Augmented Reality, Virtual Reality, & Health

Allison K. Herrera
University of Massachusetts Medical School, allison.herrera@umassmed.edu

F. Zeb Mathews
University of Tennessee Health Science Center, fmathews@uthsc.edu

Marilyn R. Gugliucci
University of New England, mgugliucci@une.edu

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/ner

Part of the [Health Information Technology Commons](https://escholarship.umassmed.edu/ner/health), [Library and Information Science Commons](https://escholarship.umassmed.edu/ner/library), and the [Public Health Commons](https://escholarship.umassmed.edu/ner/public)

Repository Citation

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in National Network of Libraries of Medicine New England Region (NN/LM NER) Repository by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Augmented Reality, Virtual Reality, & Health

Authors
Allison K. Herrera, F. Zeb Mathews, Marilyn R. Gugliucci, and Corina Bustillos

Keywords
augmented reality, virtual reality, health sciences

Comments
Individual presentations are also available as PowerPoint files under "Additional Files."

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Rights and Permissions
Video: Standard YouTube License.

This presentation is available at eScholarship@UMMS: http://escholarship.umassmed.edu/ner/42
Augmented Reality, Virtual Reality, & Health

Zeb Mathews
University of Tennessee

Corina Bustillos
Texas Tech University

Allison Herrera
University of Massachusetts Medical School

Marilyn Gugliucci
University of New England
Outline

Introduction & Overview

Augmented Reality & Health
Virtual Reality & Health

Technology Funding Opportunities

University of New England
VR Project

Learning Objectives

Objectives:

• Explore AR & VR technologies and their impact on health sciences, with examples of projects & research

• Know how to apply for funding for your own AR/VR health project

• Learn about one VR project funded by the NNLM
Augmented Reality and Virtual Reality (AR/VR) & Health

What is AR and VR?

F. Zeb Mathews, MLIS
Assistant Professor and Access Services Librarian
UTHSC Health Sciences Library
877 Madison Avenue | Room 220
What is Augmented Reality?

- The combination of a real world scene that is augmented by a virtual overlay generated by a computer program that adds additional information to the scene.

- Real world + virtual layer

How does AR work?

- Pick a real world scene
- Add virtual computer generated objects in real time by either substituting CG components for all real-world objects of interest within the scene or just adding CG components at certain markers within the scene.
- In this scene the card on the table is a marker telling the AR program where in the scene to display the heart animation.

How does AR work?

- Using the AR device’s camera view, the AR program then tracks the real world objects/markers using the user’s movement and interactions with the scene and updates the status of all cg objects accordingly.

- As the tablet moves the camera view of the marker on the man’s chest will change and the lung animation will reposition on the screen accordingly.

How does AR Work

- AR is a subset of VR but is not full virtual reality since the environment is real.
- AR is usually displayed through a mobile video screen attached to a laptop, tablet, cell phone, projector, or head mounted display.
 (Basically any device with a video feed and a display screen that can be augmented.)

What is virtual reality

Virtual reality is a real-time simulation where the user is effectively immersed in a responsive virtual world that provides visual and audio (and sometimes other) sensory inputs that make the virtual world seem real. And makes the user feel present in the simulation.
Virtual reality Devices

- HMDs (head mounted displays)

Oculus Rift

HTC vive

Google Cardboard

VR input devices

- Natural motion input controllers (motion trackers)

Other Advanced VR input devices

- Directional sound, tactile and force feedback devices (Sensory gloves), create a more sensualized interface.

- Haptic (touch) interfaces and tactile feedback devices such as the cybergrasp glove allow you to ‘feel’ the 3d world.

How does VR work? Video

-One way VR tricks your brain into thinking what you are seeing is a 3D world is with a **stereoscopic display**. This works by displaying two slightly different angles of the scene to each eye, simulating depth.

- **Parallax** is also used to simulate depth (farther objects to you seem to move slower)

How does VR work? Video

- **Field of view** is a radius around you that you can see at any given time. For example, humans have about a 180 degree FOV while looking straight ahead, and 270 degrees with eye movement.
- The higher FOV a VR system provides the realer it seems.
How does VR work? Video

- **Latency** is also a major factor that goes into a pleasant VR experience, with anything over 20 milliseconds not being fast enough to trick your brain into thinking you are in a different world. Depending on the system your VR screens will have an average latency, around 4-5 ms. Many system factors can increase latency.

