal cilia became basally embedded, instead of presenting normally on the apical surface (Tissir et al., 2010). Immunohistochemical analysis of the lumenal surface (length) at earlier time points (P9) suggests that ependymal cell maturation is compromised upon loss of Bbs8 (Fig. 4H,I, double arrow). There was also a wider variation in cell length in Bbs8−/− tissue (Fig. 4J), which might have been caused by a failure of cells to polarize. Finally, undifferentiated cells with only a single spot of rootletin (suggesting a single primary cilium) were more commonly observed in mutant tissue (Fig. 4I, white arrow).

Ift20 regulates PCP in the cochlea

PCP phenotypes were also observed in cochleae from animals in which Ift20 was deleted from the inner ear by crossing Ift20flox/flox mice with FoxG1cre (referred to as Ift20−/−; see Materials and Methods for details). Conditional mutants are not viable, and
analyses were therefore performed at E18.5. Cochlear ducts from Ift20cko/cko mice were significantly shorter than in littermate controls (Fig. 5A,B; supplementary material Fig. S3A) and showed a marked broadening of the sensory epithelia in the apex (supplementary material Fig. S3B,C). Ift20 is required for ciliogenesis, thus, as expected, kinocilia were absent in Ift20cko/cko hair cells (Fig. 5C-G), which also served to confirm deletion of Ift20. Hair cells exhibited flattened and rotated bundles, similar to those observed in Bbs8−/− mutant cochleae and other ciliary mutants that lack kinocilia (Fig. 5C-G) (Jones et al., 2008; Sipe and Lu, 2011). SEM confirmed these findings (Fig. 5E-G). As observed in other mutants lacking kinocilia, hair cells with circular stereociliary bundles could be identified, albeit infrequently (Fig. 5G, white arrow). As ciliary axonemes were missing in Ift20cko/cko hair cells, changes in polarization were quantified based on the position of the basal body (Fig. 5H-J). In hair cells from control cochleae, the majority of basal bodies were located in the lateral quadrant (Fig. 5H, white arrow). By contrast, OHCs from Ift20cko/cko cochleae often lacked basal bodies, and those that could be identified were more widely distributed across the lumenal surface (Fig. 5J). Analysis of basal body locations by row suggested that the first and third row OHCs showed greater defects in the absence of Ift20 (Fig. 5J). Absent basal...
Localization of ciliary proteins to actin-rich structures

Previous studies have suggested that Bbs and Ift proteins are not strictly associated with cilia and have shown localization to actin-rich cellular regions. Localization to actin-based structures might be significant in hair cells because the actin-rich stereocilia develop adjacent to the tubulin-based kinocilium, and molecules functioning in either structure could act to polarize the bundle. To determine where Bbs and Ift proteins localize within cochlear hair cells, immunogold labeling/TEM analysis was performed on cochleae at P0. Existing antibodies directed against Bbs8 proved unsuitable for TEM. However, as Bbs8 and Bbs2 are both components of the BBSome complex required for cilia biogenesis (Nachury et al., 2007), an antibody against Bbs2 was used as a proxy for Bbs8. Bbs2 localized to actin-rich structures in developing hair cells with a particular concentration along stereocilia and microvilli (Fig. 6A-C). Of particular interest was clustering of Bbs2 on vertical tracts of microfilaments contacting the apical surface (Fig. 6B). These microfilaments were similar in structure to filaments within microvilli, and are therefore presumably actin based. Similar actin-associated localization patterns for Bbs2 were seen in additional ciliated epithelia in the ventricular zone and choroid plexus (supplementary material Fig. S4). Ift20 labeling could be seen in the kinocilium (Fig. 6D, red arrows) and was also abundant in actin-rich microvilli (data not shown) and stereocilia of OHCs and IHCs (Fig. 6D-E′). Labeling was also observed near basal bodies (Fig. 6F) and associated centrioles (Fig. 6G).