“Not meeting an acceptable frame rate, FOV or latency can cause motion sickness.” (Mullis)
How does VR work? Movement

How does the system know how to move us around in the virtual world?

- **accelerometers, gyroscopes** and **magnetometers** are used to achieve movement of the user in the virtual world.

- The **accelerometer** is used to detect three dimensional movement
- The **gyroscope** is used to detect angular movement
- The **magnetometer** detects our position relative to the Earth.

How does VR work? Audio

Spatial audio (3D audio)

- This system is in charge of the virtual placement of sound in a three dimensional environment. The system generates sounds from different angles to simulate sound coming from different directions.

Other Kinds of VR

Semi-Immersive Projection Systems

- Large high resolution screens or projections give a sense of scale with 3D glasses giving depth
- Allows simultaneous experience of the VE which is not available with head-mounted immersive systems

Augmented Reality vs. Virtual reality

<table>
<thead>
<tr>
<th>Augmented Reality</th>
<th>Virtual reality</th>
</tr>
</thead>
<tbody>
<tr>
<td>System augments a real world scene</td>
<td>Totally immersive virtual environment</td>
</tr>
<tr>
<td>User maintains a sense of presence in the real world</td>
<td>Visual and Auditory senses are under control of system (sometimes tactile and proprioceptive senses also)</td>
</tr>
<tr>
<td>Needs a mechanism to combine virtual and real worlds</td>
<td>Need a mechanism to feed virtual world to user</td>
</tr>
</tbody>
</table>
References

Augmented Reality and Health
Exploring the Technology

Corina Bustillos, MSLS
Assistant Director
Texas Tech Health Sciences Center El Paso
Disclosure

• I am not an expert in programming or with augmented reality (AR)

• I am currently a Learning Technology graduate student in the University of North Texas online degree program

• As a librarian I find this technology interesting as a learning modality in the health field

• This segment is for anyone interested in this technology
Augmented reality (AR,)" is computer-generated content overlaid on a real world environment. AR hardware comes in many forms, including devices that you can carry, such as handheld displays, and devices you wear, such as headsets, and glasses. Common applications of AR technology include video games, television, and personal navigation, though there are many other uses as well.”
- Christensson, Per
Why is augmented reality important?

- Staying knowledgeable on upcoming technology is an important core competency
- Librarians are usually the trend setters of technology
- Augmented reality offers access to new learning modalities
- Hosting new emerging technologies is a way for libraries to promote a stronger engagement with their users
• A simple search in PubMed, CINAHL and searched for augmented reality and medical education; came up with approximately 578 results

• Technologies being used in medical education

• AR health apps which are available for consumers

• Websites that provide open source software for creating AR
First I would like to go over the brief history of AR
History Timeline

1968
Ivan Sutherland created the first head mounted display system.

1974
Myron Kruger built an artificial reality lab.

1990
Tom Caudell coins the term augmented reality.

1994
Julie Martin creates first AR theater production "Dancing in Cyberspace".

1998
Sports Vision broadcast the first virtual 1st & 10 line on a football field.

1999
Naval researchers use a Battlefield AR training.
History Timeline ...

2000
Hirokazu Kato created the ARToolkit. This is an open source library. Sources use video tracking, computer graphics and a camera.

2009
ARToolkit brings AR to web browsers

2013
AR is used for auto repair by car manufacture Volkswagen. MARTA provided a step by step guide repair assistance.

2014
Goggle Glass is available to consumers. The beginning of wearable AR

2014
Magic Leap invests $50M in AR

2015
Investment reaches $700 million for AR and VR

2016
Microsoft Hololens developer kit and Meta 2 Developer Kit available
Augmented reality has opened the door for apps within the medical field. These are some examples of the apps available for consumers. These apps are free for download.
Let’s Check out some apps

Download Anatomy 4D and Easy Heart on your smartphones, IPad or tablets.

Search for Anatomy 4D and Easy Heart in Google Play or the App Store.
Once you have downloaded the Apps open the Anatomy 4D app first. Position the device’s camera on the next screen.
THE HUMAN BODY

WE GOT THE BEAT
Before each beat, your heart fills with blood. The muscle then contracts to squirt the blood along. An adult heart beats 60-80 times per minute.

60 - 80
BEATS PER MINUTE

BRAIN POWER
The brain operates on the same amount of power as a 10-watt light bulb and generates as much energy as a small light bulb even when you're sleeping.

10w

RIGHT VS. LEFT
Right-handed people live an average of nine years longer than left-handed people do. The majority of the machines and tools we use on a daily basis are designed for those who are right-handed, resulting in thousands of accidents and deaths each year.

MILES OF VESSELS
The human body has 60,000 miles of blood vessels. The distance around the earth is about 25,000 miles, making the distance your blood vessels could travel if laid end to end more than 2x around the earth.

WET FEET
Feet have 500,000 sweat glands and can produce more than a pint of sweat a day.

BREATHE IN
The surface area of a human lung is equal to a tennis court.

SMALL INTESTINE
The largest internal organ is the small intestine. In fact, it's so long that it is actually four times as long as the average adult is tall.
THE HEART

ELECTRICALLY CHARGED
Because the heart has its own electrical impulse, it can continue to beat even when separated from the body, as long as it has an adequate supply of oxygen.

HOSE VS. HAIR
The aorta, the largest artery in the body, is almost the diameter of a garden hose. Capillaries, on the other hand, are so small that it takes ten of them to equal the thickness of a human hair.

PASS THE TISSUE
Blood is actually a tissue.

HEART POWER
The volume of blood pumped by the heart can vary over a wide range, from five to 30 liters per minute.

ENTRANCE HALL & LITTLE BELLY
“Atrium” is Latin for “entrance hall” and “ventricle” is Latin for “little belly.”

HEART SPRINTS
Even at rest, the muscles of the heart work hard—twice as hard as the leg muscles of a person sprinting.

TRAVEL PRO
When the body is at rest, it takes only six seconds for the blood to go from the heart to the lungs and back. Only eight seconds for it to go to the brain and back, and only 16 seconds for it to reach the toes and travel all the way back to the heart.

ANATOMY 40
Okay close the Anatomy 4 app and let’s try the Easy Heart App

Open the Easy Heart app and position device camera on the next picture
For Patients: This application is for patient education purposes only. It does not replace the advice or counsel of a doctor or health care professional.

All content of this mobile application has been developed and designed by Naveen Solutions for educational purposes through monetary assistance of Abbott Healthcare Private Limited and is based on information available in the public domain and based on resources and reference books and actual applications at relevant places. The content herein has been developed by Naveen Solutions in consultation with clinicians and/or medical writers and/or experts. While greatest possible care has been taken in compiling, checking and developing the content to ensure that it is accurate and complete, the publisher, its servants or agents, Naveen Solutions or Abbott Healthcare Pvt. Ltd., are not responsible or in any way liable for any injury or damage to any person in view of any reliance placed on or action taken based on the information in this application or any errors, omissions or inaccuracies in the content of the Information in this application, whether arising from negligence or otherwise. The content of this publication constitutes solely the views of the authors of the material and is meant for only demonstration purposes, for patient education on Coronary Artery Disease in a simple way.

Abbott Healthcare Pvt. Ltd., neither agrees nor disagrees with the views expressed in this application and does not constitute or imply an endorsement, sponsorship or recommendation of any kind.
How does AR work?
In order to create augmented reality, developer tools/software is required.

ARToolkit provides open source and proprietary sources.

ARToolkit is the original C/C++ library for developing augmented reality (AR).

Depending on the source, it may require to have basic to advance knowledge of programming language Java or C/C++.
Creating AR may consist of “training markers” or markerless AR with parallel tracking and mapping (PTAM).

PTAM defined as “is a camera tracking system for augmented reality. It requires no markers, pre-made maps, known templates, or inertial sensors” -

Some websites will help you create training markers.

Training markers simply means setting the image to be recognized by the computer’s camera so that it can project the image in augmented reality.

Creating markerless AR will require more programming experience and research.
A few software tools for the development of AR