Absence of Bbs8 or Ift20 leads to a lack of Vangl2 accumulation at the hair cell/support cell membrane

These results demonstrate roles for Bbs8 and Ift20 in bundle polarization; however, the specific effects of these molecules are unclear. Previous studies have placed other cilia-related proteins, such as Ift88, downstream of the core PCP factors, by demonstrating that asymmetric localization of core PCP proteins occurs normally in these mutants. To determine whether a similar localization of core PCP proteins occurs in Bbs8 or Ift20 mutants, membrane localization of Vangl2 was determined by immunocytochemistry at P0 and E18.5, respectively (Fig. 7A-D). In control cochleae (Fig. 7A,C), Vangl2 was localized along both medial and lateral surfaces of pillar cells (Fig. 7A,C, white asterisk), and asymmetrically at junctions between medial hair cell and lateral support cell surfaces (Fig. 7A,C, white arrow). By contrast, in Bbs8 mutants, although Vangl2 was still detected along pillar cells, membrane accumulation at hair cell-support cell junctions appeared reduced (Fig. 7B). Similar changes were observed in Ift20 mutants (Fig. 7D). These results demonstrate roles for Bbs8 and Ift20 in bundle polarization; however, the specific effects of these molecules are unclear. Previous studies have placed other cilia-related proteins, such as Ift88, downstream of the core PCP factors, by demonstrating that asymmetric localization of core PCP proteins occurs normally in these mutants. To determine whether a similar localization of core PCP proteins occurs in Bbs8 or Ift20 mutants, membrane localization of Vangl2 was determined by immunocytochemistry at P0 and E18.5, respectively (Fig. 7A-D). In control cochleae (Fig. 7A,C), Vangl2 was localized along both medial and lateral surfaces of pillar cells. By contrast, in Bbs8 mutants, although Vangl2 was still detected along pillar cells, membrane accumulation at hair cell-support cell junctions appeared reduced (Fig. 7B). Similar changes were observed in Ift20 mutants (Fig. 7D). These results demonstrate roles for Bbs8 and Ift20 in bundle polarization; however, the specific effects of these molecules are unclear. Previous studies have placed other cilia-related proteins, such as Ift88, downstream of the core PCP factors, by demonstrating that asymmetric localization of core PCP proteins occurs normally in these mutants. To determine whether a similar localization of core PCP proteins occurs in Bbs8 or Ift20 mutants, membrane localization of Vangl2 was determined by immunocytochemistry at P0 and E18.5, respectively (Fig. 7A-D). In control cochleae (Fig. 7A,C), Vangl2 was localized along both medial and lateral surfaces of pillar cells (Fig. 7A,C, white asterisk), and asymmetrically at junctions between medial hair cell and lateral support cell surfaces (Fig. 7A,C, white arrow). By contrast, in Bbs8 mutants, although Vangl2 was still detected along pillar cells, membrane accumulation at hair cell-support cell junctions appeared reduced (Fig. 7B). Similar changes were observed in Ift20 mutants (Fig. 7D). These results demonstrate roles for Bbs8 and Ift20 in bundle polarization; however, the specific effects of these molecules are unclear. Previous studies have placed other cilia-related proteins, such as Ift88, downstream of the core PCP factors, by demonstrating that asymmetric localization of core PCP proteins occurs normally in these mutants. To determine whether a similar localization of core PCP proteins occurs in Bbs8 or Ift20 mutants, membrane localization of Vangl2 was determined by immunocytochemistry at P0 and E18.5, respectively (Fig. 7A-D). In control cochleae (Fig. 7A,C), Vangl2 was localized along both medial and lateral surfaces of pillar cells (Fig. 7A,C, white asterisk), and asymmetrically at junctions between medial hair cell and lateral support cell surfaces (Fig. 7A,C, white arrow). By contrast, in Bbs8 mutants, although Vangl2 was still detected along pillar cells, membrane accumulation at hair cell-support cell junctions appeared reduced (Fig. 7B). Similar changes were observed in Ift20 mutants (Fig. 7D).
targeting, cochlear tissue was separated into cytoplasmic and membrane fractions and then probed for expression of Vangl2 by western blot. No significant difference between control and mutants was observed for either fraction (supplementary material Fig. S6), suggesting that Bbs8/Ift20 play a role in targeting Vangl2 to specific regions of the cell rather than in regulation or overall membrane localization.

Recent studies identified a G-protein-dependent signaling pathway acting in a cell-autonomous manner, independent of the core PCP proteins, that regulates the migration of the kinocilium and patterns the apical hair cell surface (Ezan et al., 2013). Moreover, localization of GTP-binding protein alpha-i subunit 3 (Gαi3), a key factor in this migration, is disrupted in Mkks (Bbs6) mutants. To determine whether Bbs8 plays a similar role, localization of Gαi3 was determined in Bbs8−/− cochleae. Overall, there is an expansion of the Gαi3 domain in the absence of Bbs8, consistent with abnormal hair bundle morphology and kinocilia mislocalization. There also seems to be a larger variation in Gαi3 expansion over the surface of the hair cells, as opposed to a more uniform distribution in controls.