<table>
<thead>
<tr>
<th>Name of software</th>
<th>What it does</th>
<th>URL</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Tracking and Mapping (PTAM)</td>
<td>Implements real time vision algorithms in C++ on platform of choice</td>
<td>www.robots.ox.ac.uk/-gk/PTAM/</td>
<td>For experienced software developers Free download</td>
</tr>
<tr>
<td>ARToolkit</td>
<td>Allows programmers to develop AR applications in cross-platforms</td>
<td>Artoolkit.org</td>
<td>Beginners to more advanced developers Free download</td>
</tr>
<tr>
<td>Unity</td>
<td>Create 2D or 3D games</td>
<td>https://unitu3d.cim?unity</td>
<td>Beginner to advanced Free download for personal use</td>
</tr>
<tr>
<td>Vuforia</td>
<td>Develops Apps</td>
<td>https://www.vuforia.com</td>
<td>Beginner to advanced Works with Unity Free download for personal use</td>
</tr>
<tr>
<td>Envisage</td>
<td>Create 3D AR scenes from own models, images and multimedia content</td>
<td>https://envisage.ar.com</td>
<td>Beginner (non-programmer)</td>
</tr>
<tr>
<td>SketchUp</td>
<td>Draw in 3D</td>
<td>https://www.sketchup.com</td>
<td>Works with envisage Trial (proprietary source)</td>
</tr>
<tr>
<td>Designers Augmented Reality Toolkit (DART)</td>
<td>Design to facilitate the complete design and development process of AR</td>
<td>Ael.gatech.edu/dart</td>
<td>Any level of developers</td>
</tr>
</tbody>
</table>
Other AR used in health care field

• Accuvein- Hand held scanner allows health professionals to see a map of peripheral veins on patient

 Improves venipuncture and saves money

• Gunner Goggles- AR technology imaged on text http://www.gunnergoggles.com/

• Hololens - https://caehealthcare.com/hololens
• Miracle- Magic Mirror uses AR to overlay a volume visualization of a CT onto the user

• ProMIS- laparoscopic simulator uses AR

• VA-ST – Technology that can recognize 3D objects and identify them
 Legally blind and partial blind patients can benefit

These are only a few of what is being developed.
References

Virtual Reality & Health

Allison Herrera - Technology & Communications Coordinator

The University of Massachusetts Medical School
National Network of Libraries of Medicine, New England Region
National Public Health Coordination Office
Terminology

Noteworthy phrases:

Virtual Reality
Augmented Reality
Mixed Reality
Digital Realities
Cool! – Pain Relief

Leading hospitals are using DeepStream VR experiences like COOL! to help patients escape and manage pain without drugs. COOL! transports you on a journey through a beautiful landscape of changing seasons. Meet and play with the creatures who live there.

What Makes COOL! Special:
- Each player can find their own mix of active fun and relaxation
- Endless game play; the user directs how long they want to interact with the VR environment and how they move through it (speed/direction)
- Flexible system runs with a VR helmet or an immersive 3D screen-based system
- Biofeedback components enhance mindfulness and resilience training
- Biosensors help induce flow state by controlling the intensity of the experience to maximize benefits

- Highest pain tolerance levels occurred when visual and auditory sensory inputs were combined
- Sound or images on their own also boosted pain-tolerance levels
- SnowWorld (earlier Pain Relief VR experience) had 60% of patients experiencing a more than 30% reduction in pain
- Cool! Was created especially for clinical use with burn victims and wound care

Exposure Therapy & Phobias

“SpiderWorld” and “Fearless” are two VR experiences to help people with encountering and conquering their phobias.
Exposure Therapy & Phobias

The creator of “Fearless” overcame his fear of spiders by spending hours in his virtual world.
Training Medical Professionals

The world’s first surgery streamed in virtual reality with Dr. Shafi Ahmed and took about 3 hours.

Immersive Touch, education platform, virtual reality with haptic and tactile feedback

MindMaze – Rehabilitation in Stroke

How Medical Needs Are Being Met
• Early start
• Objective markers
• Simulations of daily life
• Maximize practice time
The mission of the NNLM is to advance the progress of medicine and improve the public health by providing all U.S. health professionals with equal access to biomedical information and improving the public's access to information to enable them to make informed decisions about their health.
Funding Opportunities

Would you like to start a health-centered project with VR or AR, or other kinds of technologies?

You could apply for funding from NNLM.

NNLM.GOV/FUNDING
New England Region (NER)
NER proudly serves: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. The New England Region is based in Worcester, MA, at the University of Massachusetts Medical School.
NNLM NER Funding

<table>
<thead>
<tr>
<th>Title</th>
<th>Amount/Application Deadline</th>
<th>Description</th>
<th>Funding Period/Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Engagement</td>
<td>up to $10,000 04/07/2017 (All day)</td>
<td>Support short-term outreach projects that involve advancing health information resources in collaboration with local community groups.</td>
<td>05/01/2017 to 04/30/2018 Open</td>
</tr>
<tr>
<td>Knowledge & Data Management</td>
<td>up to $10,000 04/07/2017 (All day)</td>
<td>Support projects that stimulate innovations in biomedical knowledge or data management and information or research services at the healthcare or research institution.</td>
<td>05/01/2017 to 04/30/2018 Open</td>
</tr>
<tr>
<td>Member Programs</td>
<td>up to $5,000 04/07/2017 (All day)</td>
<td>Support the development of instructional programs that improve the knowledge and skills of librarians and health information professionals.</td>
<td>05/01/2017 to 04/30/2018 Open</td>
</tr>
<tr>
<td>Technology</td>
<td>up to $7,000 04/07/2017 (All day)</td>
<td>Enhance technology access to and delivery of health information for Network Members, health professionals, and consumers.</td>
<td>05/01/2017 to 04/30/2018 Open</td>
</tr>
</tbody>
</table>

Currently 4 types of awards available from NER

New England Region (NER)
NER serves: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont.
NNLM NER Funding

NNLM Call for Applications 2017-2018

Step by Step Instructions

Easy to download and fill out PDFs
NNLM NER Funding

NER Funding 2016-2017

This past year of projects has been amazing, and we thank all of you. We'd love to share some of our funding data with you.

17 FIRST-TIME AWARDEES
(never received our funding before)

26 PROJECTS IN THE NEW ENGLAND REGION

- Community Engagement: $13,263
- Focused Outreach: $18,045
- Technology Awards: $72,200
- Subcontracts: $77,116
- Knowledge & Data Management Award: $18,889

5 TYPES OF ORGANIZATIONS FUNDED ACROSS NEW ENGLAND

- Community: 4
- Academic Libraries: 3
- Public Libraries: 5
- K-12: 4
- Hospital: 18

TOTAL AWARDED: $289,529
NER Funding 2016-2017

This past year of projects has been amazing, and we thank all of you. We’d love to share some of our funding data with you.

17 FIRST-TIME Awardees
(never received our funding before)

26 Projects in the New England Region

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Engagement</td>
<td>$63,383</td>
</tr>
<tr>
<td>Focused Outreach</td>
<td>$78,068</td>
</tr>
<tr>
<td>Technology Awards</td>
<td>$73,293</td>
</tr>
<tr>
<td>Subcontracts</td>
<td>$77,130</td>
</tr>
<tr>
<td>Knowledge & Data Management Award</td>
<td>$7,689</td>
</tr>
</tbody>
</table>
NNLM NER Funding

5 TYPES OF ORGANIZATIONS FUNDED ACROSS NEW ENGLAND

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Public Libraries</td>
<td>10</td>
</tr>
<tr>
<td>Academic Libraries</td>
<td>4</td>
</tr>
<tr>
<td>K-12</td>
<td>3</td>
</tr>
<tr>
<td>Hospital</td>
<td>5</td>
</tr>
<tr>
<td>Hospital</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL AWARDED: $289,529
Contact

Allison Herrera
Technology & Communications Coordinator

Allison.Herrera@umassmed.edu
@AllisonKHerrera
508-856-5979 (office)
Research

We Are Alfred: Empathy Learned Through a Medical Education Virtual Reality Project

Marilyn R. Gugliucci, MA, PhD
Barbara Swartzlander, MSEd, MLS
Elizabeth Dyer, MLIS, AHIP
Introduction

- Those 65 years and older use more than 50% of health care resources.
- As the older population increases and lives longer, their health care utilization is predicted to increase dramatically.
- We have an obligation to train our future health care providers to work with older adults.
- Innovative learning modalities, such as virtual reality, augment medical students’ learning about older adult health care.
- We Are Alfred Virtual Reality provides such a platform teaching about Macular Degeneration while instilling empathy.
Learning Objectives

- Participants (Faculty, Medical Students/Health Professions Students) will be able to:
 - Learn how to implement virtual reality education modules in medical and/or health professions education
 - Discuss the role of virtual reality case study immersion as a viable education modality
 - Understand how virtual reality technology can be utilized as a health/medical education tool.
Methods

- First year medical students (N=175) were required to complete the ‘We Are Alfred’ Virtual Reality (VR) module (15 min) and a pre/post test.
 - 51% Female / 49% Male
 - Average age: 25.4
 - Age range: 21 - 44
 - 63% from New England

- Four computer stations were constructed at the university library in which the students had 24/7 access.
- The students assumed the role of Alfred, a 74 y/o African American male with macular degeneration and hearing loss.
- “We Are Alfred” utilizes a virtual reality headset, headphones, and a hand-tracking device to immerse students into Alfred’s experiences as a patient.
- Descriptive statistics and t-tests were applied for data analyses.
- Funding for the project: National Network of Libraries of Medicine New England Region (NN/LM NER) Technology Grant
What is Macular Degeneration?