The results presented above are consistent with previous studies demonstrating an interaction between Bbs8 and Vangl2 in vitro (May-Simera et al., 2010). To determine whether a similar association exists in vivo, we performed co-immunoprecipitation
There is growing evidence supporting an involvement of ciliary-related proteins in regulation of PCP. However, understanding the potential role of cilia in this pathway is complicated due to the redundancy of ciliary and PCP genes. In addition, cell polarity is sensitive to generalized cellular abnormalities, making it difficult in some circumstances to directly link a mutation to PCP-specific deficits. To better understand this, we analyzed polarity defects within the cochlea of mice with targeted mutations in several cilia-related genes. It is remarkable that, although these proteins have similar functions in other systems, we observed distinct cochlear phenotypes for the different mutants. For example, deletion of Gmap210, Ifl27 or Ifl25 showed only mild cochlear disruptions. By contrast, more severe PCP defects were observed when Bbs8 or Ifl20 were deleted, including changes in stereociliary bundle orientation and morphology, and mislocalization of the core PCP transmembrane protein Vangl2. The collective phenotype was greatest in Ifl20 mutants that were missing ciliary axonemes altogether and also showed changes in cochlear duct extension. This phenotype is consistent with other ciliary mutants, such as Ifl88 and Kif3a, in which complete loss of the ciliary axoneme results in shortened cochlear ducts and mis-positioned stereociliary bundles. However, in Ifl88 and Kif3a mutants, the membrane localization of Vangl2 remains intact (Jones et al., 2008; Sipe and Lu, 2011). This is in contrast with the results presented here for Bbs8 and Ifl20 mutants, which suggest that a subset of cilia proteins does affect PCP signaling at the level of PCP protein localization. These results also indicate that the PCP phenotype observed in a subset of ciliary mutants is related to the disruption of PCP signaling. We propose that those ciliary proteins contribute to protein trafficking, thereby regulating the asymmetric localization of PCP molecules.

Many proteins associated with cilia function occur in complexes localized to cilia-related subdomains, such as the basal body, transition zone or ciliary axoneme (van Dam et al., 2013). More recently, some of these proteins have also been observed in other cellular regions, such as dendrites of retinal neurons and epithelial focal adhesions (Finetti et al., 2009; Sedmak and Wolfrum, 2010; Yuan and Sun, 2013). These observations suggest that cilia-related proteins have additional cellular functions away from the cilium, although these functions could still be orchestrated via the basal body in its capacity as a microtubule-organizing center. Given that a primary role for ciliary proteins is the movement of cargo along microtubules, it is highly likely that these proteins might also regulate aspects of intracellular trafficking along the cytoskeleton, such as vesicular transport (Delaval et al., 2011; Kim and Tsiokas, 2011; Robert et al., 2007; Follit et al., 2008, 2006; Pedersen et al., 2008; Sedmak and Wolfrum, 2010). For instance, Ifl20 has been shown to contribute to vesicular trafficking from the Golgi to the base of the

Table 2. Affymetrix microarray data from Bbs8^{−/−} cochlear sensory epithelia

<table>
<thead>
<tr>
<th>Pathway name</th>
<th>Enrichment score</th>
<th>Enrichment P-value</th>
<th>Pathway ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell adhesion molecules (CAMs)</td>
<td>12.1192</td>
<td>5.45E−06</td>
<td>kegg_pathway_88</td>
</tr>
<tr>
<td>Protein digestion and absorption</td>
<td>10.7936</td>
<td>2.05E−05</td>
<td>kegg_pathway_140</td>
</tr>
<tr>
<td>ECM-receptor interaction</td>
<td>9.70125</td>
<td>6.12E−05</td>
<td>kegg_pathway_12</td>
</tr>
<tr>
<td>Focal adhesion</td>
<td>9.36883</td>
<td>8.53E−05</td>
<td>kegg_pathway_50</td>
</tr>
</tbody>
</table>

Upper table: top four pathways identified using Partex pathway analysis, based on differentially expressed gene transcripts. Bottom table: selection of Wnt transcripts downregulated in Bbs8^{−/−} cochlear sensory epithelia.
cilia (Follit et al., 2006). These observations, together with the disrupted membrane accumulation of Vangl2 in Ift20 mutants, indicate that Ift20 is required for the delivery of Vangl2-containing vesicles to the cell surface. These observations also suggest that other members of the IftB complex contribute to Vangl2 targeting. However, at least two members of that complex, Ift25 and Ift27, do not appear to play crucial roles, as deletion of either gene leads to only mild cochlear PCP defects. This suggests a unique requirement for Ift20 compared with other Ifts, as well as potential novel roles for this protein that might be independent of its association with Ift complexes. A similar result was observed in Bbs8 mutants, a finding that is consistent with the direct physical interactions between Bbs8 and Vangl2 (May-Simena et al., 2010) and this study. Like Ift20, protein-localization studies have expanded the potential functions for Bbs proteins beyond the cilia. In the cochlea, Bbs2, 4 and 6 display a range of non-cilia-related cellular distributions, including in the vicinity of cellular membranes and actin-rich regions (May-Simena et al., 2009). In cultured cells, Bbs proteins are localized to actin-rich focal adhesions, where they negatively modulate the actin cytoskeleton (Hernandez-Hernandez et al., 2013). Similarly, we found Bbs2 enrichment in the actin-based stereocilia of hair cells. Together, these observations suggest that Ift20 and Bbs8 can function independently of the ciliary axoneme, and might traffic proteins along microtubules or filamentous actin to cellular locations other than cilia.

The basis for the lack of an auditory phenotype in Bbs8 mutants is unclear. One possibility is that there is a corrective reorientation of bundles, as has been reported for Vangl2 CKO mutants (Copley et al., 2013); however, our preliminary evidence suggests that this is not the case. Other cilia mutants, such as Mkks (Bbs6) and Alms1, have milder bundle disruptions than Bbs8 mutants, yet display more severe auditory phenotypes (Jagger et al., 2011; Ross et al., 2005). This suggests that auditory dysfunction in cilia mutants is not necessarily directly linked to alterations in stereociliary bundle morphology or mechanotransduction, further arguing that these genes encode additional intracellular functions independent of cilia. Based on these results, we propose that a subset of proteins that had originally been identified by their association with cilia might in fact function in broader roles related to the intracellular trafficking of membrane-bound proteins throughout the cell, although these functions might still be organized via the basal body. Bbs8 and Ift20 appear to be members of this group in that they act upstream of cilia localization by targeting Vangl2 (and other) PCP proteins to the membrane. Although this does not rule out a role for Bbs8 and Ift20 in ciliary migration, it seems clear that other cilia proteins, such as Ift88, Mkks and Kif3a, have more restricted functions and only contribute to ciliary migration.

One important function attributed to the primary cilium is regulating a transition between the canonical (β-catenin dependent) and non-canonical (PCP) Wnt signaling pathways (Simons et al., 2005). As canonical Wnt signaling regulates transcription (Dickinson and McMahon, 1992), we tested whether loss of Bbs8 might also affect gene expression. Indeed, microarray data from Bbs8−/− ciliated cells show changes in gene expression. Many of these genes encode proteins involved in Wnt signaling and downstream effectors, suggesting additional consequences of Bbs8 deletion besides PCP signaling. As a result, loss of ciliary function might upset the delicate balance between canonical and non-canonical Wnt signaling. By contrast, other studies have suggested no connection between cilia and Wnt signaling. For example, Ift88 zebrafish mutants lack all cilia, but have normal canonical and non-canonical Wnt signaling (Borovina and Ciruna, 2013; Huang and Schier, 2009), as do Ift88, Ift172 and Kif3a mutant mouse embryos (Ochina et al., 2009). These differences might reflect species-, tissue- or time-dependent differences in ciliary contributions towards Wnt signaling. Moreover, normal Wnt responsiveness might be retained if the basal bodies, and therefore trafficking to the basal body, remain intact in these mutants.