FIRST EMBODIED VR EXPERIENCE

The Alfred Lab
- Live-action 7 minute 360° film
- Computer-generated interactive objects
- 3D binaural sound

Who is Alfred?
- A 74 year old African-American patient
- Advanced macular degeneration
- High frequency hearing loss

Patent pending
Results

- Learning was broad and significant...
- 94% reported increased empathy
- 92% reported increased learning about macular degeneration
- 90% reported increased learning about hearing loss.
Results

What words come to mind when you hear “older people or aging?”

<table>
<thead>
<tr>
<th>Pre Test Adjectives</th>
<th>Post Test Adjectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow</td>
<td>Missunderstood</td>
</tr>
<tr>
<td>Elderly</td>
<td>Complicated</td>
</tr>
<tr>
<td>Frail</td>
<td>Missunderstood</td>
</tr>
<tr>
<td>Illness</td>
<td>Frustration</td>
</tr>
<tr>
<td>Death</td>
<td>Can’t generalize what aging means for everyone</td>
</tr>
</tbody>
</table>
Students’ Representative Comments

- This was definitely a unique experience - I had no idea that sensory deficits of this proportion were actually fairly common in the aging population, and it has really opened my eyes to what elder individuals may be going through.

- This experience was truly eye-opening and I thoroughly enjoyed it.

- We're all, for the most part, healthy and capable 20 somethings with no sense of what it means to have macular degeneration or any other type of serious degenerative illness. I don't think this experience necessarily gives us the perfect foundation but what could? It's a great first step!

- I loved this experience because I think it's an incredible step forward to incorporating technology into our curriculum and creating a fundamental understanding of some of the symptoms our patients may be experiencing.
Resources

Older Adult Health: National Library of Medicine Resources for Patients and Families

Seniors' Health – Information, news, research, resources, and more from MEDLINE Plus
https://medlineplus.gov/seniorhealth.html

NIH Senior Health – Health and wellness information for older adults from the National Institutes of Health
https://nihseniorhealth.gov/

Drug Information from the National Library of Medicine

NLM 4 Caregivers – To increase awareness of NLM resources among caregivers who seek health information online using social media tools such as Facebook, Twitter, etc.

Eldercare Locator – a public service of the U.S. Administration on Aging connecting to services for older adults and their families
http://www.eldercare.gov/Eldercare.NET/Public/Index.aspx

This project has been funded in whole or in part with federal funds from the National Library of Medicine, National Institutes of Health, under Cooperative Agreement U48LM012347-01, with the University of Massachusetts, Worcester.

Older Adult Health: National Library of Medicine Resources for Healthcare Providers

National Library of Medicine for Health Care Professionals

Drug Information from the National Library of Medicine
https://www.narr.nih.gov/learn-about-drugs.html

Databases, Resources and APIs
list of all resources from the National Library of Medicine

UNE Library Services Medicine Subject Guides include all these resources, and more!
http://www.une.edu/library/sguide/medicine

NIH
U.S. National Library of Medicine

UNE
University of New England

Library Services

This project has been funded in whole or in part with federal funds from the National Library of Medicine, National Institutes of Health, under Cooperative Agreement U48LM012347-01, with the University of Massachusetts, Worcester.
Conclusion

- Virtual reality was deemed a successful medical education learning tool for these medical students.

- Utilizing this technology to create an immersive case study taught these medical students about the aging experience from the first-person patient perspective.
Thank you!

Embodied Labs for their creativity in designing this project and their support throughout

UNE IT Staff

Library Staff and Student Workers

National Network of Libraries of Medicine New England Region (NN/LM NER) Technology Grant
Questions & Comments

Zeb Mathews
University of Tennessee

Corina Bustillos
Texas Tech University

Allison Herrera
University of Massachusetts Medical School

Marilyn Gugliucci
University of New England

Questions? allison.herrera@umassmed.edu