Our results, in combination with previous reports on the effects of deletion of Bbs8 (Tadenev et al., 2011), suggest a greater role for Bbs8 in PCP by comparison to other Bbs proteins (Ross et al., 2005). If this is the case, then patients with mutations in BBS8 should display an increased prevalence of ‘PCP-like’ phenotypes. Indeed, BBS8 was first identified in a family with Bardet–Biedl syndrome, in which a homozygous null mutation results in randomization of left-right body axis symmetry, another phenotype possibly related to PCP defects (Ansley et al., 2003; Aw and Levin, 2009). Several BBS patients with deleterious mutations in BBS8 have been identified, who in addition to the typical disease phenotypes (obesity, retinopathy, polydactyly) harbor additional clinical manifestations including renal cystic disease, shortened limbs, hearing impairment, dilated ventricles and situs inversus (P. Beales, personal communication), features that could be suggestive of perturbed Wnt signaling culminating in aberrant PCP. Altogether, our results and these observations are consistent with the role of ciliary proteins extending beyond the cilia and basal body. Clearly, a more complete understanding of the role of ‘ciliary’ proteins in cellular signaling pathways and other biological phenomena is crucial for our understanding of cellular and developmental biology, as well as for the development of targeted treatment strategies.

MATERIALS AND METHODS

Mice

Animal care and use was in accordance with NIH guidelines and conformed to institutional ACUC regulations. Generation and genotyping of Bbs8−/− and Ift20floxfloxed mutants have been described (Jonassen et al., 2008; Tadenev et al., 2011). Fossfl (Hebert and McConnell, 2000) animals were obtained from Jackson Laboratories and were crossed with Ift20floxfloxed mice to inactivate Ift20 in the developing inner ear: Gmap210 (Follit et al., 2008), Ift25 (Keedy et al., 2012), Ift27 (Eguether et al., 2014) and Mkks (a gift from Philip Beales, UCL, London, UK) tissue was harvested at embryonic day 18.5 (E18.5) or postnatal day 0 (P0). The morning after mating was considered E0.5 and up to 24 h after birth was considered P0.

Tissue dissection and immunostaining

Temporal bones were isolated from embryonic and postnatal mice and fixed in 2–4% paraformaldehyde at 4°C for 2 h. Following microdissection of the cochlea and utricle, immunohistochemistry was performed as described (May-Simera and Kelley, 2012a). Images were obtained using a Zeiss 510 laser scanning confocal microscope. All images were captured from the basal turn of the cochlea unless otherwise stated. Methods used for quantification and additional antibody information are available in the supplementary material methods.

Scanning electron microscopy (SEM), immunogold labeling and transmission electron microscopy (TEM)

For SEM, temporal bones were dissected and fixed in EM fixative [2.5% glutaraldehyde (Sigma-Aldrich), 4% paraformaldehyde (Electron Microscopy Sciences) and 10 mM CaCl2 in HEPES buffer] for 2 h at room temperature. Organs of Corti were micro-dissected and prepared for SEM using an S-4800 Hitachi electron microscope as described (May-Simera and Kelley, 2012a). For post-embedding immunogold, cochleae from P0 mice were prepared as described for light microscopy and SEM, and tissue was fixed in 4% paraformaldehyde and 0.5% glutaraldehyde in 0.1 M phosphate buffer, and further processed as described (Petralia et al., 2010; Petralia and Wenthold, 1999). Additional details are available in the supplementary material methods.
Mammalian cell culture and co-IP assays

Endogenous co-IP of Bbs8 and Ift20 protein was performed using P0 brain lysate harvested in RIPA buffer (Tris-HCl, 50 mM; NaCl, 150 mM; 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, pH 7.6) containing protease and phosphatase inhibitors (Roche). Anti-Bbs8 and anti-Vangl2 antibodies were used for pull-down or western blot, respectively. For in vitro co-IPs, HEK293 cells were transiently co-transfected with Vangl2 GFP-pCIGl and IFT20-Flag plasmids using lipofectamine (Invitrogen). Cell lysates were harvested 48 h post transfection. Rabbit polyclonal anti-EGFP (Clontech) was used for pull-down, and mouse monoclonal anti-flag was used for western blot. Protein G dynabeads (Invitrogen) were used for co-IP, following the manufacturer’s instructions. Post precipitation, protein was harvested in SDS-containing sample loading buffer and detected by western blot. Proteins were run on 4-12% SDS-PAGE (Invitrogen) using conventional protocols.

Affymetrix microarray

RNA was extracted from two Bbs8+/− and two littermate control cochleae at P0 using the RNAqueous-Microkit (Ambion). Two collections were performed on separate days to produce two biological replicates. Total RNA was further purified on an RNeasy column (Qiagen) and the RNA quality was assessed by an Agilent Bioanalyzer (Agilent Technologies). Target labeling and hybridization to GeneChips collections were performed on separate days to produce two biological replicates. Total RNA was further purified on an RNAeasy column (Ambion). Two

References

